

UNIVERSITI PUTRA MALAYSIA

SYNTHESIS OF NANOCOMPOSITE: I-NAPHTHALENEACETATE-ZINC-ALUMINIUM-LAYERED DOUBLE HYDROXIDE

DICKENS WONG VUI FOO

FSAS 2002 14

SYNTHESIS OF NANOCOMPOSITE: 1-NAPHTHALENEACETATE-ZINC-ALUMINIUM-LAYERED DOUBLE HYDROXIDE

DICKENS WONG VUI FOO

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

2002

SYNTHESIS OF NANOCOMPOSITE: 1-NAPHTHALENEACETATE-ZINC-ALUMINIUM-LAYERED DOUBLE HYDROXIDE

By

DICKENS WONG VUI FOO

Thesis Submitted in Fufilment of the Requirement for the Degree of Master of Science in the Graduate School Universiti Putra Malaysia

January 2002

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

SYNTHESIS OF NANOCOMPOSITE: 1-NAPHTHALENEACETATE-ZINC-ALUMINIUM-LAYERED DOUBLE HYDROXIDE

By

DICKENS WONG VUI FOO

January 2002

Chairman: Associate Professor Dr. Mohd. Zobir bin Hussein, Ph.D.

Faculty: Science and Environmental Studies

Formation of organic-inorganic nanohybrid material of 1-naphthaleneacetate in the lamella of Zn-Al-layered double hydroxide (ZANOL) with and without microwave-assisted aging was done and the properties of the resulting materials were compared. For both methods, the results showed that the intercalation of 1-naphthaleneacetate (NAA) anion into the Zn-Al-layered double hydroxide lamella are readily accomplished, resulting in a Zn-Al-NAA nanocomposite (ZANAN), with the expansion of the interlayer spacing from 9.0 Å in the layered double hydroxide to 20.0 Å in the nanohybrid. This expansion is to accommodate the NAA anion of larger size than nitrate. The resulting materials afforded well ordered organic-inorganic nanolayered structure. Further characterization of the resulting materials including the true density, organic-inorganic content, surface area and morphology, was also carried out.

Both ZANOL and ZANAN exhibited good neutralizing and buffering power toward HNO_3 and NaOH solutions. Deintercalation of the NAA ions from the

interlayer of ZANAN could be done in an excessive volume of HNO₃ or NaOH solutions. NAA ions could be adsorbed on ZANOL if added into an aqueous solution of NAA. At the same time, the NAA ions adsorbed by ZANOL, could also be desorbed into the aqueous solution. The process of adsorption-desorption is a continuous process and no equilibrium was achieved, even up to 14 days.

Both ZANAN and ZANOL used in the tissue culture study of oil palm clones of E7, E8, L272, L273 and L255 did not assist in the initiation of roots. Instead, the results showed that the MS medium with the presence of NAA ions inhibited the growth of roots.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN NANOKOMPOSIT: 1-NAFTALENAASETAT-ZINK-ALUMINIUM-HIDROKSIDA BERLAPIS GANDA

Oleh,

DICKENS WONG VUI FOO

Januari 2002

Pengerusi: Profesor Madya Dr. Mohd. Zobir bin Hussein, Ph.D.

Fakulti:Sains dan Pengajian Alam Sekitar

Bahan nanohibrid organik-inorganik yang terdiri daripada 1-naftalenaasetat dalam ruang antara lapisan Zn-Al-hidroksida berlapis ganda (ZANOL) telah disintesis dengan dan tanpa bantuan gelombang mikro dan ciri-ciri hasil sintesis tersebut telah dibandingkan. Untuk kedua-dua kaedah, keputusan eksperimen menunjukkan interkalasi bagi anion naftalenaasetat ke dalam ruang antara lapisan Zn-Al-hidroksida berlapis ganda adalah mudah dicapai, menghasilkan nanokomposit Zn-Al-hidroksida berlapis ganda tersebut daripada 9.0 Å kepada 20.0 Å untuk hidroksida berlapis ganda tersebut adalah untuk menempatkan anion NAA yang saiznya lebih besar daripada anion nitrat. Bahan terhasil juga mempunyai struktur lapisan nano yang lebih tersusun. Pencirian bagi bahan yang dihasilkan termasuk ketumpatan mutlak, kandungan organik-inorganik, luas dan morfologi permukaan telah juga dilakukan.

