UNIVERSITI PUTRA MALAYSIA

EFFECT OF ALKALINE EARTH METAL (M= Sr, Ca and Mg) SUBSTITUTION ON DIELECTRIC PROPERTIES OF Ba_{1-x}M_xPbO_3 CERAMICS

ARI SULISTYO RINI

FSAS 2002 41
EFFECT OF ALKALINE EARTH METAL (M= Sr, Ca and Mg) SUBSTITUTION ON DIELECTRIC PROPERTIES OF Ba_{1-x}M_xPbO_3 CERAMICS

By

ARI SULISTYO RINI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of Requirement for the Degree of Master of Science

August 2002
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECT OF ALKALINE EARTH METAL (M = Sr, Ca and Mg) SUBSTITUTION ON DIELECTRIC PROPERTIES OF Ba$_{1-x}$M$_x$PbO$_3$ CERAMICS

By

ARI SULISTYO RINI

August 2002

Chairman: Associate Professor Wan Mohd. Daud Wan Yusoff, Ph.D.

Faculty: Science and Environmental Studies

BaPbO$_3$-based ceramic have been the subject of numerous laboratory investigations, structurally and electrically. BaPbO$_3$ is a polycrystalline that possesses perovskite crystal structure, which is similar to the prototype dielectric ceramic i.e. BaTiO$_3$ structure. It is obviously noticed that suitable substitution on a system, enables us to change electrical properties of material to obtain specific requirement.

In this work, alkaline earth metals (i.e. Sr, Ca and Mg) were used as substitution elements. The substitution, which are based on ionic radii consideration ($r_{Mg} < r_{Ca} < r_{Sr}$), are attempted to drive the metallic properties of BaPbO$_3$ towards a semiconductor by creating either oxygen vacancies and/or allowing partial reduction of Pb$^{4+}$ to Pb$^{2+}$ thereby stabilizing the unusual 3+ intermediate valency for Pb in the lattice. Dielectric studies of Ba$_{1-x}$M$_x$PbO$_3$ system (M = Mg, Sr and Ca) have not been reported so far.
The experimental investigation is divided into two categories. Firstly, x-ray diffraction methods and microstructural investigation, which is considered important in order to provide supportive evidence to any proposed model of dielectric behaviour. Secondly, the main experiment consists of alternating current conductivity measurement. Electrical tests on materials investigate their ability to store charge (capacitance) and transfer charge (conductance). Analyzing these parameters can provide valuable information in terms of a material's physical and chemical properties.

The results of XRD reveals lattice parameter changes of BaPbO_3 after substitution of $\text{Sr}^{2+}, \text{Ca}^{2+}$ and Mg^{2+}. Structural transitions were only detected from orthorhombic perovskite to pseudo-cubic perovskite after substituted by 70 mol% of Mg at Ba-site. It is obviously noticed that to maintain molecule constancy of the chemical reaction of $\text{Ba}_{1-x}\text{Mg}_{x}\text{PbO}_{3-x}$ indicate oxygen deficiency on the product. From SEM Micrograph, it is clearly seen that, the samples prepared after calcined and sintered at 800 °C for 6 hours and 850 °C for 24 hours respectively, still contain high porosity.

The experimental results of deduced dielectric response from ac conductivity measurement were then separated into two regions, i.e. bulk response and grain boundary response, using equivalent electrical circuit model. Effect of porosity was detected from the grain boundary response at low frequency region that dominated by dc conduction or hopping charge carrier at all range of sample. The bulk response that represented by high frequency region indicated the less dispersion behaviour.
Substitution of Sr$^{2+}$, Ca$^{2+}$ and Mg$^{2+}$ into Ba-site of BaPbO$_3$ has increased the resistivity and the dielectric constant of pure BaPbO$_3$. Substitution of Ca$^{2+}$ has apparently give major contribution to increase the dielectric constant of BaPbO$_3$ as high as 7×10^4 when substituted by 60 mol% of Ca$^{2+}$ at Ba-site of BaPbO$_3$.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN PENDOPAN METAL ALKALI TANAH (M= Sr, Ca, dan Mg) TERHADAP CIRI-CIRI DIELEKTRIK SERAMIK Ba$_{1-x}$M$_x$PbO$_3$

