SYNTHESIS AND CHARACTERISATION OF VANADIUM ANTIMONY OXIDE CATALYSTS

ITA JONG YEE PING

FSAS 2002 13
SYNTHESIS AND CHARACTERISATION OF VANADIUM ANTIMONY OXIDE CATALYSTS

By

ITA JONG YEE PING

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

March 2002
Dedicated to my beloved family and friends.
V-Sb-oxide catalysts are commercially viable catalysts for the ammoxidation of propane to acrylonitrile, a novel and considerable cost saving route compared to the current industrial method which utilizes the ammoxidation of propene. The characteristic of V-Sb-oxide catalysts were studied and analyzed in relation to their structural/composition features using X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Micrograph (SEM), Energy Dispersive X-ray (EDX) microanalysis and Thermogravimetric Analysis (TGA). Results showed significant difference in presence of crystalline phases, surface area, porosity and morphologies in the samples prepared according to three different methods, i.e. solid state (SS) reaction, sol-gel (GS) and deposition on antimonic acid (DAA) methods, as a function of the Sb:V ratio and heat treatment. XRD and FTIR studies revealed that the calcination temperature at 500 °C is not suitable for the V-Sb-oxide catalysts as there is little or no VSbO₄ formed in some samples. Sb/V ratio of 2 or more is recommended for the GS method as there is hardly any Sb species formed for samples
with Sb/V ratio = 1. For the SS method, sample calcined at 700 °C with Sb/V ratio = 1 would be deemed the best as it has the highest amount of VSbO₄. Raising of calcination temperature had a detrimental effect on the surface area of the GS and DAA catalysts but bore no significant effect on SS catalysts. The EDX microanalysis showed antimony enrichment on the surface the catalysts. The study of TPD revealed the evolution of lattice oxygen from the catalysts. In TPR, the amount of oxygen desorbed from the catalysts prepared by SS method is found to be much higher compared to the other methods, i.e. about 16.7 times higher than GS method and 6.3 times higher than DAA method (for Sb/V = 1) whilst for ratio 3, it is 21.3 times higher than GS method and 14.5 times higher than DAA method.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SINTESIS DAN PENCIRIAN MANGKIN VANADIUM ANTIMONI OKSIDA

Oleh

ITA JONG YEE PING

Mac 2002

Pengerusi: Taufiq Yap Yun Hin, Ph.D.

Fakulti: Sains and Pengajian Alam Sekitar

Mangkin V-Sb-oksidna adalah mangkin yang mempunyai potensi yang baik dalam pasaran untuk proses pengammoksidaan propana kepada akrilonitril. Ia adalah lebih ekonomi berbanding dengan penggunaan propena dalam proses tersebut. Ciri-ciri mangkin V-Sb-oksidna dikaji and dianalisis struktur dan komposisinya dengan menggunakan teknik seperti pembelauan sinaran-X, spektroskopi inframerah, teknik Brunauer-Emmett-Teller, mikroskopi elektron pengimbas, mikroanalisis tenaga penyebaran sinaran-X dan analisis termogravimetri. Hasil kajian menunjukkan perbezaan dalam fasa kristal, luas permukaan, keliangan dan morfologi dalam mangkin-mangkin tersebut yang disediakan berdasarkan tiga cara berlainan, iaitu, tindakbalas keadaan pepejal (SS), sol-gel (GS) dan pemendakan ke atas asid antimonik (DAA), dengan pembedaan dalam fungsi Sb:V and tindakan haba. Daripada kajian menggunakan teknik pembelauan sinaran-X serta spektroskopi inframerah, didapati tindakan haba pada 500 °C tidak sesuai untuk mangkin V-Sb-oksidna kerana sedikit atau tiada VSbO₄ terbentuk dalam sampel-sampel. Sb/V sama atau lebih besar daripada 2 adalah baik untuk teknik GS kerana hampir tiada Sb yang terbentuk dalam sampel untuk Sb/V = 1. Untuk teknik SS,
sampel yang ditindakkam haba pada 700 °C dengan Sb/V = 1 dijangka terbaik kerana terdapat jumlah terbesar V\(\text{SbO}_4\). Peningkatan dalam suhu tindakan haba memberi kesan negatif ke atas luas permukaan mangkin tetapi tidak memberi kesan yang ketara ke atas mangkin SS. Mikroanalisis tenaga penyebaran sinaran-X pula menunjukkan perkayaan unsur antimoni pada permukaan mangkin. Kajian Penyaherapan berprogram suhu (TPD) untuk oksigen menunjukkan pembebasan oksigen kekisi dari mangkin. Dalam kajian Penurunan berprogram suhu (TPR) dalam hydrogen, jumlah oksigen yang ternyaherap dari mangkin yang disediakan melalui teknik SS adalah lebih besar berbanding mangkin-mangkin teknik lain, iaitu hampir 16.7 kali lebih besar berbanding mangkin teknik GS dan 6.3 kali lebih besar berbanding mangkin teknik DAA (untuk Sb/V =1) manakala untuk Sb/V = 3, ia adalah 21.3 kali lebih besar daripada mangkin teknik GS dan 14.5 kali lebih besar berbanding mangkin teknik DAA.
ACKNOWLEDGEMENTS

