POSITRON ANNIHILATION LIFETIME STUDY OF THE CUBIC PHASES IN THE TERNARY SYSTEM OF DIDODECYLDIMETHYLAMMONIUM BROMIDE/WATER/HYDROCARBON

ABD. HALIM BIN BAIJAN

FSAS 1999 18
POSITRON ANNIHILATION LIFETIME STUDY OF THE CUBIC PHASES IN THE TERNARY SYSTEM OF DIDODECYLDIMETHYLAMMONIUM BROMIDE/WATER/HYDROCARBON

By

ABD. HALIM BIN BAIJAN

Thesis Submitted in Fulfilment of the Requirements for the Degree of Master of Science in the Faculty of Science and Environmental Studies Universiti Putra Malaysia

March 1999
Untuk Mak, Pn. Tini bt. Sidal
dan Abah, En. Baijan Salaman,
adik Imah
dan
abang-abang, Abd. Rahim, Abd. Latif,
Abd. Aziz, Abd. Wahid dan Abd. Rahman
...ini semua adalah untuk kalian

... perjalanan ini telah pun bermula,
dan yang pastinya tiada titik akhirnya.....

© alim ’99

"Fikiran tanpa dipergunakan adalah pemikiran yang hampa"
- Sayidina Ali
ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful. Praise be upon Him for enabling me to complete this project.

I am indebted to my supervisor, Prof. Dr. Hj. Mohd Yusof bin Sulaiman who has painstakingly guided, encouraged and supervised me throughout the course of the project. With his patience and guidance, at last I have completed my thesis.

Similar appreciation is extended to members of my supervisory committee, Assoc. Prof. Dr. Hj. Zainal Abidin Sulaiman, Dr. Hj. Mahdi Abdul Wahab, and Dr. Hj. Jamil Suradi for their advice and constructive criticism.

To my parents, En Baijan bin Salaman and Puan Tini binti Hj. Mukri, my brothers and sister, I would like to express my deepest appreciation for their love, understanding and inspiration.

I also gratefully acknowledge the following people who have unselfishly given their assistance; En. Marzuki Ismail, En Saharudin Hj. Abd. Rahman and En Suhaimi Ibrahim. And also to En. Rosdi Ibrahim for his very helpful thesis.
Last but not least, dear friends Meiza, Azhan, S.B. Mohamad, Win, Khalid and others who has provided encouragement and support during my years of studies here in UPM.

I wish them every success in this world and hereafter under the guidance and in the path of Allah s.w.t.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>iii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>vii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>viii</td>
</tr>
<tr>
<td>List of Abbreviations</td>
<td>xi</td>
</tr>
<tr>
<td>Abstract</td>
<td>xiii</td>
</tr>
<tr>
<td>Abstrak</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION .. 1
 The Positron Method .. 2
 Phase Structures of Surfactant Studied by Positron
 Annihilation Lifetime ... 6
 Objectives .. 7
 Reason for Study ... 7

II SURFACTANT SYSTEM .. 8
 Introduction .. 8
 The Three Types of Surfactant 9
 Surfactant- Their Behaviour 11
 Surface Tension ... 11
 Micellization and Aggregation Number 12
 Emulsion and Microemulsion 14
 Phase Behaviour of Various DDAB/D$_2$O/Hydrocarbons 21
 Literature Review of Previous Work on Microemulsion
 System ... 31

III METHODOLOGY .. 40
 Positron Annihilation Lifetime Spectroscopy (PAL) 40
 Lifetime Measurement ... 40
 Instrumentation ... 45
 Detector ... 45
 Photomultiplier Tubes (PMT) 47
 Timing Discriminators .. 50
 Time Derivation Errors ... 50
 Leading Edge Timing ... 52
 Crossover Timing .. 54
 Constant Fraction Timing 55
 Constant Fraction Discriminator (CFD),
 Canberra Model 2126 .. 61
 Constant Fraction Timing SCA (TSCA),
 Canberra Model 2035 .. 62