Oleh

ARI SULISTYO RINI

Ogos 2002
Pengerusi: Profesor Madya Wan Mohd. Daud Wan Yusoff, Ph.D.
Fakulti: Sains dan Pengajian Alam Sekitar

Seramik berasaskan BaPbO$_3$ telah banyak dilakukan penyelidikan keatasnya secara struktur dan kemampuannya untuk menghantarkan arus elektrik. BaPbO$_3$ adalah sejenis poli-hablur yang mempunyai struktur hablur perovskite, dimana ia mempunyai persamaan dalam seramik dielektrik prototype, sebagai contohnya struktur BaTiO$_3$. Dapat dipahami bahawa pengganti yang sesuai dalam sistem memungkinkan kita untuk mengubah benda yang bermuatan elektrik; yang pada akhirnya mendapatkan sesuai dengan yang diharapkan.

Dalam kajian ini, unsur alkali tanah (seperti Sr, Ca, dan Mg) telah digunakan sebagai elemen gantian. Bahan penggantian berasaskan jejari ion (r$_{Mg}<r_{Ca}<r_{Sr}$) adalah untuk mengubah bahan pengalir kepada bahan semikonduktor. Setakat ini, kajian mengenai dielektrik pada sistem Ba$_{1-x}$M$_x$PbO$_3$ (M=Sr, Ca, dan Mg) masih belum dilaporkan.

Keputusan XRD menunjukkan bahawa parameter kekisi BaPbO₃ berubah selepas digantikan oleh Sr²⁺, Ca²⁺, dan Mg²⁺. Struktur transisi hanya dapat dikesan dari orthorhombik perovskite kepada pseudo-kubus perovskite selepas digantikan dengan 70 mol% Mg pada tapak Ba. Adalah jelas bahawa untuk mengekalkan konsistensi molekul pada tindakbalas kimia BaPbO₃ dicirikan dengan kekurangan oksigen pada produk. Daripada mikrograf SEM, dapat dilihat sampel yang disediakan selepas pengkalsinan pada 800°C selama 6 jam dan persinteran 850°C selama 24 jam, masih mempunyai keadaan berongga yang tinggi.

Dari keputusan eksperimen, sambutan dielektrik yang dideduksikan daripada pengukuran pengaliran arus ulang-alik, kemudian dibahagikan kepada dua bahagian, iaitu sambutan pukal dan sambutan sempadan butiran menggunakan model litar elektrik yang sepadan. Kesan keronggaan telah dikesan dari sambutan sepadan butiran bahagian frekuensi rendah yang didominasi oleh pengaliran arus terus atau pembawa cas loncatan pada pelbagai jenis sampel. Sambutan pukal yang diwakili oleh bahagian frekuensi tinggi dicirikan dengan sifat pengukuran penyebaran.

vi
Penggantian Sr, Ca, Mg ke dalam tapak Ba pada BaPbO₃ telah meningkatkan ketahanan dan pemalar dielektrik BaPbO₃ sehingga 7×10^4 apabila digantikan dengan 60 mol% Ca²⁺ pada tapak Ba.
ACKNOWLEDGEMENTS

I would like to express my great appreciation and sincere gratitude to Associate Professor Dr. Wan Mohd. Daud Wan Yusoff and Professor Dr. Abdul Halim Shaari for their sponsoring and supervision, exactly their help made my dream of pursuing higher education come true. I am indebted to my co-supervisor Dr. Zainul Abidin Hassan and Associate Professor Dr. Anuar Kassim, for his patience and valuable guidance and advise throughout this study.

I would like to thank to Mrs. Iftetan, Miss Huda Abdullah and all my lab-mates for their tremendous assistance and encouragement during the whole study period.