The author would like to express her gratitude towards those who had helped her throughout the project especially her supervisor, Dr. Taufiq Yap Yun Hin, for his guidance, technical advice, tremendous patience and unlimited help. She would also like to thank her co-supervisors Associate Professor Dr. Mohd. Zobir Hussein and Associate Professor Dr. Zulkarnain Zainal.

She is grateful for the help and invaluable advice given by Dr. Rusnah Samsuddin on her project and to a host of people who had helped her through this study: Dr. Amir Khadum (GC, UKM), Encik Zaimi Naim (ASAP and catalytic test, Petronas), Cik Shamsina (Petronas), Puan Mona (GC, Petronas), Mr. Siew (GC, UM), Encik Kamal (TGA), Puan Rosnah (FTIR), Encik Azhari (XRD, UKM), Cik Suleika (SEM), Cik Azilah (SEM), Mr. Ho (SEM), Puan Siti Selina (SEM and EDX), Encik Narzari (chemicals), Dr. Luca Lucarelli (TPD and TPR, ThermoFinnigan, Italy) and laboratory mates (Kak Feez, Rodhy, Suhaimi, Ming Hong, Won Ying, Tian Hai, Kim Nee, Chee Kheong, Leong, Kian Peng, Wooi Keat, Poh Li and Ei Bee).

Last but not least, she would like to dedicate this project to her family members and friends for their prayers, love and moral support.
I certify that an Examination Committee met on 1st March, 2002 to conduct the final examination of Ita Jong Yee Ping on her Master of Science thesis entitled “Synthesis and Characterisation of Vanadium Antimony Oxide Catalysts” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Irnaawati Ramli, Ph.D.
Lecturer
Faculty of Science and Environmental Science
Universiti Putra Malaysia
(Chairperson)

Taufiq Yap Yun Hin, Ph.D., CChem., MRSC
Lecturer
Faculty of Science and Environmental Science
Universiti Putra Malaysia
(Member)

Mohd. Zobir bin Hussein, Ph.D.
Associate Professor
Faculty of Science and Environmental Science
Universiti Putra Malaysia
(Member)

Zulkarnain Zainal, Ph.D.
Associate Professor
Faculty of Science and Environmental Science
Universiti Putra Malaysia
(Member)

SHAMSHER MOHD. RAMADILI, Ph.D.
Professor/Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
(Date: 9 March 2001)
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Master of Science.

