

# **UNIVERSITI PUTRA MALAYSIA**

## ESTABLISHMENT OF OPTIMUM PROCESSING CONDITIONS FOR SOME TECHNOLOGICAL MANGANESE-ZINC FERRITES

**ROHAIDA TAMIN** 

FSAS 2002 4

### ESTABLISHMENT OF OPTIMUM PROCESSING CONDITIONS FOR SOME TECHNOLOGICAL MANGANESE-ZINC FERRITES

By

### **ROHAIDA TAMIN**

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Master of Science

January 2002



Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Master of Science

### ESTABLISHMENT OF OPTIMUM PROCESSING CONDITIONS FOR SOME TECHNOLOGICAL MANGANESE-ZINC FERRITES

By

### **ROHAIDA TAMIN**

January 2002

| Chairman : | Associate Professor | Dr. | . Mansor | Hashim |
|------------|---------------------|-----|----------|--------|
|------------|---------------------|-----|----------|--------|

Faculty : Science and Environmental Studies

This research work is an initial step to produce manganese-zinc ferrites in the laboratory using the solid-state ceramic preparation method with controlled atmospheres. The first part of the work was to develop the required material by manipulation of composition. Then, the specimens were sintered at 1350°C in an oxygen partial pressure. At this stage, a systematic crucial approach was used to produce high permeability ferrites with suitable oxygen partial pressure. This involved a gradual introduction of nitrogen gas into the furnace during sample cooling giving an optimum equivalent isocompositional line. This work has successfully produced materials (samples MRQ1 and MRQ2) suitable with the permeability in the range of 2000 to 2500 when an average particle size was reduced to ~2.5µm and zinc oxide was added to minimize zinc loss. Then the sintering cycle was made to follow the isocompositional line.



In conclusion, an optimum processing technique has been established for producing ferrite materials with the desired magnetic properties.



.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia bagi memenuhi keperluan ijazah Master Sains

### PENGUJUDAN KEADAAN PEMPROSESAN YANG OPTIMA BAGI BEBERAPA BAHAN FERIT MANGAN-ZINK UNTUK KEGUNAAN TEKNOLOGI

Oleh

### **ROHAIDA TAMIN**

Januari 2002

| Pengerusi   | : | Profesor Madya Dr. Mansor | Hashim    |
|-------------|---|---------------------------|-----------|
| I engel usi | • | The sol may a Dr. Mansol  | 114511111 |

Fakulti : Sains dan Pengajian Alam Sekitar

Kerja penyelidikan ini adalah satu langkah awal untuk menghasilkan ferit mangan-zink di dalam makmal dengan menggunakan kaedah penyediaan seramik keadaan pepejal dengan atmosfera yang dikawal. Penyelidikan dimulakan dengan menghasilkan bahan yang dikehendaki melalui manipulasi terhadap komposisi. Seterusnya, pensinteran bahan spesimen pada suhu 1350°C di dalam tekanan separa oksigen dilakukan. Pada peringkat ini, suatu pendekatan yang sistematik dan amat perlu dilakukan supaya menghasilkan ferit dengan tekanan separa oksigen yang sesuai. Ini melibatkan pemasukan beransur gas nitrogen ke dalam relau semasa penyejukan sampel serta memberikan satu garisan isokomposisi setara yang optima. Penyelidikan ini berjaya menghasilkan bahan (sampel MRQ1 dan MRQ2) yang sesuai dengan julat ketelapan di antara 2000 ke 2500 apabila purata saiz zarah



dikurangkan sehingga ~2.5µm dan zink oksida ditambah untuk meminimakan kehilangan zink. Kemudian, kitaran pensinteran dijalankan supaya mengikut garisan isokomposisi tersebut.

Kesimpulannya, suatu teknik pemprosesan yang optima telah dapat diujudkan untuk menghasilkan bahan ferit dengan sifat-sifat magnet yang diperlukan.



### **ACKNOWLEDGEMENTS**

I would like to extend my deepest gratitude and appreciation to my supervisor, Associate Professor Dr. Mansor Hashim and my co-supervisors, Dr Jamil Suradi and Dr Jumiah Hassan, for their invaluable guidance, advice and constant support throughout the course of this research.

I am very grateful to all my dearest friends especially Kak Ana, Zolman and Masdhiah for sharing their knowledge, advice and help towards the completion of this research.

Finally, my dearest thanks to my family members for their encouragement and most importantly to my husband for his support, care and understanding.