Kedua-dua ZANOL dan ZANAN menunjukkan kuasa peneutralan dan penimbalan yang baik terhadap larutan akues HNO₃ dan NaOH. Nyahinterkalasi anion NAA daripada ruang antara lapisan ZANAN juga dapat dicapai sekiranya larutan HNO₃ atau NaOH yang berlebihan digunakan. ZANOL boleh menjerap ion-ion NAA jika ia ditambahkan ke dalam larutan akues yang mengandungi NAA. Pada masa yang sama, ion-ion NAA yang terjerap juga dapat dinyahjerapkan semula ke dalam larutan akues tersebut. Proses jerapan dan nyahjerapan ini berlaku secara berterusan dan keseimbangan didapati tidak tercapai walaupun sehingga 14 hari.

Kedua-dua ZANOL dan ZANAN yang digunakan dalam kajian kultur tisu klon kelapa sawit E7, E8, L272, L273 dan L255 tidak membantu pertumbuhan akar. Sebaliknya, keputusan menunjukkan medium MS dengan kehadiran ion-ion NAA menghalang pertumbuhan akar.

ACKNOWLEDGEMENTS

Glory and praise be to God, the Almighty for providing me the strength and diligence to complete this dissertation despite several obstacles encountered throughout the progress of this study, which at times seemed insurmountable.

First of all, I would like to express my sincere thanks to my supervisor, Assoc. Prof. Dr. Mohd Zobir bin Hussein for his guidance, concern, understanding, and unlimited patience throughout this whole process.

I would like to express my gratitude and appreciation to Assoc. Prof. Dr. Zulkarnain Zainal, Dr Asmah Hj. Yahaya and Dr. Ahmad Tarmizi bin Hashim for their valuable guidance and advices as well as providing me with the compounds, their kindness and willingness to help.

Beside that, I would like to thank the entire laboratory officers of the Chemistry Department, UPM, and the Tissue Culture Department of Malaysia Palm Oil Board, and the sponsorship of PASCA scheme of UPM.

I would also like to thank my family members for being supportive all the time no matter what had happened.

Last but not least, to all of my good friends: mon, yih, yap, pkl, ocb, ts, Rodhy MH-Looi, and my beloved pei & wc, thank you for your companionship, joyfulness, support and encouragement throughout my university life.

TABLE OF CONTENTS

Page

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL SHEETS	vii
DECLARATION	ix
TABLE OF CONTENTS	х
LIST OF TABLES	xiii
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xix

CHAPTER

Ι

ΙΙ

.

INTRODUCTION	1
Nanocomposite Materials	1
Layered Double Hydroxides (LDHs)	3
Structure of LDHs	4
Possible Applications of LDHs	6
Microwave	13
Intercalation Reaction	17
Buffer	21
Control Release	23
Diffusion	24
Surface Area Analysis	25
Plant Growth Regulators	27
Auxins	28
Plant Tissue Culture	30
Auxin in Tissue Culture	32
1-Naphthaleneacetic Acid (NAA)	33
UV Determination of NAA	34
Objectives of the Study	35

METHODOLOGY	36
Materials	36
Preparation of Zn/Al-NO ₃ -LDH	36
Conventional oil bath method	36
Microwave-assisted method	37
Intercalation of NAA into Zn/Al-LDH	38
Conventional oil bath method	38
Microwave-assisted method	38
Nomenclature	39
Characterizations	40