AINI IDERIS, Ph.D.
Professor/
Dean of Graduate School
Universiti Putra Malaysia

Date: 9 March 2002
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ITA JONG YEE PING

Date: 9 March 2002
TABLE OF CONTENTS

DEDICATION ii
ABSTRACT iii
ABSTRAK v
ACKNOWLEDGEMENTS vii
APPROVAL SHEETS viii
LIST OF TABLES xiii
LIST OF FIGURES xiv
LIST OF ABBREVIATIONS xvi

CHAPTER

1 INTRODUCTION 1
 Acrylonitrile 4
 Production of Acrylonitrile 6
 What about Propane as Feedstock? 7
 Acrylonitrile Production via Propane Ammoxidation Route 7
 Vanadium Antimony Oxide (V-Sb-O) Catalyst 8
 The Catalytic Pathway of the Ammoxidation of Propane 10
 Literature Review 12
 Preparation Methods 12
 Non-stoichiometry of Rutile-type Vanadium Antimonate 16
 Role of Vanadium Species 17
 Role of Antimony Species 20
 Role of Non-stoichiometry of Vanadium Antimonate 20
 Objectives of the Study 22

2 METHODOLOGY 23
 Materials 23
 Synthesis of the precursors 23
 Deposition on Antimonic Acid (DAA) Method 24
 Gel-Solid (GS) Method 25
 Solid State Reaction (SS) Method 25
 Calcination of the catalysts 25
 Catalyst Characterisation 27
 Powder X-Ray Diffraction (XRD) Analysis 27
 Fourier Transform Infra-Red (FTIR) 27
 Surface Area and Porosity Analysis (ASAP) 28
 Scanning Electron Micrograph (SEM) 28
 Energy Dispersive X-ray Microanalysis 28
 Thermogravimetric Analysis (TGA) 29
 Temperature-Programmed Desorption (TPD) of Oxygen 29
3 RESULTS AND DISCUSSION

X-Ray Diffraction (XRD) and Fourier Transform Infra-Red (FTIR) Analysis
 SS Method
 DAA Method
 GS Method
 Effect of Calcination Temperature
 Effect of Sb/V Ratio

Surface Area and Porosity
 Surface Area
 Adsorption-desorption Hysteresis

Scanning Electron Micrograph (SEM)

