

UNIVERSITI PUTRA MALAYSIA

ENZYME-CATALYZED SYNTHESIS AND CHARACTERIZATION OF DIHYDROXYSTEARIC ACID ESTER FROM PALM-BASED DIHYDROXYSTEARIC ACID AND MONOHYDRIC ALCOHOL

ROILA AWANG

FSAS 2002 27

ENZYME-CATALYZED SYNTHESIS AND CHARACTERIZATION OF DIHYDROXYSTEARIC ACID ESTER FROM PALM-BASED DIHYDROXYSTEARIC ACID AND MONOHYDRIC ALCOHOL

ROILA AWANG

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA 2002

ENZYME-CATALYZED SYNTHESIS AND CHARACTERIZATION OF DIHYDROXYSTEARIC ACID ESTER FROM PALM-BASED DIHYDROXYSTEARIC ACID AND MONOHYDRIC ALCOHOL

Ву

ROILA AWANG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirement for the Degree of Doctor of Philosophy

September 2002

Abstract of the thesis presented to the Senate of the Universiti Putra Malaysia in the fulfillment of the requirement for the degree of Doctor of Philosophy

ENZYME-CATALYZED SYNTHESIS AND CHARACTERIZATION OF DIHYDROXYSTEARIC ACID ESTER FROM PALM-BASED DIHYDROXYSTEARIC ACID AND MONOHYDRIC ALCOHOL

By

ROILA AWANG

Chairman	:	Professor	Dr.	Mahiran	Basri
----------	---	-----------	-----	---------	-------

Faculty : Science and Environmental Studies

Enzymatic synthesis of dihydroxystearic acid ester (DHSA ester) from dihydroxystearic acid (DHSA) and monohydric alcohol in organic solvent were investigated. Five commercial immobilized enzyme (Lipozyme IM, Novozym 435, Termamyl, Savinase and Lipolase) were tested for their suitability for the reaction. Among the enzymes tested, Lipozyme IM and Novozym 435 were chosen for optimization studies because of their higher specific activity. The effect of various reaction parameters such as time, temperature, organic solvent, amount of enzyme, mole ratio of substrates, thermodynamic water activity (a_w) and structure of substrates were studied to determine optimal condition for the production of DHSA ester.

The optimal conditions for DHSA ester synthesis using Lipozyme IM and Novozym 435 were obtained at reaction time of 3h, temperature of 50°C,

mole ratio of substrates, 2.0 and amount of enzyme, 10-20% (w/w). The maximum conversion for Lipozyme IM and Novozym 435 at optimal condition was 92.4% and 94.9% respectively without removal of water in the reaction mixture. The results clearly demonstrated that both enzymes are well suited for the preparation of DHSA ester in organic media. This esterification reaction follows Michaelis-Menten kinetics as observed from the relationship of initial rate of the reaction, both as a function of enzyme and of substrate concentration. The kinetics of the enzymatic reaction is suggested to agree with a Ping-Pong Bi Bi mechanism. In a 5L batch reactor, up to 90% conversion was obtained at the optimal condition. Lipozyme IM remained active after repeated used of 12 times.

Characteristics and properties of DHSA ester were also evaluated, which include heat and colour stability, solubility, irritancy, dispersibility as well as emulsification properties. Purified DHSA ester showed higher heat stability compared to crude DHSA ester. Solubility of DHSA ester in methanol and ethanol is comparatively lower as compared to the solubility at higher chain length of alcohol. This compound is non-irritant to the skin. DHSA ester seems to have some emulsifying properties in water-in-oil system with high or low content of oil phase. The composition of the oil phase is important, as castor oil seems the most compatible oil. DHSA ester could be used as stabilizer or co-emulsifier in oil-in water emulsion system.

