UNIVERSITI PUTRA MALAYSIA

DESIGNING A SOFTWARE MAINTENANCE SYSTEM USING A
REVERSE ENGINEERING APPROACH

HAMED JASEM AL-FAWAREH

FSAS 1998 35

DESIGNING A SOFTWARE MAINTENANCE SYSTEM USING A
REVERSE ENGINEERING APPROACH

By

HAMED JASEM AL-FAWAREH

Dissertation Submitted in Fulfillment of the Requirements for the
Degree of Master of Science in the
Faculty of Science and Environmental Studies
University Putra Malaysia

February 1998

-

w

2 om0

333 wlalT Ty 850 g T3 0 K Ty s 5 1T 51 5
B> Hpasd Ly 015

wie

Surat Al-Mujadilah (The Disputation), Ayah 11.

To My Late Father’s Pure Spirit

ACKNOWLEDGMENTS

In the name of Allah, the Beneficent, the Merciful.

I would like to take this opportunity to convey my sincere thanks and deepest
gratitude to my supervisor Dr. Abdul Azim Abdul Ghani. I am very grateful to him for
the help and invaluable guidance, fruitful discussions, patience and continued

encouragement provided to me at every stage of this thesis.

It is also a great honor and pleasure to acknowledge Dr. Ramlan Mahmod and
Dr. Ali Mamat, members of the supervising committee, for their technical support,

helpful suggestions and insight.

In preparing this thesis, a number of individuals have provided helpful for their
suggestions and comments, all of which have been of tremendous help towards the
compilations of this thesis. I would like to convey my appreciation to the Department of
Computer Science, the University Library and Universiti Putra Malaysia for providing
assistance at one time or other. I also, wish to thank all postgraduate students in the

Department of Computer Science.

I am very grateful and wish to thank all my friends from Jordan, especially,
Khalid Al-Tahat, Ibrahim Al-Atoum, Eid Al-Zyoud, Ziad Abu Gadora and Jehad Al-
khaldi for their encouragement, help and support. Also, I would like to single out my
friend Idi Fulayi to thank him for his help, encouragement and support. Also, I would like

to thank Dr. Adam Kilicman for his help and encouragement.

Finally and most important, I would like to express my most sincere and warmest
gratitude to my mother, eldest brother Ali, brothers; Khalid, Mammdoh, Mobarak, Omar,
and Mohammed, sisters, nephews, nieces, uncles, aunts, and cousins for their prayers,
love and generous moral and financial support during my studies.

All praises for the Almighty, without whose will everything would cease to be.

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS..........ccccecetriitinintneeieetetetee e seseesesesessseses e seneee i1
LIST OF TABLES.............ooeeeneriseerteen et ssste et r e e e e e vii
LIST OF FIGURE............ccoooiiiiiiiieteteecietenetetesest et sestesesaestesaeses s e wae viii
LIST OF SYMBOLS. ...ttt seceteeecsseteesseste e saestesteessaessens s n e s .oxii
LIST OF RESERVED WORDS IN THE SYSTEM............c.coiiviiiiinienne.. X
ABSTRACT ...ttt sttt sne e s sae st s o . Xiv
ABSTRAK ...ttt e ae st essae st e st eee s e o Xvi
CHAPTER
I INTRODUCTIONotiiiiiiiienteietinteteetecsnee et etes et sase st saens s e 1

Background.............coeeeiiniiinieeeee e e o1
Logic Form Reverse Engineering Approach...........ccccccvvvvniveecvenvenennnn. 4
Aims of the Research.................. O S 6
Organization of the Thesis........c.ccceeeeiueriiiieriecerrcce et e e 7