	Powder X-Ray Diffraction (PXRD)	40
	True Density	40
	Fourier Transform-Infrared (FTIR)	40
	Surface Area and Porositmetry Analyses	41
	Elemental Analysis	41
	CHNS Analysis	42
	UV-Visible Spectroscopy	42
	Scanning Electron Microscope (SEM)	43
	Buffering Effect	43
	Deintercalation	43
	Adsorption Properties	44
	Tissue Culture	45
	Culturing Procedures	45
III	RESULTS AND DISCUSSIONS I:	47
	PHYSICO-CHEMICAL PROPERTIES OF Zn/Al-	
	LDH AND Zn/Al-NAA NANOCOMPOSITE	
	Physical Aspects	47
	Powder X-Ray Diffraction (PXRD)	48
	Fourier Transform-Infrared (FTIR)	51
	Organic and Inorganic Compositions	54
	Surface Properties	56
	Surface Morphology	60
	Buffering Effect	66
	Deintercalation	70
	Adsorption Properties	88
IV	RESULTS AND DISCUSSIONS II: MICROWAVE-ASSISTED SYNTHESIS OF Zn/Al-	91
	LDH AND Zn/Al-NAA NANOCOMPOSITE	
	True Density	91
	Powder X-Ray Diffraction (PXRD)	92
	Fourier Transform-Infrared (FTIR)	96
	Organic and Inorganic Compositions	100
	Surface Properties	101
	Surface Morphology	108
V	RESULTS AND DISCUSSIONS III:	113
	THE USE OF Zn/Al-LDH AND Zn/Al-NAA NANOCOMPOSITE IN OIL PALM TISSUE	
	Absorption of NAA in the Tissue Culture Media	113
	Root Initiation	117
VI	CONCLUSIONS	125
V I	CONCLUSIONS	123

128

134

134

REFERENCES	
APPENDICES A	Paper Presented at the Simposium Kimia Analisis Malaysia (SKAM) Ke XIII, 6-7 September 2000 at Paradise Lagoon Hotel, Port Dickson, Negeri Sembilan.

	Somenan.	
В	Paper Presented at Fifth International Conference on Material Chemistry, 24-27 July 2001, University of Wales, Bangor, United Kingdom.	135
С	Paper published in Proceedings of the Regional Conference for Young Chemists 2001	136
D	PXRD data for the recovered samples after the experiment of deintercalation.	145
VITA		146

LIST OF TABLE

Table	LIST OF TABLE	Раде
Table		I age
1.1	Summary of previous works on the intercalation of various organic moieties into the LDHs.	9
1.2	The electromagnetic spectrum (Thuery, 1991).	13
1.3	Frequency bands (Thuery, 1991).	14
1.4	Applications of microwave energy in ceramic processing.	16
1.5	Composition of Murashige and Skoog medium (Vasil, 1994).	31
3.1	The true density of ZANOL and ZANAN.	47
3.2	Basal spacing for ZANOL and ZANAN.	48
3.3	Organic-Inorgaic Composition of ZANOL and ZANAN.	55
3.4	Surface properties of ZANOL and ZANAN.	57
3.5	Summary of the properties of the samples recovered from various aqueous solutions.	78
4.1	The true density of ZANOLs and ZANANs prepared by using conventional and microwave-assisted methods.	92
4.2	Basal spacing for ZANOLs and ZANANs prepared by using microwave-assisted and conventional oil bath methods.	93
4.3	Ratio of Zn:Al formed and percentages of NAA in ZANOL and ZANANs prepared using microwave-assisted and conventional methods.	101
4.4	Surface properties of ZANOL and ZANAN.	103
5.1a	The total number of roots for the various clones of tissue culture in MS medium with 16.8 mg/L NAA and added activated carbon (T2).	119
5.1b	The total number of roots for the various clones of tissue culture in MS medium without NAA (T6).	119

5.2a	The average length of roots for the various clones of tissue culture in MS medium with 16.8 mg/L NAA and added activated carbon (T2).	120
5.2b	The average length of roots for the various clones of tissue culture in MS liquid medium without NAA (T6).	120
Appendix D	PXRD data for the recovered samples after the experiment of deintercalation.	145