Abstrak tesis dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi syarat bagi mendapatkan ijazah Doktor Falsafah

SINTESIS DAN PENCIRIAN ESTER ASID DIHIDROKSISTEARIK DARI ASID DIHIDROKSISTEARIK BERASASKAN SAWIT DAN ALKOHOL MONOHIDRIK DENGAN MENGGUNAKAN ENZIM SEBAGAI MANGKIN

Oleh

ROILA AWANG

Pengerusi : Profesor Dr. Mahiran Basri

Fakulti : Sains dan Pengajian Alam Sekitar

Ester asid dihidroksistearik (DHSA ester) telah disediakan melalui proses pengesteran diantara asid dihidroksistearik (DHSA) dan alkohol monohidrik dalam pelarut organik menggunakan enzim sebagai mangkin. Lima jenis enzim (Lipozyme IM, Novozym 435, Termamyl, Savinase dan Lipolase) telah diuji kesesuaiannya dalam tindakbalas ini. Diantara enzim yang diuji, Lipozyme IM dan Novozym 435 telah dipilih untuk kajian pengoptimuman berdasarkan aktivitinya yang tinggi. Kesan pelbagai parameter seperti masa tindakbalas, suhu tindakbalas, pelarut organik, amaun enzim, nisbah bahan tindakbalas dan aktiviti termodinamik air telah dikaji.

Keadaan optimum bagi penyediaan ester DHSA menggunakan Lipozyme IM dan Novozym 435 adalah seperti berikut: masa tindakbalas, 3 jam;

suhu tindakbalas 50°C; nisbah mol bahan tindakbalas, 2.0 dan amaun enzim, 10%. Peratus penghasilan ester DHSA untuk tindakbalas yang menggunakan Lipozyme IM dan Novozym 435 pada keadaan optimum adalah 92.4% dan 94.9%. Keputusan ini menunjukkan kedua-dua enzim ini sesuai digunakan untuk penyediaan ester DHSA dalam pelarut organik. Berdasarkan hubungan kadar tindakbalas terhadap kepekatan enzim dan bahan tindakbalas, tindakbalas pengesteran ini mengikut kinetik Michaelis-Menten, yang mana kinetik tindakbalas ini dicadangkan bersesuaian dengan mekanisma 'Ping Pong Bi Bi'.

Ester DHSA dikaji untuk mengetahui sifat-sifat termasuk kestabilan haba dan warna, kelarutan, iritasi, kesebaran dan juga sifat-sifat emulsifikasi. Ester DHSA tulen menunjukkan kadar kestabilan terhadap haba yang lebih tinggi berbanding ester DHSA mentah. Kelarutan ester DHSA di dalam metanol dan etanol adalah lebih rendah jika dibandingkan dengan kelarutan dalam alkohol yang mempunyai rantai yang lebih panjang. Bahan ini tidak menyebabkan iritasi kepada kulit. Ester DHSA menunjukkan sifat-sifat pengemulsi dalam sistem emulsi air dalam minyak dengan kandungan fasa minyak yang tinggi atau rendah. Komposisi fasa minyak adalah penting yang mana didapati minyak jarak adalah yang paling sesuai. Ester ini juga boleh digunakan sebagai bahan penstabil atau agen sampingan emulsi (co-emulsifier) dalam sistem emulsi minyak dalam air.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation and gratitude to the chairman of my supervisory committee: Professor Dr. Mahiran Basri for her wise supervision and patience during the period of this study. My appreciation also goes to the committee members: Dr. Salmiah Ahmad and Professor Dr. Abu Bakar Salleh for their valuable time and comments.

My deepest appreciation is also extended to Professor Dr. Wan Zin Wan Yunus for his encouragement and moral support.

Words are not enough to thank my friends: Dr Anita Ramli, Alawiah, Nik Eliza and Mek Zah who are always ready to listen and extend helping hands.

I am grateful to staff of AOTC especially to Rohana Ali for her help in editing this manuscript, QNE staff, Puaat, Rosnah and Dr Hazimah for their help in one way or another.