II

SOFTWARE MAINTENANCE: ACTIVITIES AND

APPROACHES.............ooooiitieeceretetetestesee e et et et saeseasaassen e o e o . 8
INPOQUCHION.. ...c.eiiiriritietecteneeeietrt e cte s st seesaraas e sraseeeaesseseessasseassnnnn s ae e 8
Software Maintenance............c.cevveereereieieeeerneeereneessteseessesseeseesseessnesnne s eee 8
Emergence Software Maintenance............ccoceceeveeruereeneesueneennennennens . 8
Software Maintenance: Definitions and Activity..........cccccccevennnnnn... 11
Approaches in Software Maintenance..............cceceevveeveerieeeneenieneessninneeeee s oe 13
RESITUCIUTING......coviiviiiiireeerrecrerre et s ee e s saesen e e sessne e e s e oe 13
REENGINEETING.......uvveverereeeeinreereereseeseeeesstessreessessseesseesssessesssansse s sone 15
Reverse ENGINEETiNg.......ccccevtiverrueereuiieerrenenseessseessessesseessesssssssnn s aee 17
Reverse Engineering TOOlS..........cceeveiueerineeeneeneeneenseesseeseesessnessnessen s oos 22

iv

III

IV

System Analysis and Maintenance System (SAMS)cc..ccvevenene 22

Data Tool......cocooviiiiiiiciieietcce e e 25
Extracting and Preserve Low-level Program Tool...............c..cccee.. 27
Knowledge Base Reverse Engineering Framework Tool.................... 29
Logic and Data Base.........ccccceevreeeirirnienenenienteneenesteseseeseeseseesensnenn s eens 35
LogiC DefINition........c.ccviiieiieieneeeiiiesieseeereeraeseeesiesiee s e e et arees s aes 35
Logic Mathematical..........ccccocuererieenieneneiveneeece et e e e e e 36
LogIiC FOMM.. ..ot e e 38
SUIMMATYciiiiiiiiieietetetesese e e e se et et e st et et et et assassassassassassaensennn s ns s . 39
RESEARCH METHODOLOGY.........cccociniminininneinteeninetnieneneeseeeeees 41
INrOAUCHION. ...ttt e sttt et teae e e 41
Reverse engineering approach.............ccceoevvieiiniincneinicncnecsecnecceeen e 42
Logic-Form Reverse Engineering ToOl.........c.ccccceeeeineiniinieeesenenieeniene e 43
Lexical ANalysis........coceeeeerieneeieieiieieerieriesiee ettt ee e 43
Syntax Analysis....... 46
Handling Module............ccoooiriiiniieiininieeneeneseetee e e 50
Logic FOML ... oeiiiiiiiii e 51
Query Module.........cooeimiiiiiiie ettt 52
Sub Set of C Language (MInus C).....ccccoveeeereinieneeeriennenieeeesenenieeniens oo 52
VOCADUIATY ...ttt e e e 55
CONCIUSION. ..ottt ettt ettt st seene e e ssenseneeen e e e e e 57
LOGIC-BASED REVERSE ENGINEERING SYSTEM..................... 58
INtrOUCHION.....eeeiie ettt et ettt s e e e 58
Designing of a Lexical Analyzer..........cccccovevieeeenersvenienseeneeneeneeesennn . 59
Special SymboL.........c.couiiiiiiiiie e e 61
Comments and QUOLALIONS.........c..cevererreereereeerenreenreceseeeen s cveeneesens 63
NUIMETICAL.....cvveiieceeerieeee et e e s eaeaesenes 64
Identifiers and Reserved Words..........cccoeemeeneineeiececoneniee e e 64

Symbol table.........cooviiiviiiiiiii e e 66

Errors FUunCtion..........cooviiiiiiiiiiiiiiii e 72

Syntax Analyzer Desigl.........cccoceevuuimirieeriniinieniieeeeeie s sereeeesneeneennneese s e eee 74

TOKENS PrOCESSING.....ccueiviieeiriiiriieiiiiieireeseesensaessraessesssesse s veessaessseans 74

Parser ArchiteCture..........coceiveeiiieieei i csie s e e eeeeaens 76

Programming Header.............cccooviviiniiniinininiiiicnnc e 77

Functions Definition..........cccevveeuiiuereenennennenenseesesseesesene e s seesvesnnens 78

Global Variable Declaration.............ccccueecvueeveeienereceneceesssnnen s vveecevennn 87