LIST OF FIGURES

Figure 1.1	Structure of LDH.	Page 3
1.2	A schematic representation for the comparison between (a) magnesium hydroxide structure and (b) after intercalated with anions (Kamath <i>et al.</i> , 1997).	5
1.3	The heating patterns in conventional and microwave oven (Sutton, 1989).	15
1.4	Intercalation process of LDH for the formation of a nanocomposite.	19
1.5	Diagram of experiment showing auxin can result in phototropic curvature (Sax and Lewis, 1987).	29
1.6	Molecular structure of 1-naphthaleneacetic acid.	33
3.1	PXRD patterns for NAA and ZANAN synthesis by using various concentrations of NAA. Peaks labeled "o" indicate ZnO phase.	50
3.2	FTIR spectra for NAA (a), ZANOL (b) and ZANANs prepared by using initial NAA concentration of 0.01 M (c), 0.02 M (d), 0.04 M (e), 0.05 M (f), 0.10 M (g) and 0.20 M (h).	53
3.3	Molecular structure of NAA (a), and its carboxylate anion (b).	54
3.4	Adsorption-desorption isotherms for the nitrogen gas at 77K for ZANAN and ZANOL (also shown in the inset with expanded y axis).	58
3.5	Pore size distribution for ZANAN and ZANOL (also shown in the inset with expanded y axis).	59
3.6a	Scanning electron micrograph for ZANAN at 15,000x.	60
3.6b	Scanning electron micrograph for ZANAN at 20, 000x.	61
3.6c	Scanning electron micrograph for ZANAN at 10,000x.	61
3.6d	Scanning electron micrograph for ZANOL at 10,000x.	62
3.6e	Scanning electron micrograph for ZANOL at 20,000x.	62

3.6f	Scanning electron micrograph for ZANOL at 10,000x.	63
3.6g	Scanning electron micrograph for ZANOL at 20,000x.	63
3.6h	Scanning electron micrograph for ZANOL at 10,000x.	64
3.6i	Scanning electron micrograph for ZANOL at 5,000x.	64
3.6j	Scanning electron micrograph for ZANOL at 30,000x.	65
3.7	The change of pH in aqueous solutions added with	68
3.8	ZANOL. The change of pH in aqueous solutions added with ZANAN.	69
3.9	Absorption spectra of NAA ions in aqueous solutions detected by the UV-Visible spectrophotometer, $\lambda_{max} = 281$ to 283 nm.	72
3.10	Percentages of deintercalation of NAA from ZANAN into the aqueous solution at various initial pHs (1-14) in 7 days.	73
3.11a	Fitting of deintercalation data of NAA in aqueous solution with initial pH 1 with first order kinetics.	79
3.11b	Fitting of deintercalation data of NAA in aqueous solution with initial pH 7 with first order kinetics.	79
3.11c	Fitting of deintercalation data of NAA in aqueous solution with initial pH 8 with first order kinetics.	80
3.11d	Fitting of deintercalation data of NAA in aqueous solution with initial pH 14 with first order kinetics.	80
3.12a	Fitting of deintercalation data of NAA in aqueous solution with initial pH 1 with Baker and Lonsdale model.	81
3.12b	Fitting of deintercalation data of NAA in aqueous solution with initial pH 4 with Baker and Lonsdale model.	81
3.13a	PXRD patterns and d spacings for the samples recovered from aqueous solutions with initial pH 1, at various deintercalation times. Peaks labeled "o" indicate ZnO phase.	82