Energy Dispersive X-ray Microanalysis
 SS Method
 DAA Method
 GS Method

Thermogravimetric Analysis (TGA)
 SS Method
 DAA Method
 GS Method

Temperature-Programmed Desorption (TPD) of Oxygen

Temperature-Programmed Reduction (TPR) in Hydrogen

4 CONCLUSION

REFERENCES/BIBLIOGRAPHY

APPENDICES

VITA
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Common oxide-catalyzed selective oxidation reactions</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>A summary of usage of acrylonitrile</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Phases detected by XRD and FTIR analysis on the V-Sb-Oxide catalysts</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>BET surface area and average pore diameter of V-SbO catalysts</td>
<td>44</td>
</tr>
<tr>
<td>5</td>
<td>Comparison with some surface area values from Centi et al.'s work</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>Sb/V ratio on surface of V-SbO catalysts obtained by energy</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>dispersive x-ray microanalysis</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Summary of Percentage Weight Gain/Loss for the SS catalysts</td>
<td>65</td>
</tr>
<tr>
<td>8</td>
<td>Summary of Percentage Weight Gain/Loss for the DAA catalysts</td>
<td>67</td>
</tr>
<tr>
<td>9</td>
<td>Summary of Percentage Weight Gain/Loss for the GS catalysts</td>
<td>69</td>
</tr>
<tr>
<td>10</td>
<td>Amount of Oxygen Desorbed and Desorption Activation Energies</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Obtained by Temperature-Programmed Desorption from V-Sb-Oxide catalysts</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Total Number of Oxygen Atoms Removed from the V-Sb-Oxide Catalyst by Reduction in H2/Ar</td>
<td>79</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Kinetic reaction network for propane ammoxidation</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>XRD patterns of VSB0 catalysts prepared by using SS method</td>
<td>37</td>
</tr>
<tr>
<td>3</td>
<td>XRD patterns of VSB0 catalysts prepared by using DAA method</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>XRD patterns of VSB0 catalysts prepared by using GS method</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>FTIR spectra of the V-Sb-Oxide catalysts prepared by using the SS method</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>FTIR spectra of the V-Sb-Oxide catalysts prepared by using the DAA method</td>
<td>41</td>
</tr>
<tr>
<td>7</td>
<td>FTIR spectra of the V-Sb-Oxide catalysts prepared by using the GS method</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>Surface areas of the VSB0 catalysts prepared by the SS method at calcination temperatures of (a) 500 °C, (b) 600 °C and (c) 700 °C</td>
<td>47</td>
</tr>
<tr>
<td>9</td>
<td>Surface areas of the VSB0 catalysts prepared by the DAA method at calcination temperatures of (a) 500 °C, (b) 600 °C and (c) 700 °C</td>
<td>48</td>
</tr>
<tr>
<td>10</td>
<td>Surface areas of the VSB0 catalysts prepared by the GS method at calcination temperatures of (a) 500 °C, (b) 600 °C and (c) 700 °C</td>
<td>49</td>
</tr>
<tr>
<td>11</td>
<td>G16 (GS method, Sb/V ratio 1, 600 °C calcination temperature) × 450 magnification</td>
<td>54</td>
</tr>
<tr>
<td>12</td>
<td>G16 (GS method, Sb/V ratio 1, 600 °C calcination temperature) × 20,000 magnification</td>
<td>55</td>
</tr>
<tr>
<td>13</td>
<td>D27 (DAA method, Sb/V ratio 2, 700 °C calcination temperature) × 12,000 magnification</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>S26 (SS method, Sb/V ratio 2, 600 °C calcination temperature) × 12,000 magnification</td>
<td>56</td>
</tr>
</tbody>
</table>
15 G36 (GS method, Sb/V ratio 3, 600 °C calcination temperature) x200 magnification
16 G35 (GS method, Sb/V ratio 3, 500 °C calcination temperature) x6,000 magnification
17 G37 (GS method, Sb/V ratio 3, 700 °C calcination temperature) x5,000 magnification
18 Bar graph of EDX microanalysis results showing Sb/V ratio on surface of VSbO catalysts prepared by SS method
19 Bar graph of EDX microanalysis results showing Sb/V ratio on surface of VSbO catalysts prepared by DAA method
20 Bar graph of EDX microanalysis results showing Sb/V ratio on surface of VSbO catalysts prepared by GS method
21 TGA curves showing common stages of weight loss for SS catalysts, i.e. at (a) 545-625 °C, (b) 660-845 °C and (c) 845 °C onwards
22 TGA curves showing common stages of weight loss of DAA catalysts, i.e. at (a) 750-800 °C for Sb/V ratio 3 and (b) ca 825 °C onwards for all samples, and onset temperatures (--) of the first sharp drop in weight
23 TGA curves showing common stages of weight loss for GS catalysts, i.e. at (a) 575-765 °C, (b) 765-855 °C, (c) 855 °C onwards and (d) 430-765 °C
24 Oxygen TPD spectra of the VSbO catalysts
25 Bar graph showing amount of oxygen desorbed from the VSbO catalysts
26 Oxygen TPR spectra of the VSbO catalysts
27 Bar graph showing amount of oxygen desorbed from the VSbO catalysts
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASAP</td>
<td>Analysis of Surface Area and Porosity</td>
</tr>
<tr>
<td>DAA</td>
<td>Deposition on Antimonic Acid Method</td>
</tr>
<tr>
<td>E_d</td>
<td>Desorption activation energy</td>
</tr>
<tr>
<td>EDX</td>
<td>Energy Dispersive X-ray Microanalysis</td>
</tr>
<tr>
<td>E_r</td>
<td>Reduction activation energy</td>
</tr>
<tr>
<td>FID</td>
<td>Flame ionization detector</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infra-Red</td>
</tr>
<tr>
<td>GS</td>
<td>Gel-Solid Method</td>
</tr>
<tr>
<td>JCPDS</td>
<td>Joint Committee on Powder Diffraction Standards</td>
</tr>
<tr>
<td>MS</td>
<td>Mass spectroscopy</td>
</tr>
<tr>
<td>OFN</td>
<td>Oxygen free nitrogen</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Micrograph</td>
</tr>
<tr>
<td>SS</td>
<td>Solid State Reaction Method</td>
</tr>
<tr>
<td>STP</td>
<td>Standard temperature and pressure</td>
</tr>
<tr>
<td>TCD</td>
<td>Thermal conductivity detector</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric Analysis</td>
</tr>
<tr>
<td>TPD</td>
<td>Temperature-Programmed Desorption of Oxygen</td>
</tr>
<tr>
<td>TPR</td>
<td>Temperature-Programmed Reduction in Hydrogen</td>
</tr>
<tr>
<td>VSbO</td>
<td>Vanadium Antimony Oxide</td>
</tr>
<tr>
<td>XRD</td>
<td>Powder X-Ray Diffraction Analysis</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Selective catalytic oxidation and ammoxidation processes of hydrocarbons comprise approximately one quarter of the value produced by all catalytic processes worldwide. They contribute hence significantly to the gross national product of industrial countries and afford future opportunities for developing countries [1]. Oxidation processes are defined as conversions of compounds under the influence of various oxidizing agents. There are two types of oxidation, i.e. complete and partial oxidation. Complete oxidation is an undesirable side process in organic synthesis which leads to the formation of CO, CO₂ and H₂O, whereas partial oxidation processes involves usage of air or oxygen in the manufacture of chemicals [2].