Programming Modules............cccoovuimiiiniininiiii e 88

A Top-Down Parser for Sub-C Language..........ccccccoenereirnenvenienenn. 89

STALEMENLS.eoveeeiererieeerieceetetete ettt ee e et et se et et e e 4 e eavene s oo 92

Handling Module DeSign........ccccceieieeieriieirrenieeneeeenienee et seeeee e sneenn s e 94

Data ProCeSSINg........ccevomveruiiiinieniniiicteneseseinese e srresiesees s e e 94
USET INtETfACE.......einirieniie ettt et se et e e s e s se b ea e e e 109
(070 1T 11 16« T O TOSRUS 113
v RESULT AND DISCUSSIONc.coooiiinieirrrririeeereeeeseeeesesnssens s ves 114
INtrodUCHION. e e e e 114
Examplel: Towers of Hanol........ccccoceiiveiiceiiniininiinniecnieecees e . 114
ExXample2......ouiniiiiiiiii i e e 124
\4! CONCLUSION AND FUTURE WORKcccocvctrterencncnenerieeee e e 129
CONCIUSION....ccveuuiriitieterteensteretete st e eaesee e stes e tesae st besnesseensaneeneeneseennn s n s e s 129
Future Work.......ooooiini ettt e . 132
BIBLIOGRAPHYooiiitrientisteseeseeesteste e e sesssesseesaesssessassssssesssessen s e s s 134
APPENDIXooiiitiererereeentetstssesssesseeessaessessesessesssessnsssessestestessanan s s o o 138
A Summary of the C language (Minus C)..............ccccceceeenue ... 139
VITA . ettt sttt ettt e et st s st et e st e s e s s e s sassa s st e st astessestasaanaans 143

vi

LIST OF FIGURES

Figure Page
1 Relationship Between the Terms Restructure, Reengineering, Reverse
Engineering and Forward engineering, During a software engineering
Life CYCle. ittt e 14
2 Software Restructure of COBOL Programming.............ccccceeverveerennennne. 16
3 Architecture of SAMS ToOL...........vit i, 23
4 Example of C FUNCHONcoceeviriiire et eseeese e s . 24
5 Display the C Function Using SAMS Too0lc.ccccovueeenerneenicnrenennenne. . 24
6 Extracting and Preserving Low-level Program Tool Diagram................ 28
7 Prolog Example (turbo Prolog)cccccevereeeneeininicieciecceeeenee. 32
8 Sample Data for the Example in Figure 7..............ccoviiiiiiinn 33
9 The Structure of the System 45
10 Tree for the Expression A*B+Ccccoviviiniineniiiienercnecreteieiee e 47
11 Syntactic structure of the string A*B+C........c.ccooviiviniiiinnenenceieene. . 49
12 General System Design.........cccevueviiniinienenieniiiiticieeeeeteeeseseseseee e e 58
13 Next Symbol AIgOrithm..........ccceeeerirnienienerereneeeeeeeeeeeeeeeee e e 62
14 Comment and Quotation Algorithms..........cccceeueveiiiiiniencnieniinieiccaens 63
15 Numerical algorithm..........cccoceeveneniriiininiiieeeeeeeeeeee e 65
16 Alphabetic algorithm..........ccocueevevirenenereneneceeeeeeeteee e 65
17 Hash Key Alorithm.........cccoceeiiinininininiiiccnieeicccceecceeeceee 66
18 Initialize aAlgOrithI.........ccceveueeirrirenieieceere et eseere et re e seneen e o 69
19 Search AIZOTIthM.........cccoueuiererieinieereeeeeeeet et o e 70

viii

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Insert AlOTIthm........ccooueeiinieriinirerercrcrrne e e e eeeeeeeaeneees T

Found AIOTrithim........cccooviiiriiinirieiiecee et eesree e 71
Symbol Table.......ccoceeiinineiiiiieeirctcreeeeee ettt e 67
Error AIGOTIthIm......ccouvvurieiieii et e e 73
NextToken algorithm................ eeeeteeeee e et e te e beeete et et e e naeeaeeate et e e aee 75
Before_Main Algorithm...........cccccoviiiiiniinniniiiniincne e 77
Function Structure...........ccooeeiiivniincniicccin et e 79

