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Formation of organic-inorganic nanohybrid material of 1-naphthaleneacetate in the 

lamella of Zn-Al-Iayered double hydroxide (ZANOL) with and without 

microwave-assisted aging was done and the properties of the resulting materials 

were compared. For both methods, the results showed that the intercalation of 1-

naphthaleneacetate (NAA) anion into the Zn-Al-Iayered double hydroxide lamella 

are readily accomplished, resulting in a Zn-AI-NAA nanocomposite (ZAN AN), 

with the expansion of the interlayer spacing from 9.0 A. in the layered double 

hydroxide to 20.0 A. in the nanohybrid. This expansion is to accommodate the 

NAA anion of larger size than nitrate. The resulting materials afforded well 

ordered organic-inorganic nanolayered structure. Further characterization of the 

resulting materials including the true density, organic-inorganic content, surface 

area and morphology, was also carried out. 

Both ZANOL and ZANAN exhibited good neutralizing and, b�ffering power 

toward RN03 and NaOH solutions. Deintercalation of the NAA ions from the 
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interlayer of ZANAN could be done in an excessive volume of HN03 or NaOH 

solutions. NAA ions could be adsorbed on ZANOL if added into an aqueous 

solution of NAA. At the same time, the NAA ions adsorbed by ZANOL, could 

also be desorbed into the aqueous solution. The process of adsorption-desorption is 

a continuous process and no equilibrium was achieved, even up to 14 days. 

Both ZANAN and ZANOL used in the tissue culture study of oil palm clones of 

E7, E8, L272, L273 and L255 did not assist in the initiation of roots. Instead, the 

results showed that the MS medium with the presence of NAA ions inhibited the 

growth of roots. 
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Bahan nanohibrid organik-inorganik yang terdiri daripada I-naftalenaasetat dalam 

ruang antara lapisan Zn-Al-hidroksida bedapis ganda (ZANOL) telah disintesis 

dengan dan tanpa bantuan gelombang mikro dan ciri-ciri hasil sintesis tersebut 

telah dibandingkan. Untuk kedua-dua kaedah, keputusan eksperimen menunjukkan 

interkalasi bagi anion naftalenaasetat ke dalam ruang antara lapisan Zn-AI-

hidroksida berlapis ganda adalah mudah dicapai, menghasilkan nanokomposit Zn-

AI-NAA (ZANAN) yang mengakibatkan pengembangan jarak antara ruang untuk 

hidroksida berlapis ganda tersebut daripada 9.0 A kepada 20.0 A untuk 

nanohibridnya. Pengembangan tersebut adalah untuk menempatkan anion NAA 

yang saiznya lebih besar daripada anion nitrat. Bahan terhasil juga mempunyai 

struktur lapisan nanD yang lebih tersusun. Pencirian bagi bahan yang dihasilkan 

termasuk ketumpatan mutlak, kandungan organik-inorganik, luas dan morfologi 

permukaan telah juga dilakukan. 



Kedua·dua ZANOL dan ZANAN menunjukkan kuasa peneutralan dan penimbalan 

yang baik terhadap larutan akues HN03 dan NaOH. Nyahinterkalasi anion NAA 

daripada ruang antara lapisan ZANAN juga dapat dicapai sekiranya larutan HN03 

atau NaOH yang berlebihan digunakan. ZANOL boleh menjerap ion·ion NAA jika 

ia ditarnbahkan ke dalarn larutan akues yang mengandungi NAA. Pada masa yang 

sarna, ion·ion NAA yang teIjerap juga dapat dinyahjerapkan semula ke dalam 

larutan akues tersebut. Proses jerapan dan nyahjerapan ini berlaku secara 

berterusan dan keseimbangan didapati tidak tercapai walaupun sehingga 14 hari. 

Kedua·dua ZANOL dan ZANAN yang digunakan dalam kajian kultur tisu klon 

kelapa sawit E7, E8, L272, L273 dan L255 tidak membantu pertumbuhan akar. 

Sebaliknya, keputusan menunjukkan medium MS dengan kehadiran ion·ion NAA 

menghalang pertumbuhan akar. 
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CHAPTER I 

INTRODUCTION 

Nanocomposite Materials 

In materials science, a "composite" implies that the material is composed of a 

mixture of two or more constituents that differ in composition (Hawley, 1973). 