My appreciation goes to my closest friend Daryani and Gamma for the amity, patience and encouragement and to all my country-mates Harini Boekhari, Lailan Saufina, Mayastri, Penni Ismiati and Rini Yanti for the kindly cares, helps and their religious guidance and to all my college-mates Ernawati, Neila, Mirna, Sifa, Tesa, Ayu and Maesaroh who always be beside me whenever I needed them.

Finally, but not least, I most greatly appreciate my Mother, my brothers and sister, my aunt, my uncle and my cousins, for their support and encouragement.
I certify that an Examination Committee met on 29th August 2002 to conduct the final examination of Ari Sulisty Rini on her Master of Science thesis entitled “Effect of Alkaline Earth Metal Substitution (M= Sr, Ca and Mg) on Dielectric Properties of Ba$_{1-x}$M$_x$PbO$_3$ Ceramics” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

ZAINAL ABIDIN TALIB, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

WAN MOHD. DAUD WAN YUSOFF, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

ABDUL HALIM SHAARI, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

ZAINUL ABIDIN HASSAN, Ph.D.
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

ANUAR KASSIM, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

SHAMSHER MOHAMAD RAMADILI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 30 SEP 2002
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the supervisory committee are as follows:

WAN MOHD. DAUD WAN YUSOFF, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Chairman)

ABDUL HALIM SHAARI, Ph.D.
Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

ZAINUL ABIDIN HASSAN, Ph.D.
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

ANUAR KASSIM, Ph.D.
Associate Professor
Faculty of Science and Environmental Studies
Universiti Putra Malaysia
(Member)

AINI IDERIS, Ph.D.
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ARI SULISTYO RINI

Date: 14 Sept 2002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section/Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>viii</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>ix</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xv</td>
</tr>
<tr>
<td>List of Plates</td>
<td>xix</td>
</tr>
<tr>
<td>List of Symbols and Abbreviations</td>
<td>xx</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

Dielectric Analysis

Objectives

II LITERATURE REVIEW

Historical Background

Previous Works on Dielectric and AC Conductivity Studies

BaPbO₃: material in question

- Structural Aspect of Ba-Pb-O system
- Perovskite Crystal Structure
- Electrical Properties of doped and undoped BaPbO₃

III THEORETICAL BACKGROUND

Definitions and Basic Concepts

- Dielectric Polarization
- Dielectric Responses
- The Universal Dielectric Response
- Classification of Response Type

Impedance Spectroscopy

AC Conductivity

Crystal Structure Analysis

IV METHODS

Sample Preparation

- Starting Material
- Ball Milling, Drying, and Grinding
- Calcination
- Sintering

Structural and Microstructural Analysis

Electrical Properties Experiment
Preparation of Specimen 50
Experimental Setup 50
Impedance Analyzer 51
Dielectric Spectrometer 52
Experimental Errors 54

V RESULTS AND DISCUSSIONS 57
Introduction 57
Base - BaPbO$_3$ 57
 XRD and SEM Micrograph 58
 Frequency response of Capacitance 61
 Frequency Response AC Conductivity 68
 Temperature Dependence of Capacitance and Resistivity 70
Ba$_{1-x}$Sr$_x$PbO$_3$ 72
 Structural Analysis 72
 Frequency Response of Measured Conductivity, σ_{ac} 73
 Frequency Dependence of Dielectric Permittivity 75
Ba$_{1-x}$Ca$_x$PbO$_3$ 81
 Structural Analysis 81
 Frequency Response of Measured Conductivity, σ_{ac} 83
 Frequency Dependence of Dielectric Permittivity 85
Ba$_{1-x}$Mg$_x$PbO$_3$ 89
 Structural Analysis 89
 Frequency Response of Measured Conductivity, σ_{ac} 90
 Frequency Dependence of Dielectric Permittivity 93
Summary 97
 Structural Analysis 97
 Dielectric Permittivity and Electrical Circuit Model 98

