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The aim of the software maintenance is to maintain the software system in
accordance with advancement in software and hardware technology. There are four
activities to software maintenance, namely corrective maintenance, adaptive
maintenance, perfective maintenance, and preventive maintenance. Three approaches are

used in software maintenance, that is restructure, reverse engineering, and reenginering.

Reverse engineering is a process that is currently being used in software
maintenance to extract items of information on software products. This research aims to
produce a new reverse engineering logic-form tool, to help maintainers by giving them a
complete document about the software system. Currently, many tools are used in reverse

engineering, but not all can satisfy the problems faced by the users.
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The thesis describes the design and implementation of an automatic aid system
that uses a logic-form reverse engineering approach, with a new data structure called tree
module structure. This tool contains four modules, namely, lexical analyzer module,

syntax analyzer module, handling module, and interface or query module.
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Matlamat penyelenggaraan perisian adalah untuk menyelenggara sistem perisian
supaya menepati dengan kemajuan dalam teknologi perisian dan perkakasan. Terdapat
aktiviti dalam penyelenggaraan perisian iaitu penyelenggaraan pembetulan,
penyelenggaraan penyesuaian, penyelenggaraan penyempurnaan dan penyelenggaraan
pencegahan. Tiga pendekatan digunakan dalam penyelenggaraan perisian iaitu

penstrukturan semula, perekasayaan songsang, perekasayaan semula.

Perekasayaan songsang adalah suatu proses yang digunakan dalam
penyelenggaraan perisian untuk mengeluarkan butiran maklumat mengenai produk
perisian. Penyelidikan ini bertujuan untuk menghasilkan satu peralatan baru perekayasaan
semula berbentuk-logik untuk membantu penyelenggara dengan menyediakan mereka

satu dokumen lengkap mengenai sistem perisian. Sekarang ini banyak peralatan

Xvi



digunakan dalam perekayasaan semula tetapi tidak semua dapat memenuhi masalah yang

dihadapi oleh pengguna.

Tesis ini menerangkan rekabentuk dan implementasi sistem bantuan automatik
yang menggunakan pendekatan perekaansaan semula berbentuk logik dengan kaedah
baru yang dipanggil modul pokok sistem pendekatan. perekayasaan semula berbentuk
logik menggunakan empat modul iaitu modul penganalisis leksikal, modul penganalisis

sintak, modul pengendalian dan modul antara muka atau pertanyaan.
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CHAPTERI1

INTRODUCTION

Background

Computer systems have been used in many complex and diverse applications;
they are also applied in critical areas, where the useful of a nation may depend on them.
These computer applications increased with the advance in technology, also, the
complexity has increased a lot in these applications. Each software system may contain
thousands of components which, may be spread over different and large modules. The
relationships between these components make determination of any change between the
diverse parts of the software system very difficult. This problem becomes more
complicated for a large software application. The integration of these modules becomes

tedious and time consuming without the support of aid tools.

During the initial years of computer software and hardware development
programmers concentrated on the production of new software systems for new
applications. These software systems consumed much time and money for the

development.

In the early 1960s, programmers attention was directed towards in producing new
applications, rather than updating the old software. In the 1970s, the developments in

computer software and hardware technology caused programmers to maintain the old



software and increase the life cycle of software systems. Furthermore, attempts to
produce new software during this period was time consuming and costly, so maintainers
tended to maintain the software system by using software maintenance (Glass &

Noleseux 1981).

It is easy to detect a logic error when a maintainer builds a compiler e.g. in C-
language when the maintainer forgets a semicolon at the end of a line or omits to close
brackets in a “for statement”. The main problem is that the maintainer finds it more
difficult to detect run time errors inside the program. These errors cause the program to

produce incorrect results.

Detecting and correcting errors take much time. For example, in a given function,
a maintainer needs to know all the input and output par.ameters. To solve these problems;
he needs to trace all the variables and functions called during the execution of a program.
In order to do this, the maintainer needs a list of all local and global variables, and

function calls, to determine the statements that contain errors.

Errors in a complex software system are difficult to correct and detect; software
maintenance aids the maintainer to correct and ﬁace the software system, and, thus,
reduces its cost. When programmers build software systems, the task of detecting and
correcting errors for small software system is simple; but it becomes difficult and
complex for large software systems. One of the software maintenance activities is
concerned with correcting software errors and producing full details about the

components of the program, such as, global variables and local variables.



Software maintenance activities modify old software systems, correct errors in
order to improve the performance of these systems, and adapt the software systems to the
changing environment. There are four types of software maintenance activities. First,
corrective maintenance, which deals with testing of large, and huge software systems, to
detect errors, which may need much time to correct as whole contents of the program
need to be traced. The second is adaptive maintenance. This looks into the rapid change
in software environment, such as the operating system, new hardware, and upgrading of
the elements of the system. The functionality of the software however does not change.
The third which, is perfective maintenance deals with the modification and
implementation of the recommendations from users, after the use of the software. The
fourth is preventive maintenance which brings about future enhancement in the software

system.

In general, software maintenance is very expensive compared to software
development. The cost of software maintenance became higher after 1970s, and by the
1990s, it constituted more than 62% of the cost (Zuylen, 1993). Three approaches are
used to maintain software. These are the 3RE’s namely, reengineering, restructuring, and
reverse engineering (Chikofsky, et. al, 1990). Reengineering is concemed with
processing the existing software by producing a new source code without changing the
old system function. Restructuring involves examining the existing software and
rewriting parts of it by changing unstructured, ambiguous and difficult software to a new
structure, that is easier to understand. Reverse engineering is a technique to analyze a

subject system to identify system components and their relationships, in addition to



creating representations of the system at a higher level of abstraction. In other words,
reverse engineering is a process of extracting information from a source code concerning

software product design.