Data Structure Representation of Function, Parameter, and Local

Variable List.......ccoovieviireie ettt e e 79
Save the Function in the Data Structure.............cccoceevenrervenenenenseeseenes o 80
main module as a Special Case..........cceveruereerriiiienenenererene et 81
Data Structure for the main Module...........cccoccoieeirninininienenene e 82
Function Definition Algorithm...........cccceeerererienienienririneneseeesienee e o 82
Adding Function Algorithm...... e 82
Searching Function Algorithm...........cccceveeiiirieinieniiiiieniesieneereeseneee oo 83
Parameter Definition Part Algorithm...........cc.oocrvniiinnniinnininennee. . 84
Parameter Definition Algorithm..........ccccoeeeviiiinnnnininncicrcreen e 85
Parameter Search Algorithm.........ccccceciiieiiniinieeieis e e 85
Parameter Adding Algorithm..........cccoeeuieiiiininnnii e e 86
Data Structure Representation of Global Variable List...............c........ 88
Algorithm Simple Expression RECUrsive..........ccoceeerveeeeenneecenencenreeneennes 90
Simple EXpression Parse TTEE........cccevevveruenereriencerenuensesenenienessesseseees oo 91
Statements AlGOTIthIn..........ccvvivnciirirriiriireeeerree et o e 93

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

While Statements Algorithm............ccocevveiiiencninninniincncnciicien e 94

Tree Module Structure.........coceeveeiueiiiniieiiine e e 96
General Format.........coooiiiniiiiiiiii e 97
Program Example..........cccocveiriieniiniiisiieeecereeeee st e o 98
Tree Representation Modules For Example in Figure 42....................... 100

A Representation Structure of Module Tree For Example in

FIgured .. .o 101
Continuation of Figure 45.cococovvierinienienreeeneeneeeeeeeseeeiesenenenns 102
Adding Module AlOrithm...........ccceeeieveerieciennineiierineeeeeeeceteeeeee e 104
SCOPE BrOWSING.c.coiiiieiireiieetieeeeietet st e e seee et st e st ereseenseee o s aa 104
Variable BrOWSE..........cceieuieuininiinincie ittt ettt aen e 107
WEICOME MENU........ooiiiieiire ettt ettt s s e 110
Main MENU.......cooiiiiiiiiiiiiieieece ettt e s st e e e 111
Variable MEnU........ccoieuiieiiriientieienerene et ettt st e s e 111
101115510131 (S 11| D PPN 112
Generalized Tower of Hanoi Puzzle.............cccoceevineneiennncnvcnncnnnnnen. . 115
Input/ Output File MeNU..........oceouvuiriieriiiiieeniieenienieeseteeeseeseeseneee o oo 118
Error Message MEnU...........cocccveiieiiiiiienninniincenseneceeeseeveenen e e 118
Parameter Statistical QUETY........cccuervirieriinernieerceeneereeere e escereeeee e 119
Parameter Statistical Report Qutput.............cccceeevereiveneneiienieesreecieeeennns 120
Report Output of Function Callee.............ccceievumeniccniiniceiicneeneeen e 121
Function Call Men..........couieennerniieiincntiinninneeteceeseseeseeeenecne e e oee 122
LOZIC MEMU.....coctitreerrnerieennnereesseesseasesisssssessssssensesaessassssssssssassessess o sese 122

64

65

66

67

68

69

70

Function Call Two Function Move and puzzle Output.................... 123
Output of the Variable x Life Cycle............c.cviviviiiiiiiiiiinnnin., 123
Sub-C Programi.........c..oiuiiiiiiiiiiii e e e e 124
Function Q Call Menu.........ocovuiiiiiiniiii e een 126
Function Q Called Output............cccoviiiiiiiiiiiiiiiir e 127
Output of the Variable r.............ccoiiiiiiiiiiii 128
Output Logic Function Call.............ccooooiiiiiiiiiiien 128

LIST OF SYMBOLS

universal quantifier
existential quantifier
And

Or

Not

Implication

equivalence

Program
Function
Parameter
Variable
And

Or

not

LIST OF THE RESERVED WORDS IN THE SYSTEM

Used when the identifiers scopes are all the program.