VI CONCLUSION AND SUGGESTION 100
Conclusion 100
Suggestions for Future Research 101

REFERENCES 104
APPENDICES 108
VITA 113
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The summary of various spectral functions and their power-law exponents (from A.K. Jonscher 1983)</td>
</tr>
<tr>
<td>2</td>
<td>Relationship between dielectric function and impedance</td>
</tr>
<tr>
<td>3</td>
<td>Compounds prepared for this research.</td>
</tr>
<tr>
<td>4</td>
<td>Chemicals</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of lattice parameter of BaPbO<sub>3</sub> with some references</td>
</tr>
<tr>
<td>6</td>
<td>Characterization of the dispersion data for pure BaPbO<sub>3</sub> at various temperatures</td>
</tr>
<tr>
<td>7</td>
<td>DC conductivity value deduced from extrapolation of AC conductivity plot.</td>
</tr>
<tr>
<td>8</td>
<td>Lattice parameter of Ba<sub>1-x</sub>Sr<sub>x</sub>PbO<sub>3</sub></td>
</tr>
<tr>
<td>9</td>
<td>Exponent s<sub>1</sub> (low) and s<sub>2</sub> (high) of Sr-doped samples</td>
</tr>
<tr>
<td>10</td>
<td>Dielectric parameter of Ba<sub>(1-x)</sub>Sr<sub>x</sub>PbO<sub>3</sub></td>
</tr>
<tr>
<td>11</td>
<td>Lattice parameter of Ba<sub>1-x</sub>Ca<sub>x</sub>PbO<sub>3</sub> system</td>
</tr>
<tr>
<td>12</td>
<td>Exponent s<sub>1</sub> (low) and s<sub>2</sub> (high) of Ca-doped samples</td>
</tr>
<tr>
<td>13</td>
<td>Lattice parameter of Ba<sub>1-x</sub>Mg<sub>x</sub>PbO<sub>3</sub></td>
</tr>
<tr>
<td>14</td>
<td>Exponent s<sub>1</sub> (low) and s<sub>2</sub> (high) of Mg-doped samples</td>
</tr>
<tr>
<td>15</td>
<td>Dielectric parameter of Ba<sub>(1-x)</sub>Mg<sub>x</sub>PbO<sub>3</sub></td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Perovskite structure of BaPbO3</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>Two metal plates, separated by distance, d, can store electric energy after having been charged momentarily by battery.</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Various polarization processes (After Moulson, pg. 53)</td>
<td>22</td>
</tr>
<tr>
<td>4</td>
<td>The relation between the dielectric permittivity $\varepsilon'(\omega)$ and the various contribution of the susceptibilities $\chi'\alpha(\omega)$, with the corresponding dielectric losses $\chi''\alpha(\omega)$. The respective values of ε_∞ are indicated for mechanisms 1 and 2. (After Jonscher, 1980a pg. 216)</td>
<td>23</td>
</tr>
<tr>
<td>5</td>
<td>The frequency dependence of real and imaginary components of the susceptibility of an ideal Debye system.</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>The frequency dependence of real and imaginary components of the susceptibility corresponding to the Cole-Cole expression.</td>
<td>26</td>
</tr>
<tr>
<td>9</td>
<td>Frequency behaviour of a capacitor with varying leakage current.</td>
<td>32</td>
</tr>
<tr>
<td>10</td>
<td>Frequency explicit plots of the real and imaginary parts of the permittivity and complex plane plot for a single relaxation type process.</td>
<td>32</td>
</tr>
<tr>
<td>11</td>
<td>A generalized circuit element that has been constructed from a dispersive susceptibility, $\chi(0)F(\omega/\omega_c)$, a non-dispersive capacitance of permittivity $\varepsilon(\infty)$, and a conductance of magnitude G. S is the sample factor $\varepsilon_\infty A/d$ and ω the frequency.</td>
<td>36</td>
</tr>
<tr>
<td>12</td>
<td>The series arrangement of two element of the type shown in Fig. 11. Arbitrarily one element has been associated with the bulk material response and is of impedance Z_b, whilst the other element is associated with the surface-layer response and has impedance Z_s.</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>The reflection of an x-ray beam by the (hkl) planes of a crystal. (a) No reflected beam is produced at an arbitrary angle of incidence. (b) At the Bragg angle θ, the reflected rays are in phase and reinforced on another. (c) Similar to (b) except that the wave representation has been omitted. (After W. F. Smith, “Foundations</td>
<td></td>
</tr>
</tbody>
</table>
Sample preparation procedures by using Solid State Reaction Route