v
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Data Obtained from Timing Calibration Shown In Figure 20</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Data Obtained from Timing Calibration Shown In Figure 20</td>
<td>71</td>
</tr>
<tr>
<td>2</td>
<td>DDAB/ D₂O/ Octane Compositions</td>
<td>119</td>
</tr>
<tr>
<td>3</td>
<td>DDAB/ D₂O/ Tetradecane Compositions</td>
<td>120</td>
</tr>
<tr>
<td>4</td>
<td>DDAB/ D₂O/ Toluene Compositions</td>
<td>121</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Positron (e^+) from a radioactive isotope like 22Na in the sample material. Positron lifetime is determined from the time delay between the birth gamma (1274 keV) and the two annihilation quanta.</td>
</tr>
<tr>
<td>2</td>
<td>Schematic representation of the experimental methods used in conventional positron measurements.</td>
</tr>
<tr>
<td>3</td>
<td>Schematic diagram of surface active molecule.</td>
</tr>
<tr>
<td>4</td>
<td>Partial phase diagram at 25 °C showing the position of the cubic region in four ternary systems consisting of DDAB/ D$_2$O/ Toluene, DDAB/ D$_2$O/ Octane, and DDAB/ D$_2$O/ Tetradecane.</td>
</tr>
<tr>
<td>5</td>
<td>Schematic view of a cross-section through a curved bilayer formed from a water/surfactant mixture. Integrating the area of all parallel surfaces from the interface to the parallel surface traced out by the head-groups gives the chain volume (shaded region). The hatched portion of the interface marks the interfacial area occupied by each facing pair of surfactant molecules.</td>
</tr>
<tr>
<td>6</td>
<td>Cross-section through a curved reversed bilayer formed by a surfactant/water mixture. The shaded region indicates the volume occupied by water, which, together with the head-groups, defines the polar region that lies along the minimal surface (of total thickness 2t_p).</td>
</tr>
<tr>
<td>7</td>
<td>Cross-section through a hypothetical cubic phase of a mixture of surfactant and water consisting of a monolayer of surfactant. The curved interface separates polar from paraffin networks.</td>
</tr>
<tr>
<td>8</td>
<td>Schematic diagram of the fast/slow coincidence system used in the positron lifetime measurement.</td>
</tr>
<tr>
<td>9</td>
<td>The energy windows of the energy of 1.274 MeV for starting signal.</td>
</tr>
<tr>
<td>10</td>
<td>The energy windows of the energy 0.511 MeV for stopping signal.</td>
</tr>
<tr>
<td>Page</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>Scintillation spectrum of BaF₂</td>
</tr>
<tr>
<td>12</td>
<td>Schematic diagram of a scintillation detector comprising scintillation crystal optically coupled to a photomultiplier tube</td>
</tr>
<tr>
<td>13</td>
<td>Simplified block diagram of a typical time spectrometer</td>
</tr>
<tr>
<td>14</td>
<td>Walk in a leading-edge discriminator due to amplitude and rise time variations and charge sensitivity</td>
</tr>
<tr>
<td>15</td>
<td>Bipolar pulses and crossover timing</td>
</tr>
<tr>
<td>16</td>
<td>Constant fraction timing integral signals</td>
</tr>
<tr>
<td>17</td>
<td>Functional representation of a constant-fraction trigger</td>
</tr>
<tr>
<td>18</td>
<td>Simplified block diagram of the constant fraction hybrid</td>
</tr>
<tr>
<td>19</td>
<td>The schematic diagram of Constant Fraction Timing SCA setup procedure</td>
</tr>
<tr>
<td>20</td>
<td>The experimental set-up for timing calibration of TAC</td>
</tr>
<tr>
<td>21</td>
<td>An example of Main Output from POSITRONFIT</td>
</tr>
<tr>
<td>22</td>
<td>The arrangement of DDAB/ D₂O/ Hydrocarbon samples sandwiched between the source of ²²Na</td>
</tr>
<tr>
<td>23</td>
<td>The positron lifetime spectrum of ²²Na</td>
</tr>
<tr>
<td>24</td>
<td>Plot of lifetimes of orthopositronium against aqueous weight fraction of the ternary DDAB/ D₂O / Octane system</td>
</tr>
<tr>
<td>25</td>
<td>Plot of intensities of orthopositronium against aqueous weight fraction of the ternary DDAB/ D₂O/ Octane system</td>
</tr>
<tr>
<td>26</td>
<td>Plot of I₅/Iₚ against aqueous weight fraction for the DDAB/ D₂O/ Octane system</td>
</tr>
<tr>
<td>27</td>
<td>Positron master plot from the equation [41] of the DDAB/ D₂O / Octane system</td>
</tr>
<tr>
<td>28</td>
<td>Plot of lifetimes of orthopositronium against aqueous weight fraction of the ternary DDAB/ D₂O / Tetradecane system</td>
</tr>
</tbody>
</table>
29 Plot of intensities of orthopositronium against aqueous weight fraction of the ternary DDAB/\(D_2O\)/Tetradecane system ... 102