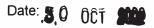
Special thanks is due to Head of AOTC, Dr. Salmiah Ahmad who has been very supportive and helpful not only in the progress of this study but also in my career.

Finally, my deepest appreciation goes to my family for their support and understanding.

I certify that an Examination Committee met on 16th September 2002 to conduct the final examination of Roila Awang on her Doctor of Philosophy thesis entitled "Enzyme-Catalyzed Synthesis and Characterization of Dihydroxystearic Acid Ester from Palm-Based Dihydroxystearic Acid and Monohydric Alcohol" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are follows:

Abdul Rahman Manas, Ph.D. Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairman)

Mahiran Basri, Ph.D. Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)


Abu Bakar Salleh, Ph.D. Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

Salmiah Ahmad, Ph.D. Senior Principal Research Officer Advanced Oleochemical Technology Centre Malaysian Palm Oil Board (Member)

Ibrahim Che Omar, Ph.D. Professor School of Chemistry Universiti Sains Malaysia (Independent Examiner)

C

SHAMSHER MOHAMAD RAMADILI, Ph.D Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfillment of the requirements for the degree of Doctor of Philosophy. The members of Supervisory Committee are as follows:

Mahiran Basri, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Chairperson)

Abu Bakar Salleh, Ph.D.

Professor Faculty of Science and Environmental Studies Universiti Putra Malaysia (Member)

Salmiah Ahmad, Ph.D.

Senior Principal Research Officer Advanced Oleochemical Technology Centre Malaysian Palm Oil Board (Member)

AINI IDERIS, Ph.D. Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 9 JAN 2003

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ROILA AWANG Date: 29/10/02

TABLE OF CONTENTS

ABSTRACT	ü
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL SHEET	vii
DECLARATION FORM	ix
LIST OF TABLE	xviii
LIST OF FIGURE	XX
LIST OF ABBREVIATIONS	xxiv

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	4
	Palm Oil	4
	Oleochemical	5
	Palm and Palm Kernel Oils as Raw Materials for Oleochemicals Fatty Acids	5 9
	Hydroxy Fatty Acids	12
	Formation of Hydroxy Fatty Acids	12
	Properties of Hydroxy Fatty Acids	14
	Reaction of Hydroxy Fatty Acids	15
	Waxes	16
	Wax Ester	17
	Chemical Synthesis of Wax Ester	18
	Enzymatic Synthesis of Wax Ester	19
	Applications of Wax Ester	20
	Hydroxy Fatty Acid as Feedstock for the Preparation of Wax Ester Properties of Hydroxy Ester	25 30
	Properties of Hydroxy Ester Lipase as Biocatalyst	33
	LIPase as Divualaiysi	

Factors Influencing the Catalytic Activity of Lipase	36
Temperature	36
Organic Solvent	37
Water Content	39
Lipase-Catalyzed Reaction of Hydroxy Fatty Acids	40
Reaction of Hydroxy Fatty Acids (or Estolides) and Alcohols	40
Reaction of Hydroxy Fatty Acids and Nonhydroxyl Acyl Group	41
Reaction of Hydroxyl Moiety of Various Hydroxy Fatty Acids	43
Application of Hydroxy Fatty Acid Ester	45
Emulsion System	46
Emulsion Instability	48
Method to Analyze Emulsion	48
MATERIALS AND METHOD	51
Materials	51
Preparation of Standard Fatty Acid Octyl Ester	54
Esterification Reaction	54
Isolation and Purification of Standard Fatty Acid Octyl Ester	54
Preparation of Standard of DHSA Octyl Ester	55
Esterification Reaction	55
Isolation and Purification of Standard of DHSA Octyl Ester	55
Synthesis of DHSA Ester	56
Esterification Reaction	56
Product Isolation and Purification	57