In this thesis, the reverse engineering approach will be used to produce a new tool
for helping users to walk through the software system. This system is called “logic form
reverse engineering tools”. This system is divided into four modules, namely, lexical

analyzer module, syntax analyzer module, handling module, and interface module.

Logic Form Reverse Engineering Approach

When a developer builds a huge and large software system, detecting and
correcting errors is time consuming. For example, for a function of a given program, the
developer may wish to know all the input and output parameters, these parameters help
the developer to correct software errors. If it is a small program, errors are easy to detect

and correct. However, it becomes difficult and complex in large software.

Software systems are spread over different modules. These modules contain
numerous local and global variables, parameters, and functions, in different level of
abstractions. Program construction in a sub standard C-language is spread over different
functions. Not only do these functions contain separate variables but also the program
itself contains global and local variables. The overlap between all functions, local, and

global variables, makes the walking through inside the program more difficult if it is



done manually by the user. The main attention of users is to detect all variables and

functions declared in software system in order to correct errors.

The errors that occur in a software system are of three kinds: implicit error, latent
error, and syntax errors or the easy errors. Syntax errors are the most common. They
occur when the user, for example, forgets the semicolon at the end of line, or forgets to
close the bracket in a “for statement”. Thls error is very easy to detect during execution
of a software system. Implicit error or run time error is difficult to detect because the
system compilation does not detect it. Also, this error may feature incorrect results after
execution of the program. To detect this error, the maintainer needs to walk through the
program and trace all the variables and functions declared in the program. This method is
easy in small programs, but becomes complex when the software system grows large and
huge. When the users use the software system, they write full recommendations to the
maintainer in order to change the software and correct the error, again, software system

need to do program tracing.

For the above problems we developed a logic form reverse engineering tool. This
tool contains four components, namely: LEXICAL ANALYZER, SYNTAX
ANALYZER, HANDLING MODULE, and QUERY MODULE. Logic-form reverse
engineering tool assists in enhancing system constituents and their relationships. Also, it
assists in binding the modules and variables in the program. It also helps the user to
recognize the overlap between modules and variables in the program, and identifies

components and their relationships. Furthermore, it provides information that helps users



to correct errors in the program. This tool helps users to walk through all contents of the
program, its functions and its variables without encountering any difficulty for correcting

them. Also, it detects implicit faults so as to get the correct results.
Aims of the Research

The research in this thesis, aims at developing a logic form reverse engineering
system. It is designed to help a maintainer correct the three kinds of errors, by giving a
full documentation for all local and global variables, parameters, and functions used in
the software system. In addition, this system extracts information concermning software
variables and functions and provides information on call graph. This information should
help to control many managerial problems. These problems may occur when building
large software systemé for a large number of families of components. For example, let us
consider a database containing thousands of components or modules and thousands of
dependency relationships, and documents. It is beyond the human ability to search
manually such a database to find spec;iﬁc information about specific modules, their
dependencies, and connectivity to other activities in the life cycle of a product. This
system provides all the facilities for browsing the database, and gives all the information
about the components of software systems, such as, global variables, local variables,
functions, and parameters. Furthermore, this tool clears overlapping between the software

system components, variable and functions.

The system developed in this research provides visibility to maintainers, by

allowing them to go through the life cycle of the functions and variables, and increasing



the understandability of the software system. Also, the research should help maintainers
to correct programming errors, and achieve more correct results. This system, also,

provides querying and browsing facilities.

Organization of the Thesis

Chapter two provides background information on software maintenance such as
its fundamentals, activities and approaches, which are the focus of this thesis. In addition,
this chapter discusses reverse engineering tools, utilized by previous researches in this
area. Chapter three describes the methodology used in the logic form reverse engineering
approach. Chapter four describes the design and implementation of a logic-form reverse
engineering system. This system contains four modules: lexical analyzer module, syntax
analyzer module, handling module, and interface module. Furthermore, it describes the
method which, is used in this system that is “tree module”. Chapter five discusses the
result of the implementation of the logic-form reverse engineering system as well as the
sample of the output, that is capable of responding to certain maintainer queries. Chapter
six provides a conclusion of the approach discussed in this thesis and evaluates the

achievements of this approach. Some suggestions for further work are also discussed at

the end of the chapter.



CHAPTERII
SOFTWARE MAINTENANCE: ACTIVITIES AND APPROACHES
Introduction

This chapter provides an overview of software maintenance system and its
relationship to the 3REs: Restructuring, Reengineering, and Reverse Engineering. It also

explains various reverse engineering tools.
Software Maintenance

Emergence of Software Maintenance

During the period between 1950s and early 1960s, software maintenance was
restricted to a very small part of the software life cycle. The main activity of the
programmer was to write new programs for new applications. By the end of the 1960s
and early 1970s, most software systems that had been written had become obsolete.
However, it was very difficult and costly‘ to get rid of all these software system. It was
then that software maintenance emerged. Software system life cycle history can be
categorized in two stages: the development and the maintenance stages. During the
development stage, the life cycle was used as a development model whereby

development activities spread in a sequential pattern, beginning from the requirements,