Used to obtain the statistics for the functions.

Used to obtain statistical account of all parameters in any function.
Used to give a statistical account of all variables.

The system knows this word as the logic “and” symbol.

The system knows this word as the logic “ or ” symbol.

The system knows this word as the logic “not” symbol.

xiii

Abstract of thesis presented to the Senate of University Putra Malaysia in
fulfillment of the requirements for the degree of Master of Science.

DESIGNING A SOFTWARE MAINTENANCE SYSTEM USING A REVERSE
ENGINEERING APPROACH
By
HAMED JASEM AL-FAWAREH
February 1998
Chairman: Abdul Azim Abd Ghani, Ph.D.

Faculty: Science and Environmental Studies

The aim of the software maintenance is to maintain the software system in
accordance with advancement in software and hardware technology. There are four
activities to software maintenance, namely corrective maintenance, adaptive
maintenance, perfective maintenance, and preventive maintenance. Three approaches are

used in software maintenance, that is restructure, reverse engineering, and reenginering.

Reverse engineering is a process that is currently being used in software
maintenance to extract items of information on software products. This research aims to
produce a new reverse engineering logic-form tool, to help maintainers by giving them a
complete document about the software system. Currently, many tools are used in reverse

engineering, but not all can satisfy the problems faced by the users.

Xiv

The thesis describes the design and implementation of an automatic aid system
that uses a logic-form reverse engineering approach, with a new data structure called tree
module structure. This tool contains four modules, namely, lexical analyzer module,

syntax analyzer module, handling module, and interface or query module.

XV

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi
keperluan untuk ijazah Master Sains.

MEREKABENTUK SISTEM PERISIAN PENYELENGGARAAN DENGAN
MENGGUNAKAN PENDEKATAN PEREKASAYAAN SONGSANG
Oleh
HAMED JASEM AL-FAWAREH
February 1998
Pengerusi: Dr. Abdul Azim Abd Ghani, Ph.D.

Fakulti: Sains dan Pengajian Alam Sekitar

Matlamat penyelenggaraan perisian adalah untuk menyelenggara sistem perisian
supaya menepati dengan kemajuan dalam teknologi perisian dan perkakasan. Terdapat
aktiviti dalam penyelenggaraan perisian iaitu penyelenggaraan pembetulan,
penyelenggaraan penyesuaian, penyelenggaraan penyempurnaan dan penyelenggaraan
pencegahan. Tiga pendekatan digunakan dalam penyelenggaraan perisian iaitu

penstrukturan semula, perekasayaan songsang, perekasayaan semula.

Perekasayaan songsang adalah suatu proses yang digunakan dalam
penyelenggaraan perisian untuk mengeluarkan butiran maklumat mengenai produk
perisian. Penyelidikan ini bertujuan untuk menghasilkan satu peralatan baru perekayasaan
semula berbentuk-logik untuk membantu penyelenggara dengan menyediakan mereka

satu dokumen lengkap mengenai sistem perisian. Sekarang ini banyak peralatan

Xvi

digunakan dalam perekayasaan semula tetapi tidak semua dapat memenuhi masalah yang

dihadapi oleh pengguna.

Tesis ini menerangkan rekabentuk dan implementasi sistem bantuan automatik
yang menggunakan pendekatan perekaansaan semula berbentuk logik dengan kaedah
baru yang dipanggil modul pokok sistem pendekatan. perekayasaan semula berbentuk
logik menggunakan empat modul iaitu modul penganalisis leksikal, modul penganalisis

sintak, modul pengendalian dan modul antara muka atau pertanyaan.

Xvii

CHAPTERI1

INTRODUCTION

Background

Computer systems have been used in many complex and diverse applications;
they are also applied in critical areas, where the useful of a nation may depend on them.
These computer applications increased with the advance in technology, also, the
complexity has increased a lot in these applications. Each software system may contain
thousands of components which, may be spread over different and large modules. The
relationships between these components make determination of any change between the
diverse parts of the software system very difficult. This problem becomes more
complicated for a large software application. The integration of these modules becomes

tedious and time consuming without the support of aid tools.