Thus, the term "nanocomposite" implies that the physical arrangement of the 

different constituents is on a scale of 1 to 100 nanometer (1 nm = 10-9 m, i.e. , one 

billionth of a meter) (Roy et al., 1986). 

Nanostructured materials are becoming of major significance and the technology 

of their production is rapidly growing into a powerful industry. These fascinating 

materials include nanofilms, nanocrystal, alloys, nanocomposites and 

semiconductors (Nalwa, 2000). The synthesis of materials of nanoscale dimension 

is important because the small size of these materials endows them with unusual 

structural and optical properties that might find application in catalysis and electro

optical devices. Such materials may also be valuable precursor to strong ceramic 

(Sax and Lewis, Sr., 1987) .  These kind of materials and their base technologies 

have also opened up exciting new possibilities for future applications in aerospace, 

automobile, batteries, insulators, printing, color imaging, drug delivery, medicine 

and cosmetics (Lerf, 2000). 
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The preparation of nanostructure materials depend on the following four common 

microstructural features (Gonsalves, 2000): 

(1) The grain size and size distribution « 100 nm). 

(2) The chemical composition of the constituent phases. 

(3) The presence of. interfaces, more specifically, grain boundaries, 

heterophases interface, or the free surface. 

(4) Interactions between the constituent domains. 

The presence and interplay of these four features largely determine the unique 

properties of the nanostructured materials. 

A two dimensional layered structure consisting of thin crystalline inorganic layers 

with a thickness of molecular scale in nanometer range can be used as an ideal host 

of layered nanocomposite or organic-inorganic hybrid materials. One of the 

candidates for this type of structure is layered double hydroxide (LDH). A variety 

of anionic species can be inserted as guests into the interlayer spaces of the WH, 

resulting in an expansion of the interlayer distance to a nanometer sized dimension 

to form a new nanocomposite material (Yamanaka, 1991). 
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Layered Double Hydroxides (LDHs) 

Layered double hydroxides (lDHs) are also known as anionic clays. It was 

discovered by Feitknecht about 50 years ago, but their structure was only 

detennined in 1970 by Allman for the Mg-Fe LDH (pyroaurite and sjogrenite) and 

by Brown and O'Hare for the Mg-AI LDH (hydrotalcite and manasseite) 

(Ehisissen et al., 1993 and Millange et al . ,  2000). These compounds have a 

structure of sheet held together by strong covalent bonds in the xy plane to form a 

two-dimensional polyhydroxyl cation layers. These crystalline layers are stacked 

by considerable weaker bonds in the z direction, containing anions and water 

molecules (Hussein et al., 1995). 

Figure 1.1: Structure ofLDH. 
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The chemical composition of LDHs is generally expressed as 

[M2+1_xM3+x(OH)2r+[(An-)xlnH20r-

where M2+ is a divalent cation such as Ca2+, Mg2+, Ni2+, ci+, C02+ or Zn2+, M3+ is 

a trivalent metal ion such as Ae+, c2+, Fe3+, V3+, Ga3+ and AD- an anion of charge 

n such as cot, cr, SO/-, N03- or CI04-. The M2+:M3+ ratio is usually between 1 

and 5 (Zhao and Vance, 1997). The value of x (x = M3+/(M2+ + M3+) ranges 

between 0.20 and 0.33 (Cavani et ai., 1991) . 

There are only two types of host lattices carrying positive charges: graphite 

compounds with a positively charged carbon network and the family of LDH. 

They differ strongly in their chemical behavior. Graphite is an electronic conductor 

and a strong oxidizing agent, which sharply restricts the species to be intercalated. 

The LDH group are electric insulators which are stable in an aqueous environment 

(if C02 is excluded) and are able to take up a large number of anions, ranging from 

inorganic ones like cr to negatively charged metal complexes and polyoxyanions 

to anions of organic acids (Lerf, 2000). 

Structure of LDHs 

LDHs are isostructure with the mineral hydrotalcite, having formula 

Mg6Ah(OH)16C03.4H20 (Puttaswamy and Kamath, 1997) . The layers of M2+ and 

M3+ cations are coordinated octahedrally by six oxygen anions, as hydroxides. 

These layers exist with a similar layered structure to that exhibited by brucite, 