30 Plot of \(I_3/I_p\) against aqueous weight fraction for the DDAB/\(D_2O\)/Tetradecane system ... 103

31 The two-precursor model plot for the DDAB/\(D_2O\)/Tetradecane system ... 105

32 Plot of lifetimes of orthopositronium against aqueous weight fraction of the ternary DDAB/\(D_2O\)/Toluene system ... 107

33 Plot of intensities of orthopositronium against aqueous weight fraction of the ternary DDAB/\(D_2O\)/Toluene system ... 108

34 Plot of \(I_3/I_p\) against aqueous weight fraction for the DDAB/\(D_2O\)/Toluene system ... 109

35 The two-precursor model plot for the DDAB/\(D_2O\)/Toluene system ... 110
LIST OF ABBREVIATIONS

2D-ACAR - Two Dimensional Angular Correlation of Annihilation Radiation

CF - Constant Fraction

CFA - Constant Fraction Amplifier

CF ckt - Constant Fraction Circuitry

CFD - Constant Fraction Discriminator

CMC - Critical Micelle Concentration

D - Diamond

DDAB - Didodecyl dimethylammonium Bromide

FWHM - Full Width at Half Maximum

D₂O - Deutrium Oxide

LE - Leading Edge

LEAD - Leading Edge Arming Discriminator

MCA - Multichannel Analyzer

MeV - Mega Electron Volts

NIM - Nuclear Instrumentation Modules

NMR - Nuclear Magnetic Resonance

O/W - Oil/Water

o-Ps - Ortho-positronium

PAL - Positron Annihilation Lifetime

PAS - Positron Annihilation Spectroscopy

PAT - Positronium Annihilation Technique
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PATFIT</td>
<td>Positronium Fit</td>
</tr>
<tr>
<td>PET</td>
<td>Positron Emission Tomography</td>
</tr>
<tr>
<td>PMT</td>
<td>Photomultiplier Tube</td>
</tr>
<tr>
<td>p-Ps</td>
<td>Para-positronium</td>
</tr>
<tr>
<td>Ps</td>
<td>Positronium</td>
</tr>
<tr>
<td>SANS</td>
<td>Small Angle Neutron Scattering</td>
</tr>
<tr>
<td>SAXS</td>
<td>Small Angle X-ray Scattering</td>
</tr>
<tr>
<td>SCA</td>
<td>Single Channel Analyzer</td>
</tr>
<tr>
<td>Surfactant</td>
<td>Surface Active Agent</td>
</tr>
<tr>
<td>SR</td>
<td>Slow Risetime Reject</td>
</tr>
<tr>
<td>TAC</td>
<td>Time to Amplitude Converter</td>
</tr>
<tr>
<td>TPHC</td>
<td>Time to Pulse Height Converter</td>
</tr>
<tr>
<td>TSCA</td>
<td>Constant Fraction Timing of Single Channel Analyser</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>W/O</td>
<td>Water/Oil</td>
</tr>
<tr>
<td>Z</td>
<td>Atomic Number</td>
</tr>
</tbody>
</table>
POSITRON ANNIHILATION LIFETIME STUDY OF THE CUBIC PHASES IN THE TERNARY SYSTEM OF DIDODECYLDIMETHYLMAMMONIUM BROMIDE/ WATER/ HYDROCARBON

By

ABD. HALIM BIN BAIJAN

March 1999

Chairman : Professor Hj. Mohd Yusof Sulaiman, PhD
Faculty : Science and Environmental Studies

Positron annihilation lifetime technique (PAL) has become a standard technique especially for the investigation of defects in solids, fermi surface, phase transitions etc. The effectiveness of the method lies on the ability of the positron to sample selectively electron states in the media and highlighting them via its annihilation photons. It is now known that in amphiphilic system positron forms para and ortho-positronium atoms. The former has a lifetime of 125 ps and annihilates via two photons while the ortho-positronium atom has a lifetime of 140 ns and annihilates via three photons. Any localised factors such as those found during rearrangement of microstructures in amphiphilic systems can influence the ortho-positronium to annihilate prematurely.
In this project Positron Annihilation Lifetime Method was used to study the cubic phases in the ternary system of didodecyl(dimethylammonium) bromide (DDAB)/water/hydrocarbon. Three different systems of DDAB were measured i.e DDAB/ D₂O/ Octane, DDAB/ D₂O/ Tetradecane, and DDAB/ D₂O/ Toluene. These systems were expected to provide information on the effect of molecular size and degree of penetration of the oil into the hydrophobic tail region and to influence the structure of the cubic phase. A fast-slow coincidence technique was used to measure the lifetime of positron that interacts with the surfactant medium. The result was analysed using POSITRONFIT programme. An attempt was made to identify the various symmetries by referring to alternative work on the same system.