(a) sample under test; equivalent circuit (b) RC-series (c) RC-parallel

A schematic representation of the principle of measurement using a Frequency Response Analyser (FRA) showing the FRA and the Chelsea Dielectric Interface. The gain of the current-to-voltage converter is controlled by the choice of the measuring resistors and capacitor high performed automatically by computer. (After Jonscher, A.K. 1996, pg. 275)

Measuring equivalent circuit.

Powder XRD pattern of BaPbO₃ sample.

(a) Frequency response of complex capacitance of BaPbO₃ from three measurements using HP 4291A, and (b) average and relative error % of imaginary parts of capacitance.

(a) Frequency response of complex capacitance of BaPbO₃ using HP 4291A

Frequency response of (a) Real capacitance (C') and (b) Imaginary Capacitance (C'') of BaPbO₃ measured by FRA SI 1255 Schlumberger Technologie at 5 different temperatures.

Schematic Frequency Response of pure BaPbO₃ measured at (a) room temperature; and (b) T = 50 °C exhibiting lossy capacitor behavior (DC Conductance) and effect of series resistance (Rs)

(a-c): Schematic frequency response of pure BaPbO₃ exhibiting DC Conduction and electrodes resistances behaviour.

(a) Equivalent circuit diagram (for Fig. 23(a)) showing RC parallel network, series with electrodes resistance (Rs); (b) Equivalent circuit diagram (for Fig. 23(b)) showing parallel network of Dipole response and C infinity, series with Rs.

Deduction of activation energy from fc as listed in Table 6.

Frequency dependence of Conductivity of BaPbO₃ (using HP Impedance Analyzer).

Frequency dependence of conductivity of BaPbO₃ at various temperature using FRA.
29 Arrhenius plot, \(\ln \sigma_{dc} \) against \(1/T \) of pure sample from the data in Table 6.

30 Temperature dependence of Capacitance (relative to 25°C value) of BaPbO3 at certain frequency.

31 Temperature dependence of resistivity (relative to 25°C value) of BaPbO3 at certain frequency.

32 XRD pattern of \(\text{Ba}_{1-x}\text{Sr}_{x}\text{PbO}_3 \) after calcined at 800°C for 24 hours; small arrows indicate impurity.

33 Frequency responses of AC Conductivity of \(\text{Ba}_{1-x}\text{Sr}_{x}\text{PbO}_3 \) series

34 DC conductivity (low frequency region) and exponent s2 value (high frequency region) varies with the Sr contents.

35 (a) Dielectric response of Sr-0.2-HP, and curve-fitting; (b) preliminary electrical circuit model for Sr-0.2-HP; (c) equivalent circuit consist of combination of volume (bulk) and barrier admittance with their universal capacitor \(C_0(\omega) \) and conductances \(G \).

36 Dielectric response of (a) Sr-0.4-HP; (b) Sr-0.6-HP; (c) Sr-0.8-HP; (d) Sr-1.0-HP.

37 Equivalent network model represent dielectric response in Fig. 36.

38 XRD pattern of \(\text{Ba}_{1-x}\text{Ca}_{x}\text{PbO}_3 \) calcined and sintered at 800°C for 12 hours and 24 hours, respectively.