During the initial years of computer software and hardware development
programmers concentrated on the production of new software systems for new
applications. These software systems consumed much time and money for the

development.

In the early 1960s, programmers attention was directed towards in producing new
applications, rather than updating the old software. In the 1970s, the developments in

computer software and hardware technology caused programmers to maintain the old

software and increase the life cycle of software systems. Furthermore, attempts to
produce new software during this period was time consuming and costly, so maintainers
tended to maintain the software system by using software maintenance (Glass &

Noleseux 1981).

It is easy to detect a logic error when a maintainer builds a compiler e.g. in C-
language when the maintainer forgets a semicolon at the end of a line or omits to close
brackets in a “for statement”. The main problem is that the maintainer finds it more
difficult to detect run time errors inside the program. These errors cause the program to

produce incorrect results.

Detecting and correcting errors take much time. For example, in a given function,
a maintainer needs to know all the input and output par.ameters. To solve these problems;
he needs to trace all the variables and functions called during the execution of a program.
In order to do this, the maintainer needs a list of all local and global variables, and

function calls, to determine the statements that contain errors.

Errors in a complex software system are difficult to correct and detect; software
maintenance aids the maintainer to correct and ﬁace the software system, and, thus,
reduces its cost. When programmers build software systems, the task of detecting and
correcting errors for small software system is simple; but it becomes difficult and
complex for large software systems. One of the software maintenance activities is
concerned with correcting software errors and producing full details about the

components of the program, such as, global variables and local variables.

Software maintenance activities modify old software systems, correct errors in
order to improve the performance of these systems, and adapt the software systems to the
changing environment. There are four types of software maintenance activities. First,
corrective maintenance, which deals with testing of large, and huge software systems, to
detect errors, which may need much time to correct as whole contents of the program
need to be traced. The second is adaptive maintenance. This looks into the rapid change
in software environment, such as the operating system, new hardware, and upgrading of
the elements of the system. The functionality of the software however does not change.
The third which, is perfective maintenance deals with the modification and
implementation of the recommendations from users, after the use of the software. The
fourth is preventive maintenance which brings about future enhancement in the software

system.

In general, software maintenance is very expensive compared to software
development. The cost of software maintenance became higher after 1970s, and by the
1990s, it constituted more than 62% of the cost (Zuylen, 1993). Three approaches are
used to maintain software. These are the 3RE’s namely, reengineering, restructuring, and
reverse engineering (Chikofsky, et. al, 1990). Reengineering is concemed with
processing the existing software by producing a new source code without changing the
old system function. Restructuring involves examining the existing software and
rewriting parts of it by changing unstructured, ambiguous and difficult software to a new
structure, that is easier to understand. Reverse engineering is a technique to analyze a

subject system to identify system components and their relationships, in addition to

creating representations of the system at a higher level of abstraction. In other words,
reverse engineering is a process of extracting information from a source code concerning

software product design.

In this thesis, the reverse engineering approach will be used to produce a new tool
for helping users to walk through the software system. This system is called “logic form
reverse engineering tools”. This system is divided into four modules, namely, lexical

analyzer module, syntax analyzer module, handling module, and interface module.

Logic Form Reverse Engineering Approach

When a developer builds a huge and large software system, detecting and
correcting errors is time consuming. For example, for a function of a given program, the
developer may wish to know all the input and output parameters, these parameters help
the developer to correct software errors. If it is a small program, errors are easy to detect

and correct. However, it becomes difficult and complex in large software.

Software systems are spread over different modules. These modules contain
numerous local and global variables, parameters, and functions, in different level of
abstractions. Program construction in a sub standard C-language is spread over different
functions. Not only do these functions contain separate variables but also the program
itself contains global and local variables. The overlap between all functions, local, and

global variables, makes the walking through inside the program more difficult if it is

done manually by the user. The main attention of users is to detect all variables and

functions declared in software system in order to correct errors.