3

Product Identification	
Thin Layer Chromatography	57
Gas Chromatography of TMS-Derivatives of DHSA Ester	57
GC-Mass Spectrometry of TMS-Derivatives of DHSA Ester	58
Preparation of TMS-Derivatives for GC and GC-MS Analyses	58
Nuclear Magnetic Resonance Spectroscopy of DHSA Ester	58
Fourier Transform Infrared Spectroscopy	59
Screening of Enzyme	59
Optimization of Esterification Reaction	59
Effect of Reaction Time	59
Effect of Temperature	60
Effect of Mole Ratio of Substrate	60
Effect of Amount of Enzyme Used	60
Effect of Organic Solvent	62
Effect of Thermodynamic Water Activity	62
Effect of Shaking Speed	62
Effect of Shaking Type	65
Effect of Chemical Structure of Substrate	65
Effect of Adding Molecular Sieve	66

Kinetic Study	67
Reusability and Stability of Enzyme	67
Effect of Heat on Enzyme Activity	67
Small-Scale Study	67
Large-scale Study	68
Large-Scale Synthesis of DHSA Ester	68
Characteristic and Properties of DHSA Ester	69
Determination of Saponification Value	69
Determination of lodine Value	70
Heat Stability	70
Colour Stability	71
Solubility Test	71
Irritancy Test	71
Compatibility of DHSA Ester in Oil	72
Dispersibility Properties of DHSA Ester in Water	72
Dispersibility of DHSA ester at Various Concentration	72
Effect of Mixing Time on the Dispersibility of DHSA Ester	73
Effect of Mixing Speed on the Dispersibility of DHSA Ester	of 73
Emulsification Properties	73
Water-in-Oil Emulsion System	73
Oil-in-Water Emulsion System	75
RESULTS	77
Preparation of Standard Fatty Acid Octyl Ester and DHSA Octyl Ester	77
Synthesis of DHSA Ester	79

4

Product Identification	
Thin Layer Chromatography	79
Fourier Transform Infrared Spectroscopy	79
Gas Chromatography analysis	82
Nuclear Magnetic Resonance Spectroscopy Analysis GC-Mass Spectrometry Analysis	86 86
1-Substrate Reaction of DHSA	91
Screening of Enzymes	98
Optimization of Esterification Reaction	98
Effect of Reaction Time	98
Effect of Temperature	98
Effect of Mole Ratio of Substrate	102
Effect of Amount of Enzyme Used	102
Effect of Organic Solvent	105
Effect of Thermodynamic Water Activity	105
Effect of Shaking Speed	108
Effect of Shaking Type	108
Effect of Chemical Structure of Substrate	112
Effect of Adding Molecular Sieve	115
Reaction of DHSA and 1-Octanol at Optimal Condition	118
Kinetic Studies	118
Effect of Reaction Parameter on Initial Reaction Rate	118
Determination of Kinetic Parameters	122
Enzyme Stability and Reusability	129
Effect of Heat on the Enzyme Activity	129
Reusability of Enzyme	129
Storage Stability of Used Enzyme	131
Large-Scale Synthesis of DHSA Ester	131
Characteristic and Properties of DHSA Ester	136

Physical and Chemical Properties of DHSA Ester	136
Heat Stability and Colour Stability	141
Solubility of DHSA Ester	147
Irritancy of DHSA Ester	147
Compatibility of DHSA Ester in Oil	149
Dispersibility Properties of DHSA Ester in Water	153
Emulsification Properties	157
Water-in-Oil Emulsion System	157
Rheological Properties of W/O Emulsion System	161
Oil-in-Water Emulsion System	167

DISCUSSION	175
Preparation and Analysis of DHSA Ester	175
Screening of Enzymes	178
Optimization of Esterification Reaction	179
Effect of Reaction Time	179
Effect of Temperature	180
Effect of Mole Ratio of Substrate	182
Effect of Amount of Enzyme Used	183
Effect of Organic Solvent	185