The inhibition constants, k' for the D-Schwarz of the mixtures of DDAB/ D₂O/ Octane and DDAB/ D₂O/ Toluene were found to be 2.54 and 0.92 respectively. On the other hand the P-Schwarz minimal surfaces for the mixtures of DDAB/ D₂O/ Octane gave an inhibition constant of 1.89 and for the mixtures of DDAB/ D₂O/ Tetradecane an inhibition constant is 1.63. For other space groups such as the Ia3d space group in the DDAB/ D₂O/ Toluene mixtures, k' was found to be 5.03. Although the results is not constant from one sample to another, the positron method shows the sensitiveness of the changes in the microstructure phases. Thus the Positron Annihilation Lifetime Technique can be used as an alternative method in resolving phases in ternary surfactant systems.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk memperolehi ijazah Master Sains.

KAJIAN MASAHAYAT MUSNAHABISAN POSITRON KE ATAS FASA KUBIK DI DALAM SISTEM TERNARI DIDODECYLDIMETHYLAMMONIUM BROMIDE/ AIR/ HIDROKARBON

Oleh

ABD. HALIM BIN BAIJAN

Mac 1999

Pengerusi : Profesor Hj. Mohd Yusof Sulaiman, PhD
Fakulti : Sains dan Pengajian Alam Sekitar

Pemalar penyekatan, \(k' \) bagi D-Schwarz untuk campuran DDAB/ D₂O/ Oktana dan DDAB/ D₂O/ Toluena telah didapati masing-masing sebagai 2.54 dan 0.92. Manakala pemalar penyekatan untuk permukaan minimal P-Schwarz bagi campuran DDAB/ D₂O/ Oktana pula adalah 1.89 dan untuk campuran DDAB/ D₂O/ Tetradekana pula adalah 1.63. Bagi lain-lain ruang kumpulan seperti kumpulan Ia3d di dalam campuran DDAB/ D₂O/ Toluena pula, \(k' \) memberikan nilai 5.03. Walaupun hasil keputusan tidak sekata dari satu sampel ke sampel yang lain, kaedah positron telah menunjukkan kepekaan terhadap pertukaran fasa mikrostruktur. Dengan itu Kaedah Masahayat Musnahabisan Positron boleh digunakan sebagai kaedah alternatif di dalam kajian fasa sistem surfaktan ternari.
CHAPTER I

INTRODUCTION

In 1930 Dirac predicted that the electron should have a positively charged counterpart. First experimental indications of an unknown particle were found in cloud-chamber photographs of cosmic rays by Andersons in 1932. This particle was identified later as the positron, which was thus the first antiparticle in physics. When a particle meets its antiparticle, they can annihilate each other. That is, the particles can disappear, their combined rest energies becoming available to appear in other forms. For an electron annihilating with its antiparticle, this energy appears as two gamma-ray photons.

\[e^- + e^+ = \gamma + \gamma \quad (Q = 1.02 \text{ MeV}) \quad [1] \]

If the two particles are stationary when they annihilate the photons share equally between them and to conserve momentum and because photons cannot be stationary - they fly off in opposite directions. It was discovered soon that the energy and momentum conservation during the annihilation process could be utilised to study properties of solids.
The Positron Annihilation Technique (PAT) has recently emerged as a powerful technique for studying defects in metal or non-metal. It has been well established that positrons entering metals are thermalised in a very short time (\(\sim 10^{-2}s\)), tend to be trapped by lattice defects such as vacancies, vacancy clusters, voids, and dislocations, and are annihilated with observable characteristics which directly reflect the electronic structure of the type of defect in which they are trapped.

The Positron Method

When energetic positrons from a radioactive source are injected into a condensed medium the positron looses rapidly (a few ps) its kinetic energy until it reaches near thermal energies. The mean implantation range varying from 10 to 1000 \(\mu\)m guarantees that the positrons reach the bulk of the sample material. Finally, after living in thermal equilibrium, the positron annihilates with an electron from the surrounding medium dominantly into two 511 keV gamma quanta. The average lifetime of positrons is characteristic of each material and varies from 100 to 500 ps. The above picture is distorted in molecular media, where positronium formation may occur during the slowing down process.

The positron annihilation rate, which is the inverse of the positron lifetime, in the independent particle model, is given by
\[\lambda = \sigma_{2\gamma} \nu n_e = \pi r_0^2 c n_e \]

where \(\sigma_{2\gamma} \) is the cross section for two photon annihilation, \(\nu \) the velocity of the positron, \(r_0 \) the classical electron radius and \(n_e \) the electron density.