Oxidation reactions are made much more selective in nature by means of a catalyst that lowers the activation energy for the selected process and provides a facile path by which useful products can form. There are three categories of catalysts for oxidation reactions, i.e. transition metal oxides in which oxygen is readily transferred to and from the structure, metals onto which oxygen is chemisorbed, and metal oxides in which the active species is chemisorbed oxygen, as molecules or atoms [2].

There are two types of selective oxidation reactions. Firstly, the dehydrogenation reactions, in which a hydrocarbon molecule is converted into a more unsaturated
hydrocarbon by the breaking of C-H bonds and forming of C=C bonds. Secondly, the dehydrogenation and oxygen insertion, in which oxygen is needed as an oxidant for the incorporation into the hydrocarbon molecules and in the formation of water in the dehydrogenation steps. In general, the C-H bonds are broken and C-O bonds are formed [3].

Selective oxidation often requires catalysts of a more complex nature. Theoretically, a metal could be used for the catalysis process but it would not be favourable if high temperature is needed as the hydrocarbon is often unstable and might decompose completely. A successful process can only result if the thermodynamics allow the use of a somewhat lower temperature for favourable reaction to take place. It is of paramount importance to find catalysts that can conduct the catalysis reaction selectively, i.e. without giving deep oxidation at the same time. In the oxidation of hydrocarbons by incorporation of one or more oxygen atoms, it is usually important to preserve the original unsaturation, and to activate one of the carbon-hydrogen bonds instead [4].

The first major breakthrough in the search for an acceptable catalyst for selective oxidation occurred in the late 1950s when it was discovered in the Sohio laboratories that a compound oxide, namely bismuth molybdate, showed an acceptably high selectivity in the oxidation of propene to acrolein [4]:

\[
\text{C}_3\text{H}_6 + \text{O}_2 \rightarrow \text{H}_2\text{C} = \text{CH-CHO} + \text{H}_2\text{O}
\]

[1-1]
This was soon followed by an even more important finding that propene could be oxidized in the presence of ammonia in a one-step ammoxidation to give acrylonitrile:

\[
C_3H_6 + NH_3 + \frac{3}{2} O_2 \rightarrow H_2C=C-CN + 3H_2O
\] [1-2]

Some of the common oxide-catalyzed selective oxidation reactions can be seen in Table 1 [3]:

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Catalysts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Dehydrogenation</td>
<td></td>
</tr>
<tr>
<td>ethylbenzene \rightarrow styrene</td>
<td>V-Ti-O</td>
</tr>
<tr>
<td>isopentane, isopentene \rightarrow isoprene</td>
<td>Sn-Sb-O</td>
</tr>
<tr>
<td>Butane, butene \rightarrow butadiene</td>
<td>Bi-Mo-O, promoted Fe-O,</td>
</tr>
<tr>
<td></td>
<td>promoted V-O</td>
</tr>
<tr>
<td>Methanol \rightarrow formaldehyde</td>
<td>Fe-Mo-O, MoO$_3$</td>
</tr>
<tr>
<td>2. Dehydrogenation and Oxygen Insertion</td>
<td></td>
</tr>
<tr>
<td>Butane, butene \rightarrow maleic anhydride</td>
<td>V-P-O</td>
</tr>
<tr>
<td>Propene \rightarrow acrolein</td>
<td>Bi-Mo-O</td>
</tr>
<tr>
<td>(Propene and NH$_3$ \rightarrow acetonitrile)</td>
<td>Bi-Mo-O, U-Sb-O, Fe-Sb-O,</td>
</tr>
<tr>
<td></td>
<td>Bi-Sb-Mo-O</td>
</tr>
<tr>
<td>methane \rightarrow methanol, formaldehyde</td>
<td>Mo-O, V-O</td>
</tr>
<tr>
<td>ethylene \rightarrow ethylene oxide</td>
<td>Fe-Mo-O</td>
</tr>
<tr>
<td>methyl ethyl ketone \rightarrow acetaldehyde, acetic acid</td>
<td>V-Mo-O</td>
</tr>
</tbody>
</table>
Due to the global abundance of liquefied petroleum gas (LPG), interest in the potential of light alkanes as sources in selective oxidation to their corresponding useful products is increasing. Among these is the partial oxidation and ammoxidation of propane to acrylonitrile.

Acrylonitrile

Acrylonitrile is commodity chemical used throughout the world to make acrylic fibers for shirts, socks, sweaters, carpets, blankets; plastics for computers, telephones, refrigerators, food packaging and cars; nitrile rubber for automotive tyres, hoses and belts; and a variety of specialty products. About 95% of the world's production of acrylonitrile uses the BP Amoco Chemicals process [5]. Fabrics account for the large percentage of acrylonitrile end uses (Table 2). Acrylic fibers are a popular substitute for cotton and wool and are used to make carpeting, blankets and especially clothing. Rugged, durable acrylonitrile-butadiene-styrene (ABS) plastics, derived from acrylonitrile, are chosen for telephones, computer and television, housings, sports equipment and molded automobile parts. Oil resistant nitrite rubber, made from acrylonitrile, is used for hoses at gasoline service stations and in automobiles, trucks and buses. BP Amoco Chemical's scientists recover co-products generated by the acrylo process. These co-products, previously treated as unusable wastes, are now used by manufacturers to make household detergents and shampoos, dyes, plastics and pharmaceuticals, including life-saving insulin for diabetics and many other products [5].
Table 2: A summary of usage of acrylonitrile [5]

<table>
<thead>
<tr>
<th>Usage</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-monomer for acrylic and modacrylic fibers</td>
<td>51 %</td>
</tr>
<tr>
<td>Co-monomer for acrylonitrile-butadiene-styrene resins</td>
<td>18 %</td>
</tr>
<tr>
<td>Chemical intermediate for adiponitrile</td>
<td>13 %</td>
</tr>
<tr>
<td>Chemical intermediate for acrylamide</td>
<td>6 %</td>
</tr>
<tr>
<td>Co-monomer for nitrile elastomers</td>
<td>3 %</td>
</tr>
<tr>
<td>Co-monomer for Styrene-Acrylonitrile resins</td>
<td>2 %</td>
</tr>
<tr>
<td>Other uses</td>
<td>7 %</td>
</tr>
</tbody>
</table>

Acrylonitrile capacity amounted to 10.0 billion pounds as of 1st January, 1995 [7]. The growth of its demand was 2.2 % per year. The expectant growth was projected to be 2 % per year through 2001 [8].