5

Effect of Thermodynamic Water Activity	187
Effect of Shaking Speed and Shaking Type	188
Effect of Chemical Structure of Substrate	190
Effect of Adding Molecular Sieve	192
Reaction of DHSA and Monohydric Alcohol at Optimal Condition Kinetic Studies	194 195
Effect of Reaction Parameter on Initial Reaction Rate	195
Kinetics and Mechanism of Reaction	202
Enzyme Stability and Reusability	203
Effect of Heat on the Enzyme Activity	203
Reusability of Enzyme	203
Storage Stability of Used Enzyme	206
Large-Scale Synthesis of DHSA Ester	206
Characteristic and Properties of DHSA Ester	207
Thermal Properties of DHSA Ester	209
Solubility of DHSA Ester	210
Irritancy Properties of DHSA Ester	211
Compatibility of DHSA Ester in Oil	213
Dispersibility Properties of DHSA Ester in Water	215
Emulsification Properties	215
Water-in-Oil Emulsion System	216
Rheological Properties of W/O Emulsion System Containing DHSA Ester	218
Oil-in-Water Emulsion System Containing DHSA Ester	220

6	CONCLUSION	223
	Recommendations for Further Study	224
	BIBLIOGRAPHY	226
	APPENDICES	

VITA

LIST OF TABLES

Table		Page
1	Yield of different oil crops in kg oil per hectare per year	6
2	Chemical composition and properties of some oils and fats	8
3	Composition of beeswax from European countries	22
4	Possible reaction of DHSA	26
5	Melting point of esters 9,10-dihydroxystearic acid	31
6	Physical properties:Density (ρ) and melting point of hydroxy acid esters	32
7	Examples of commercially available lipases	34
8	Estolide formation from a lesquerolic acid/octadecenoic acid mixture	42
9	Effect of chain length of hydroxyl position of straight- chain hydroxyl acyl groups on the product of lipase- catalyzed esterification	44
10	Weight of DHSA and 1-octanol for the study on the effect of substrate concentration	61
11	Weight of enzyme used for the study on the effect of amount of enzyme	61
12	List of solvents and log P values	63
13	List of saturated salt solution and their thermodynamic water activity at 25°C	64
14	Formulation of W/O emulsion system at various phase ratios	74
15	Formulation of O/W emulsion system containing DHSA- octyl ester and Arlatone 2121	76
16	Characteristic of the standard fatty acid octyl ester	78

LIST OF TABLES

Table		Page
17	Composition and retention time of crude product	88
18	Acid value of reaction mixture before and after reaction	94
19	Percent conversion of DHSA ester with different immobilized enzymes	99
20	The effect of organic solvent on esterification of DHSA and 1-octanol	106
21	The effect of thermodynamic water activity on esterification of DHSA and 1-octanol	107
22	Reproducibility of the esterification of DHSA and 1- octanol at optimized condition	120
23	Physical and chemical properties of crude DHSA ester	140
24	Colour after heating of crude and purified DHSA-octyl ester	146
25	Compatibility of DHSA-octyl ester with oils	152
26	Stability of water-in-oil (W/O) emulsion system at various ratios	158
27	Stability of oil-in-water (O/W) emulsion system at various ratios	168

Figure		Page
1	Thin layer chromatography of starting materials and crude product	80
2a	FTIR spectrum of dihydroxystearic acid	81
2b	FTIR spectrum of 1-octanol	83
2c	FTIR spectrum of crude DHSA-octyl ester	84
3a	GC chromatogram of starting materials and standard of fatty acid octyl ester	85
3b	GC chromatogram of crude product	87
4a	¹ H-NMR spectrum of DHSA-octyl ester	89
4b	¹³ C-NMR spectrum of DHSA-octyl ester	90
5	GC-Mass spectrometry fragmentation of DHSA-octyl ester	92
6	GC-mass spectrometry fragmentation of (a) DHSA- decyl ester, (b) DHSA-lauryl ester, (c) DHSA-myristyl ester and (d) DHSA-palmityl ester	93
7a	FTIR spectrum of DHSA before incubation	95
7b	FTIR spectrum of DHSA after incubation in hexane using Lipozyme IM as catalyst	96
7c	FTIR spectrum of DHSA after incubation in hexane using Novozym 435 as catalyst	97
8	The effect of reaction time on esterification of DHSA and 1-octanol	100
9	The effect of reaction temperature on esterification of DHSA and 1-octanol	101
10	The effect of mole ratio on esterification of DHSA and 1-octanol	103