39 Frequency response of ac conductivity of (a) Ca-0.1-HP, Ca-0.2-HP, Ca-0.3-HP; (b) Ca-0.4-HP, Ca-0.5-HP, Ca-0.6-HP, Ca-0.7-HP.

40 Dielectric response of (a) Ca-0.1-HP, (b) Ca-0.2-HP and (c) Ca-0.3-HP and fitted by equivalent circuit model in Fig. 43(a).

41 Dielectric response of (a) Ca-0.4-HP, (b) Ca-0.5-HP, (c) Ca-0.6-HP, (d) Ca-0.7-HP and fitted by equivalent circuit in Fig. 43 (b).

42 Equivalent network model represent dielectric response of \(\text{Ba}_{1-x}\text{Ca}_{x}\text{PbO}_3 \) system (a) in Fig. 41 and (b) in Fig. 42.

43 XRD Patterns of \(\text{Ba}_{1-x}\text{Mg}_{x}\text{PbO}_3 \) system, calcined at 850°C for 12 hours.

44 Frequency responses of \(\sigma_{ac} \) conductivity of sample Mg-0.1 and Mg 0.5 with estimation slope at higher-frequency.

45 Frequency responses of \(\sigma_{ac} \) conductivity of sample Mg-0.7, Mg-0.9 and Mg-1.0 with estimation slope.
47 Dielectric response of (a) Mg-0.1-HP; (b) Mg-0.3-HP; (c) Mg-0.5-HP

48 Dielectric response of (a) Mg-0.1-HP; (b) Mg-0.3-HP; (c) Mg-0.5-HP

49 Equivalent circuit model of Mg-x-HP, 0.1<x<0.5

50 Equivalent circuit model of Mg-x-HP, 0.7<x<1.0

51 Dielectric constant as a function of substitution contents

52 Capacitor with series inductance and resistance

53 Equivalent circuit for Quasi-DC behaviour
<table>
<thead>
<tr>
<th>Plate</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Micrograph profile of pure sample</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>Micrograph profile of sample Ca-04</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

\(\alpha \)
spectral parameter

\(\varepsilon \)
dielectric permittivity (F/m)

\(\varepsilon_{inf} \)
dielectric permittivity at very high frequency

\(\varepsilon_r \)
relative dielectric permittivity

\(\varepsilon^* (\omega) \)
complex permittivity as a function of angular frequency

\(\varepsilon' (\omega) \)
the real part of complex permittivity as a function of angular frequency

\(\varepsilon'' (\omega) \)
the imaginary part of complex permittivity as a function of angular frequency

\(\chi^* (\omega) \)
complex dielectric susceptibility

\(\chi' \)
real part of dielectric susceptibility

\(\chi'' \)
imaginary part of dielectric susceptibility

\(\lambda \)
wave length

\(\mu \)
micron

\(\rho \)
resistivity (ohm/cm)

\(\sigma \)
conductivity (mho/cm)

\(\sigma (\omega) \)
conductivity as a function of angular frequency

\(\tau \)
relaxation time (sec)