The errors that occur in a software system are of three kinds: implicit error, latent
error, and syntax errors or the easy errors. Syntax errors are the most common. They
occur when the user, for example, forgets the semicolon at the end of line, or forgets to
close the bracket in a “for statement”. Thls error is very easy to detect during execution
of a software system. Implicit error or run time error is difficult to detect because the
system compilation does not detect it. Also, this error may feature incorrect results after
execution of the program. To detect this error, the maintainer needs to walk through the
program and trace all the variables and functions declared in the program. This method is
easy in small programs, but becomes complex when the software system grows large and
huge. When the users use the software system, they write full recommendations to the
maintainer in order to change the software and correct the error, again, software system

need to do program tracing.

For the above problems we developed a logic form reverse engineering tool. This
tool contains four components, namely: LEXICAL ANALYZER, SYNTAX
ANALYZER, HANDLING MODULE, and QUERY MODULE. Logic-form reverse
engineering tool assists in enhancing system constituents and their relationships. Also, it
assists in binding the modules and variables in the program. It also helps the user to
recognize the overlap between modules and variables in the program, and identifies

components and their relationships. Furthermore, it provides information that helps users

to correct errors in the program. This tool helps users to walk through all contents of the
program, its functions and its variables without encountering any difficulty for correcting

them. Also, it detects implicit faults so as to get the correct results.
Aims of the Research

The research in this thesis, aims at developing a logic form reverse engineering
system. It is designed to help a maintainer correct the three kinds of errors, by giving a
full documentation for all local and global variables, parameters, and functions used in
the software system. In addition, this system extracts information concermning software
variables and functions and provides information on call graph. This information should
help to control many managerial problems. These problems may occur when building
large software systemé for a large number of families of components. For example, let us
consider a database containing thousands of components or modules and thousands of
dependency relationships, and documents. It is beyond the human ability to search
manually such a database to find spec;iﬁc information about specific modules, their
dependencies, and connectivity to other activities in the life cycle of a product. This
system provides all the facilities for browsing the database, and gives all the information
about the components of software systems, such as, global variables, local variables,
functions, and parameters. Furthermore, this tool clears overlapping between the software

system components, variable and functions.

The system developed in this research provides visibility to maintainers, by

allowing them to go through the life cycle of the functions and variables, and increasing

the understandability of the software system. Also, the research should help maintainers
to correct programming errors, and achieve more correct results. This system, also,

provides querying and browsing facilities.

Organization of the Thesis

Chapter two provides background information on software maintenance such as
its fundamentals, activities and approaches, which are the focus of this thesis. In addition,
this chapter discusses reverse engineering tools, utilized by previous researches in this
area. Chapter three describes the methodology used in the logic form reverse engineering
approach. Chapter four describes the design and implementation of a logic-form reverse
engineering system. This system contains four modules: lexical analyzer module, syntax
analyzer module, handling module, and interface module. Furthermore, it describes the
method which, is used in this system that is “tree module”. Chapter five discusses the
result of the implementation of the logic-form reverse engineering system as well as the
sample of the output, that is capable of responding to certain maintainer queries. Chapter
six provides a conclusion of the approach discussed in this thesis and evaluates the

achievements of this approach. Some suggestions for further work are also discussed at

the end of the chapter.

CHAPTERII
SOFTWARE MAINTENANCE: ACTIVITIES AND APPROACHES
Introduction

This chapter provides an overview of software maintenance system and its
relationship to the 3REs: Restructuring, Reengineering, and Reverse Engineering. It also

explains various reverse engineering tools.
Software Maintenance

Emergence of Software Maintenance

During the period between 1950s and early 1960s, software maintenance was
restricted to a very small part of the software life cycle. The main activity of the
programmer was to write new programs for new applications. By the end of the 1960s
and early 1970s, most software systems that had been written had become obsolete.
However, it was very difficult and costly‘ to get rid of all these software system. It was
then that software maintenance emerged. Software system life cycle history can be
categorized in two stages: the development and the maintenance stages. During the
development stage, the life cycle was used as a development model whereby

development activities spread in a sequential pattern, beginning from the requirements,