3.13b	PXRD patterns and d spacings for the samples recovered from aqueous solutions with initial pH 7, at various deintercalation times.	83
3.13c	PXRD patterns and d spacings for the samples recovered from aqueous solutions with initial pH 14, at various deintercalation times.	84
3.14a	FTIR spectra for the samples recovered from aqueous solutions with initial pH 1, at various deintercalation times.	85
3.14b	FTIR spectra for the samples recovered from aqueous solutions with initial pH 7, at various deintercalation times.	86
3.14c	FTIR spectra for the samples recovered from aqueous solutions with initial pH 14, at various deintercalation times.	87
3.15	The uptake of NAA on ZANOL in 14 days. The value labels representing the initial concentration of NAA.	90
4.1a	PXRD patterns for (a) ZANOL60-M, (b) ZANAN0, (c) ZANAN15-M, (d) ZANAN30-M, (e) ZANAN45-M and (f) ZANAN60-M.	94
4.1b	PXRD patterns for (a) ZANOL60-C, (b) ZANAN0, (c) ZANAN15-C, (d) ZANAN30-C, (e) ZANAN45-C and (f) ZANAN60-C.	95
4.2a	FTIR spectra for NAA (a), ZANOL60-C (b), ZANAN0 (c), ZANAN15-C (d), ZANAN30-C (e), ZANAN45-C (f) and ZANAN60-C (g).	98
4.2b	FTIR spectra for NAA (a), ZANOL60-M (b), ZANAN0 (c), ZANAN15-M (d), ZANAN30-M (e), ZANAN45-M (f) and ZANAN60-M (g).	99
4.3a	Adsorption-desorption isotherms for the nitrogen gas at 77K for ZANAN prepared using conventional method at various aging times (also shown in the inset with expanded y axis).	104
4.3b	Adsorption-desorption isotherms for the nitrogen gas at 77K for ZANAN prepared using microwave-assisted method at various aging times (also shown in the inset with expanded y axis).	105

4.4a	Pore size distribution for ZANANs prepared using conventional method at various aging times.	106
4.4b	Pore size distribution for ZANANs prepared using microwave-assisted method at various aging times.	107
4.5a	Scanning Electron Micrograph of ZANAN60-M at 10,000x.	108
4.5b	Scanning Electron Micrograph of ZANAN60-M at 5,000x.	109
4.5c	Scanning Electron Micrograph of ZANAN60-C at 10,000x.	109
4.5d	Scanning Electron Micrograph of ZANAN60-C at 5,000x.	110
4.5e	Scanning Electron Micrograph of ZANOL60-M at 10,000x.	110
4.5f	Scanning Electron Micrograph of ZANOL60-M at 5,000x.	111
4.5g	Scanning Electron Micrograph of ZANOL60-C at 10,000x.	111
4.5h	Scanning Electron Micrograph of ZANOL60-C at 5,000x.	112
5.1	The presumed period of the absorption of NAA ions by the tissue culture clone E8 in various media T1, T3 and T5.	116
5.2a	The total number of roots for the various clones of tissue culture in MS medium with 16.8 mg/L NAA and added activated carbon (T2).	121
5.2b	The total number of roots for the various clones of tissue culture in MS medium without NAA (T6).	122
5.3a	The average length of roots for the various clones of tissue culture in MS medium with 16.8 mg/L NAA and added activated carbon (T2).	123
5.3b	The average length of roots for the various clones of tissue culture in MS liquid medium without NAA (T6).	124

LIST OF ABBREVIATIONS

ASAP	Accelerated Surface Area and Porosimetry
BET	Brenauer, Emmett and Teller
BJH	Barrett, Johner and Halenda
CHNS	Carbon, Hydrogen, Nitrogen and sulfur analysis
ICP-AES	Inductive Couple Plasma – Atomic Emission Spectroscopy
LDH	Layered Double Hydroxide
MS	Murashige and Skoog Medium
NAA	1-Naphthaleneacetic acid
NC	Nanocomposite
PXRD	Powder X-Ray Diffration
R	Ratio of Zn^{2+} to Al^{3+}
R _{form}	Ratio of Zn^{2+} to Al^{3+} formed
SEM	Scanning Electron Microscopy
θ	X-ray diffraction angle
ZANOL	Zn ²⁺ -Al ³⁺ -NO ₃ ⁻ -Layered Double Hydroxide

ZANAN Zn²⁺-Al³⁺-Naphthaleneacetate Nanocomposite

CHAPTER I

INTRODUCTION

Nanocomposite Materials

In materials science, a "composite" implies that the material is composed of a mixture of two or more constituents that differ in composition (Hawley, 1973). Thus, the term "nanocomposite" implies that the physical arrangement of the different constituents is on a scale of 1 to 100 nanometer (1 nm = 10^{-9} m, *i.e.*, one billionth of a meter) (Roy *et al.*, 1986).