\(\omega \)
angular frequency

\(\omega_p \)
peak angular frequency

\(\omega_c \)
critical angular frequency

\(\propto \)
proportional to
Å Angstrom unit
a, b, c lattice parameters
eV electron volt
exp exponential
f frequency
h, k, l Miller indices
j = √-1
k Boltzmann constant
kHz kilohertz
ln natural logarithm
log logarithm
mHz millihertz
Ac alternating current
B susceptance (mho)
C capacitance
C' real part of capacitance
C'' imaginary part of capacitance
DC direct current
E activation energy
FRA Frequency Response Analyzer
G Conductance
HP Hewlett Packard
Hz Hertz
I current
Im imaginary part
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>R</td>
<td>resistance (ohm)</td>
</tr>
<tr>
<td>Re</td>
<td>real part</td>
</tr>
<tr>
<td>Rs</td>
<td>series resistant</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>T</td>
<td>absolute temperature (Kelvin)</td>
</tr>
<tr>
<td>UPM</td>
<td>Universiti Putra Malaysia</td>
</tr>
<tr>
<td>UM</td>
<td>Universiti Malaya</td>
</tr>
<tr>
<td>V</td>
<td>voltage</td>
</tr>
<tr>
<td>XRD</td>
<td>x-ray diffraction</td>
</tr>
<tr>
<td>Y</td>
<td>admittance</td>
</tr>
<tr>
<td>Y'</td>
<td>real part of admittance</td>
</tr>
<tr>
<td>Y"</td>
<td>imaginary part of admittance</td>
</tr>
<tr>
<td>Y*</td>
<td>complex admittance</td>
</tr>
<tr>
<td>Z</td>
<td>impedance</td>
</tr>
<tr>
<td>Z'</td>
<td>real part of impedance</td>
</tr>
<tr>
<td>Z"</td>
<td>imaginary part of impedance</td>
</tr>
<tr>
<td>Z*</td>
<td>complex impedance</td>
</tr>
</tbody>
</table>
INTRODUCTION

Evolution of electronic component and demands for advanced materials yield intensive investigations on electrical and structural properties of materials. Characterization and identification of physical phenomena of materials become more interesting as new theories emerge to explain the observed experimental phenomena.

Among the phenomena that are, being intensely characterized is the electrical behaviour. The electrical tests on materials reveal their ability to store (capacitance) and transfer charge (conductance). Analyzing these phenomena can provide valuable information in terms of a material's physical and chemical properties including: impedance, porosity, tan delta, molecular relaxation, grain boundaries, phase changes, permittivity and modulus, along with many other parameters.

BaPbO₃-based ceramic have been the subject of numerous structural and electrical investigations. BaPbO₃ is a polycrystalline that possesses perovskite crystal structure, which is similar to the prototype dielectric ceramic i.e. BaTiO₃ structure. The discovery of superconductivity of Ba-Pb-Bi-O system has led to wide range of research on BaPbO₃-based system, included BaPbO₃ itself, though report of superconductivity below ~0.4 K in BaPbO₃ has not been confirmed by more recent studies (Mattheis 1990).

BaPbO₃ shows a metallic behaviour although there is no transition-metal ion present, and its resistivity has a small temperature dependent part. It is obviously
noticed that suitable substitution on a system, enables us to change electrical properties of material to obtain specific requirement. For example, after Bi was doped into the Pb sites, superconductivity occurred at about 13 K along with a metal-insulator transition, which coincided with structural changes, whereas when Sb was introduced into Pb sites, no MI transition was found (Zhao 2000).

Alkaline earth metals (i.e. Ba, Mg, Sr, and Ca) were widely used as substitution elements. In some cases, they have been found to improve the electrical properties of Ba-based and Pb-based system to a specific requirement. Literature review on Mg, Sr, and Ca doped on Ba-site of BaPbO$_3$ were still sparse. What available is only limited to high-temperature thermoelectric properties of Ba-Sr-Pb-O and Positive Temperature Coefficient of Resistivity of Ba-Sr-Pb-O. Dielectric studies of Ba$_{1-x}$M$_x$PbO$_3$ system (M = Mg, Sr and Ca) have not been reported so far.

The substitution, which are based on ionic radii consideration ($r_{Mg} < r_{Ca} < r_{Sr}$), is an attempt to drive the metallic properties of BaPbO$_3$ towards a semiconductor by creating either oxygen vacancies and/or allowing partial reduction of Pb$^{4+}$ to Pb$^{2+}$ there by stabilizing the unusual 3+ intermediate valency for Pb in the lattice (Kodenkandath 2000).

Dielectric Analysis

Impedance Analysis is a powerful non-destructive tool for analyzing a range of electroceramic materials. The advantage of this technique is that it yields accurate and repeatable results, which are unobtainable by other electrical means. The properties of ceramic materials depend on close control of their structure in terms of