Square integer matrix with a single non-integer entry in its inverse

Abstract

Matrix inversion is one of the most significant operations on a matrix. For any non-singular matrix $\mathrm{A} \in \mathrm{Zn} \times \mathrm{n}$, the inverse of this matrix may contain countless numbers of non-integer entries. These entries could be endless floating-point numbers. Storing, transmitting, or operating such an inverse could be cumbersome, especially when the size n is large. The only square integer matrix that is guaranteed to have an integer matrix as its inverse is a unimodular matrix $U \in Z n \times n$. With the property that $\operatorname{det}(\mathrm{U})= \pm 1$, then $\mathrm{U}-1 \in \mathrm{Zn} \times n$ is guaranteed such that $\mathrm{UU}-1=\mathrm{I}$, where $\mathrm{I} \in \mathrm{Zn} \times \mathrm{n}$ is an identity matrix. In this paper, we propose a new integer matrix $\mathrm{G}^{\sim} \in \mathrm{Zn} \times \mathrm{n}$, which is referred to as an almost-unimodular matrix. With $\operatorname{det}\left(\mathrm{G}^{\sim}\right) \neq \pm 1$, the inverse of this matrix, $\mathrm{G}^{\sim}-1 \in \mathrm{Rn} \times \mathrm{n}$, is proven to consist of only a single noninteger entry. The almost-unimodular matrix could be useful in various areas, such as latticebased cryptography, computer graphics, lattice-based computational problems, or any area where the inversion of a large integer matrix is necessary, especially when the determinant of the matrix is required not to equal ± 1. Therefore, the almost-unimodular matrix could be an alternative to the unimodular matrix.

Keyword: Square integer matrix; Inversion of integer matrix; Unimodular matrix; Algebraic number theory; Lattice-based cryptography