Figure		Page
11	The effect of enzyme concentration on esterification of DHSA and 1-octanol	104
12	The effect of shaking speed on esterification of DHSA and 1-octanol	109
13a	The effect of shaking type on esterification of DHSA and 1-octanol using Lipozyme IM as catalyst	110
13b	The effect of shaking type on esterification of DHSA and 1-octanol using Novozym 435 as catalyst	111
14	The effect of alcohol chain length on esterification of DHSA and monohydric alcohol	113
15	The effect of hydroxyl group position in alcohol chain on esterification of DHSA and monohydric alcohol	114
16	The effect of the presence of hydroxyl group in fatty acid chain on esterification reaction	116
17	The effect of removal of water during esterification on % conversion	117
18	Reaction of DHSA and 1-octanol at optimized conditions	119
19	The effect of enzyme concentration on the initial reaction rate	121
20	The effect of reaction temperature on the initial reaction rate	123
21	Initial reaction rate of esterification as a function of 1- octanol concentration	124
22	Initial reaction rate of esterification as a function of DHSA concentration	125

Figure		Page
23	Double-reciprocal plot of the initial reaction rate at varying DHSA concentration	127
24	Intercepts of Y-axis of Figure 23 Vs the reciprocal of 1- octanol concentration	128
25	Effect of heat on the enzyme activity	130
26	Reusability of Lipozyme IM on esterification using screw-capped vial	132
27	Reusability of Lipozyme IM on the esterification using screw-capped conical flask	133
28	Storage stability of used Lipozyme IM	134
29	Reusability of used Lipozyme IM after 8 weeks storage	135
30	Effect of stirrer type on % conversion of ester	137
31	Effect of stirring rate on % conversion of ester	138
32	Effect of reaction vessel shape on % conversion of ester	139
33a	DSC melting thermogram of crude DHSA-octyl ester	142
33b	DSC melting thermogram of purified DHSA-octyl ester	143
34a	TGA thermogram of crude DHSA-octyl ester	144
34b	TGA thermogram of purified DHSA-octyl ester	145
35	Solubility of crude and purified DHSA-octyl ester in alcohol of various chain length	148
36	The effect of octanol concentration on irritancy score	150
37	Irritancy score of DHSA ester produced from various alcohol chain length	151
38	Dispersibility of DHSA-octyl ester in water at various concentration	154

Figure		Page
39	The effect of mixing time on dispersibility power	155
40	The effect of mixing speed on dispersibility power of DHSA-octyl ester	156
41	Stability of W/O emulsion system at room temperature (RT)	159
42	Stability of W/O emulsion system at 45°C	160
43	The effect of mixing time on the emulsion stability	162
44	The effect of mixing speed on emulsion stability	163
45	Viscosity of the W/O emulsion system containing various concentration of DHSA-octyl ester	164
46	The effect of shear rate on viscosity for the W/O emulsion system containing 8% DHSA-octyl ester	165
47	The effect of temperature on viscosity for the W/O emulsion containing 8% DHSA-octyl ester	166
48	Viscosity of the emulsion system containing DHSA-octyl ester and Arlatone 2121	169
49a	Droplet dispersion of the emulsion system containing Arlatone 2121	170
49b	Droplet dispersion of the emulsion system containing DHSA-octyl ester	171
50	The effect of shear rate on viscosity of the emulsion system	173
51	The effect of DHSA-octyl ester concentration on the viscosity of the system	174