Figure 1 shows schematically the positron annihilation experiment, where the most commonly used radioisotope Na\(^{22} \) is implied. Within a few picoseconds after the positron emission the nucleus emits an energetic 1.274 MeV photon which serves as a birth signal. The lifetime of the positron can thus be measured as the time delay between the birth and annihilation gammas.

![Diagram](image)

Figure 1: Positrons (e\(^+ \)) from a radioactive isotope like \(^{22}\text{Na} \) annihilate in the sample material. Positron lifetime is determined from the time delay between the birth gamma (1274 keV) and the two annihilation quanta.

The momentum of the annihilating electron-positron pair is transmitted to the annihilation quanta and it can be detected as a small angle deviation from collinearity between the two 511 keV photons. The motion of the pair also
produces a Doppler shift to the annihilation radiation and this is seen in an accurate energy measurement of one of the photons.

There are three conventional experimental methods to study positron annihilation.

1. Positron Lifetime
2. Angular Correlation
3. Doppler Broadening

A schematic representation of the experimental methods used in conventional positron measurement is presented in Figure 2. The full lines on the typical spectra denote the defect-free bulk whereas the dashed spectra correspond to the presence of defects. The emission of one gamma ray in coincidence with the positron makes the ^{22}Na a quite suitable source for positron lifetime experiments.

The thermalised positron contributes very little extra momentum to the centre of mass of the annihilation pair. The electron, by contrast has a significant momentum because of the effect that the Pauli exclusion principle has on an electron sea with $\approx 10^{22}$ electrons/cm3. The conservation of momentum implies then a small deviation from the colinearity of the two annihilation gamma rays.
Figure 2: Schematic representation of the experimental methods used in conventional positron measurements.
The deviation can be determined by angular correlation measurements which are performed by placing detectors on both sides of the samples and measuring the count rate as a function of the angle between the emission directions. Nowadays, two-dimensional angular correlation measurements (2D-ACAR) are performed using arrays of detector placed at both sides of the source/sample arrangement. Given the high sensitivity of this technique it can be used on the identification of Fermi surfaces of metals and alloys.

Phase Structures of Surfactant Studied by Positron Annihilation Lifetime

Positron is a useful probe on the order of nano-meter (so called nano-meter probe) to investigate molecular and atomic structures of substances like polymer or surfactant. Positrons form positronium (Ps) in substances by picking electrons from surrounding structures. Ps has a hydrogen-like atom and there are two states: the triplet or ortho-positronium (o-Ps) and the singlet or para-positronium (p-Ps).

The singlet Ps (p-Ps) with antiparallel spin orientation has a self annihilation lifetime in free space of 125 ps and decays by two photon emission. The triplet Ps (o-Ps) with parallel spin orientation has a self annihilation lifetime of 140 ns in free space and decays by three photon emission. Ortho and para Ps are normally formed in the ratio 3:1. Thus ortho-Ps can have longer life in larger holes and annihilates with electrons located on the walls of the holes. The life and intensity are affected
by surfactant and chemical structures and thus it is a good measure of surfactant characteristics.

Objectives

The aim of this project are;

1. To determine the resolution of the Lifetime System
2. To determine the lifetime of the lifetime and intensity of positronium atoms in ternary system of DDAB/ D₂O/ Octane, DDAB/ D₂O/ Tetradecane, and DDAB/ D₂O/ Toluene.
3. To analyse for different phases in the above system.

Reason for Study

The purpose of this study is to provide an alternative method of resolving phases in ternary surfactant system since such information is useful in material characterisation for specific use such as cosmetic, detergent, oil recovery and etc.
CHAPTER II

SURFACTANT SYSTEM

Introduction

Surfactant is a contraction for surface-active-agent. A surface-active substance - including detergents, wetting agents, and emulsifiers - that when added to water will lower the surface tension and increase the "wetting" capabilities of the water. Reduced surface tension allows water to spread and penetrate fabric of other substances to be washed or cleaned.

Surfactants are special molecules which are made up of two sections:

1. The hydrophilic part (usually ionic or nonionic) which likes water
2. The hydrophobic part (usually a hydrocarbon chain) which likes oil

(see Figure 3.)

It is this dual nature which causes these molecules to adsorb at the interfaces between two immiscible liquids, like oil and water. The interfacial layer formed as a result of this is usually a monolayer and is responsible for allowing oil and water to mix (Binks, 1993). Surfactants find numerous applications in industries as well as home use for personal hygiene, washing and cleaning; these uses include