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The potential of aminated rice hull to remove Cr(VI), Cu(II) and As(V) from 

aqueous solution was investigated. Amination processes enhanced the sorption 

capacities of rice hull with ethylenediamine being the most economical and efficient 

aminating agent. Chemical modification of surface functional groups of 

ethylenediamine modified rice hull ( enRH) indicated that amine and carboxyl 

groups were the major sorption sites. 

Both batch and column studies were performed, taking into account parameters such 

as pH, contact time, initial concentrations, ionic strength, particle size of sorbent, 

rate of agitation, presence of competitive cation and anions, use of different metal 

ion sources, sorbent dosage, temperature, bed depth, flow rate and sorption-

desorption process. 
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The results of batch studies indicated that the sorption process was pH and 

temperature dependent. External mass transfer was not the sole rate-limiting phase 

and might involve chemisorption. The sorption of metal ions from single metal ion 

solution was in the order of Cr(VI) > Cu(II) > As(V) which is consistent with the 

Pearson's theory on hard and soft acid base. Cr(VI) and As(V) sorptions involved 

electrostatic interactions while Cu(n) sorption involved complexation. Where 

Cu(n) was present in binary and ternary metal ion solutions, Cr(VI) and As(V) 

removal also involved complexation. 

Column studies revealed different equilibrium states compared with batch studies. 

Breakthrough was bed depth, flow rate and initial concentration dependent. The 

presence of sulfate significantly affected the breakthrough time of Cr(VI) and 

Cu(n). The relationship between service time and bed depth was linear. The 

predicted breakthrough curves obtained from a two-parameter mathematical model 

agreed well with the experimental values in Cu(II) from all systems and Cr(VI) from 

binary Cu(II)-Cr(VI) and ternary metal ion solutions when sulfate was absent. 

Sequential columns could successfully reduce the levels of Cr(VI) and Cu(II) in the 

wastewater to the allowable limit for discharge into inland water. Cr(VI) and Cu(II) 

from dilute solution could be preconcentrated on the enRH column and thus this is 

useful in the analysis of trace amounts of Cr(VI) and Cu(II) in wastewater. Elution 

ofCr(VI)- and Cu(II)-loaded column could be carried out using 1.07 M NH3 and 0.5 

M H2S04, respectively. 
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Keupayaan sekam padi (NRH) yang diaminakan untuk penyingkiran Cr(VI), Cu(IJ) 

dan As(V) dari larutan akueus telah dikaji. Proses pengaminaan telah meningkatkan 

kapasiti erapan sekam padi. Etilenadiamina merupakan agen amina yang paling 

ekonomi dan berkesan. Pengubahsuaian kimia ke atas kumpulan-kumpulan 

berfungsi pada sekam padi terubahsuai oleh etilenadiamina (enRH) menunjukkan 

bahawa kumpulan amina dan karboksilik mernpakan tapak erapan utama. 

Kajian kelompok dan turns telah dijalankan dengan mengambilkira parameter-

parameter seperti pH, masa kontak, kepekatan awal, kekuatan ion, saiz pengerap, 

kadar pengacauan, kehadiran kation dan anion-anion pesaing, penggunaan sumber 

logam berbeza, suhu, ketinggian turns, kadar aliran and edaran erapan-nyaherpan. 
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Kajian kelompok menunjukkan bahawa proses erapan dipengaruhi oleh pH dan 

suhu. Pemindahan jisim luar bukan Iangkah penentu kadar tunggal dan melibatkan 

erapan kimia. Erapan logam-Iogam daripada larutan logam tunggal berurutan 

Cr(VI) > Cu(II) > As(V) selaras dengan teori Pearson mengenai asid dan bes liat dan 

lembut. Erapan Cr(VI) dan As(V) melibatkan interaksi elektrostatik manakala 

erapan Cu(II) melibatkan pembentukan kompleks. Di mana Cu(II) hadir, 

penyingkiran Cr(VI) dan As(V) juga melibatkan pembentukan kompleks. 

Kajian turus memaparkan perbezaan di antara keadaan keseimbangan dengan kajian 

kelompok. Penembusan bergantung kepada tinggi turus, kadar aliran dan kepekatan 

awal. Kehadiran sulfat telah mempengaruhi masa penembusan Cr(VI) dan Cu(II). 

Hubungan di antara masa khidmat dan tinggi turus adalah linear. Keluk 

penembusan ramalan menggunakan model matematik dua-parameter mematuhi nilai 

eksperimen bagi Cu(II) dari larutan logam tunggal dan Cr(VI) dari larutan Cu(II)

Cr(VI) dan ternari yang tidak dihadiri sulfat. 

Turus berganda dapat mengurangkan Cr(VI) dan Cu(II) di dalam air sisa sehingga 

takat yang dibenarkan untuk disingkirkan. Cr(VI) dan Cu(II) daripada larutan cair 

dapat dipekatkan pada enRH dan dengan demikian berguna untuk analisis Cr(VI) 

dan Cu(II) yang berkepekatan rendah dalam air sisa. Elusi turus yang ditepukan 

oleh Cr(VI) dan Cu(II) masing-masing dilakukan dengan menggunakan 1.07 M 

larutan NH3 dan 0.5 M H2S04. 
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