World acrylonitrile consumption is largely dependent on demand for acrylic fibers, especially in Asia and Europe, where acrylic fibers account for 50 % of consumption. In contrast, acrylic fibers account only for 25 % of acrylonitrile demand in the United States. Combined, acrylonitrile-butadiene-styrene (ABS) and styrene-acrylonitrile (SAN) resins account for 24 % of world consumption of acrylonitrile, although in Asia they account for 34 % of demand. Acrylamide accounts for most of the growth in the 'other' category. Future demand growth for acrylonitrile will come mainly from acrylic fibers (Asia and Eastern Europe), ABS/SAN (Asia) and acrylamide (all regions) [9].
In the long term, developing Asian countries possess the best conditions for continued growth of acrylonitrile consumption. Taiwan, China and India will continue to be short of acrylonitrile requirements for at least the next 5 years and will continue to rely on imports to satisfy demand, mainly for acrylic fiber production. Additionally, as production of ABS/SAN resins continues its shift to Asia, demand for acrylonitrile for this application will grow at robust rates. Demand for acrylonitrile in Eastern Europe is forecasted to grow aggressively, due mainly to healthier utilization rates at existing acrylic fiber plants after years of negative growth and low utilization rates [9].

Production of Acrylonitrile

Over 90% of world acrylonitrile is produced by using the SOHIO Acrylonitrile Process [7]. This process is based on vapour phase catalytic air oxidation of propene and ammonia, known as ammoxidation, in a fluid bed reactor [10].

\[
\text{CH}_2=\text{CH-CH}_3 + \text{NH}_3 + 3/2 \text{ O}_2 \xrightarrow{\text{Catalysts}} \text{CH}_2=\text{CH-CN} + 3\text{H}_2\text{O} \quad [1-3] \\
300-450 ^\circ\text{C}
\]

*Catalysts: BiO\textsubscript{2}nMoO\textsubscript{3} (n = 1,2,3)
USb\textsubscript{3}O\textsubscript{10}
Fe\textsubscript{2}O\textsubscript{3}/Sb\textsubscript{2}O\textsubscript{4}
Bi/Mo/O\textsubscript{x} multicomponent systems
What about Propane as Feedstock?

The difference between propane and propene prices, i.e. 3 - 15 cents a pound, is the reason behind the interest in developing technology to use propane instead of propene as feedstock. The use of this technology appears to be most promising in the Far East where propane is more readily available than propene [11].

Acrylonitrile Production via Propane Ammoxidation Route

When considering the selective catalytic oxidation of propane into oxygenates, two main difficulties arise. The first one is, as for the partial oxidation of other light alkanes, the lower reactivity of the reactant as compared to that of the formed products. Activation of the reactant needs operating conditions (temperature as high as 500 °C for example) which are detrimental to the stability of the product. Therefore, the considered reaction requires catalysts with specific properties: activation of propane partial oxidation and decrease or inhibition of the product oxidation. The second difficulty is to design suitable catalysts because little is known about the involved reaction mechanisms [12].

\[
\text{CH}_3\text{-CH}_2\text{-CH}_3 + \text{NH}_3 + 2\text{O}_2 \rightarrow \text{CH}_2=\text{CH}-\text{CN} + 4\text{H}_2\text{O} \quad (\Delta H = -151 \text{ kcal/mol}) \quad [1\text{-}4]
\]
It was found that two main classes of catalysts give the best results:

- Systems based on antimonate rutile structure and containing V as the key element [13, 14];
- Systems based on the Bi-Mo-V scheelite structure [15].

Fe-antimonate containing excess Sb-oxide and SnO_2-Sn_2O_3 are known system for propene ammonoxidation [16] but they show poor activity/selectivity for propane ammonoxidation [17]. Other catalysts studied included Ga antimonate [18], Ag-doped bismuth vanadomolybdate [19], V-silicate and V-aluminium phosphate [20] and vanadyl pyrophosphate [17]. Best performance is obtained using V-antimonate systems which contain excess Sb-oxide [21]. The first patent reports selectivity in acrylonitrile of approximately 60 % [22].

In 1988, Standard Oil (now BP America) published 5 key patents on V-Sb-O based catalyst, reporting much better yields and productivities in acrylonitrile from propane. In 1996, BP Amoco started off a demo unit for production of acrylonitrile using propane in its plant in Green Lake, USA. The process is said to cut cost by at least 20 % [23].

Vanadium Antimony Oxide (V-Sb-O) Catalyst

The phase composition of V-Sb-oxide catalysts depends on four main factors: (i) method of preparation, (ii) temperature, (iii) gas phase composition during the thermal treatment, (iv) Sb/V atomic ratio [24].