Nanostructured materials are becoming of major significance and the technology of their production is rapidly growing into a powerful industry. These fascinating materials include nanofilms, nanocrystal, alloys, nanocomposites and semiconductors (Nalwa, 2000). The synthesis of materials of nanoscale dimension is important because the small size of these materials endows them with unusual structural and optical properties that might find application in catalysis and electrooptical devices. Such materials may also be valuable precursor to strong ceramic (Sax and Lewis, Sr., 1987). These kind of materials and their base technologies have also opened up exciting new possibilities for future applications in aerospace, automobile, batteries, insulators, printing, color imaging, drug delivery, medicine and cosmetics (Lerf, 2000).

The preparation of nanostructure materials depend on the following four common microstructural features (Gonsalves, 2000):

- (1) The grain size and size distribution (< 100 nm).
- (2) The chemical composition of the constituent phases.
- (3) The presence of interfaces, more specifically, grain boundaries, heterophases interface, or the free surface.
- (4) Interactions between the constituent domains.

The presence and interplay of these four features largely determine the unique properties of the nanostructured materials.

A two dimensional layered structure consisting of thin crystalline inorganic layers with a thickness of molecular scale in nanometer range can be used as an ideal host of layered nanocomposite or organic-inorganic hybrid materials. One of the candidates for this type of structure is layered double hydroxide (LDH). A variety of anionic species can be inserted as guests into the interlayer spaces of the LDH, resulting in an expansion of the interlayer distance to a nanometer sized dimension to form a new nanocomposite material (Yamanaka, 1991).

Layered Double Hydroxides (LDHs)

Layered double hydroxides (LDHs) are also known as anionic clays. It was discovered by Feitknecht about 50 years ago, but their structure was only determined in 1970 by Allman for the Mg-Fe LDH (pyroaurite and sjögrenite) and by Brown and O'Hare for the Mg-Al LDH (hydrotalcite and manasseite) (Ehisissen *et al.*, 1993 and Millange *et al.*, 2000). These compounds have a structure of sheet held together by strong covalent bonds in the xy plane to form a two-dimensional polyhydroxyl cation layers. These crystalline layers are stacked by considerable weaker bonds in the z direction, containing anions and water molecules (Hussein *et al.*, 1995).

Figure 1.1: Structure of LDH.

The chemical composition of LDHs is generally expressed as

$$[M^{2+}_{1-x}M^{3+}_{x}(OH)_{2}]^{x+}[(A^{n-})_{x/n}H_{2}O]^{x-}$$

where M^{2+} is a divalent cation such as Ca^{2+} , Mg^{2+} , Ni^{2+} , Cu^{2+} , Co^{2+} or Zn^{2+} , M^{3+} is a trivalent metal ion such as Al^{3+} , Cr^{3+} , Fe^{3+} , V^{3+} , Ga^{3+} and A^{n-} an anion of charge n such as CO_3^{2-} , Cl^- , SO_4^{2-} , NO_3^{-} or ClO_4^{-} . The $M^{2+}:M^{3+}$ ratio is usually between 1 and 5 (Zhao and Vance, 1997). The value of x (x = $M^{3+}/(M^{2+} + M^{3+})$ ranges between 0.20 and 0.33 (Cavani *et al.*, 1991).

There are only two types of host lattices carrying positive charges: graphite compounds with a positively charged carbon network and the family of LDH. They differ strongly in their chemical behavior. Graphite is an electronic conductor and a strong oxidizing agent, which sharply restricts the species to be intercalated. The LDH group are electric insulators which are stable in an aqueous environment (if CO_2 is excluded) and are able to take up a large number of anions, ranging from inorganic ones like Cl⁻ to negatively charged metal complexes and polyoxyanions to anions of organic acids (Lerf, 2000).

Structure of LDHs

LDHs are isostructure with the mineral hydrotalcite, having formula $Mg_6Al_2(OH)_{16}CO_3.4H_2O$ (Puttaswamy and Kamath, 1997). The layers of M^{2+} and M^{3+} cations are coordinated octahedrally by six oxygen anions, as hydroxides. These layers exist with a similar layered structure to that exhibited by brucite,