## **TABLE OF CONTENTS**

## Page

| ABSTRACT                        | ii    |
|---------------------------------|-------|
| ABSTRAK                         | iv    |
| ACKNOWLEDGEMENTS                | vi    |
| APPROVAL                        | vii   |
| DECLARATION                     | ix    |
| LIST OF TABLES                  | xiii  |
| LIST OF FIGURES                 | xiv   |
| LIST OF PLATES                  | xvii  |
| LIST OF SYMBOLS & ABBREVIATIONS | xviii |

### CHAPTER

| GENERAL INTRODUCTION                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Historical Overview                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Soft Magnetic Materials                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Objective of Work                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Evolution of Magnetic Properties                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LITERATURE REVIEW                                    | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Introduction                                         | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Some Aspects of Manganese Zinc Ferrites              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Microstruture Aspect of Manganese Zinc Ferrites      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| The Effect of Grains Size on Permeability            | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Exaggerated Grain Growth in Ferrites                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SOME BASIC THEORY OF TECHNOLOGICAL FERRITES          | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Basic Concept of Ferrites                            | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ionic Charge Balance and Crystal Structure.          | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Site Preference of the Ions.                         | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Interaction between Magnetic Moment on Lattice Sites | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Magnetic Properties of Ferrites                      | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Intrinsic Properties                                 | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Saturation Magnetization                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                      | GENERAL INTRODUCTION.         Historical Overview.         Soft Magnetic Materials.         Objective of Work.         Evolution of Magnetic Properties.         LITERATURE REVIEW.         Introduction.         Some Aspects of Manganese Zinc Ferrites.         Microstruture Aspect of Manganese Zinc Ferrites.         The Effect of Grains Size on Permeability.         Exaggerated Grain Growth in Ferrites.         SOME BASIC THEORY OF TECHNOLOGICAL FERRITES.         Basic Concept of Ferrites.         Ionic Charge Balance and Crystal Structure.         Site Preference of the Ions.         Interaction between Magnetic Moment on Lattice Sites.         Magnetic Properties of Ferrites.         Intrinsic Properties.         Saturation Magnetization. |



|    | Curie Temperature                                       | 26 |
|----|---------------------------------------------------------|----|
|    | Magnetic Ánisotropy                                     | 26 |
|    | Magnetostriction                                        | 27 |
|    | Extrinsic Properties.                                   | 28 |
|    | Permeability                                            | 28 |
|    | The Hysteresis (B-H) Loop                               | 32 |
|    |                                                         |    |
| IV | HIGH PERMEABILITY FERRITES                              | 36 |
|    | Introduction                                            | 36 |
|    | Permeability Dependence on Chemistry                    | 38 |
|    | Effect of Iron Content on Permeability                  | 40 |
|    | Permeability Dependence on Zinc                         | 46 |
|    | Oxygen Stoichiometry                                    | 48 |
|    | Effect of Purity on Permeability                        | 49 |
| V  | FERRITES PROCESSING AND EXPERIMENTAL MEASUREMENT.       | 51 |
|    | I aboratory Process                                     | 52 |
|    | Raw Material Selection                                  | 54 |
|    | Calculation of Weight and Weighing                      | 55 |
|    | Mixing                                                  | 56 |
|    | Presintering                                            | 56 |
|    | Milling                                                 | 57 |
|    | Compact Forming                                         | 57 |
|    | Sintering                                               | 58 |
|    | Sintering Cycle                                         | 58 |
|    | Heating Section                                         | 59 |
|    | High Heat Section                                       | 60 |
|    | Cooling Section                                         | 61 |
|    | Experimental Measurement                                | 64 |
|    | Relative Initial Permeability                           | 64 |
|    | Hysteresis Parameter                                    | 64 |
|    | Density                                                 | 65 |
|    | Resistivity                                             | 66 |
|    | Microstructure Analysis                                 | 67 |
|    | Cutting, Polishing, Etching and Microstructure Analysis | 68 |
|    | Error Estimate                                          | 69 |



| VI  | RESULTS AND DISCUSSION.                                                                                                                                                | <b>7</b> 0 |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     | Development 1: Effect of Sintering Conditions on Permeability of Base<br>Sample-Mn <sub>0.25</sub> Zn <sub>0.25</sub> (Fe <sub>2</sub> O <sub>4</sub> ) <sub>0.5</sub> | 71         |
|     | Development 2: Preparation and Properties of Fine Particle MnZn<br>Ferrites                                                                                            | 78         |
|     | Development 3: Effect of Sintering Parameters on Zinc Loss for<br>Preparation of High Permeability Manganese-Zinc Ferrites                                             | 85         |
|     | Development 4: Magnetic, Electrical and Mechanical of Manganese-<br>Zinc Ferrites                                                                                      | 90         |
|     | Notes on Possible Application                                                                                                                                          | 96         |
|     | Comparison of Results with the Application Classification Data                                                                                                         | 96         |
| VII | CONCLUSION                                                                                                                                                             | 98         |
|     | Summary of Main Results                                                                                                                                                | 98         |
|     | Final Remarks                                                                                                                                                          | 99         |
|     | BIBLIOGRAPHY.                                                                                                                                                          | 100        |
|     | APPENDICES                                                                                                                                                             | 104        |
|     | VITA                                                                                                                                                                   | 113        |



## LIST OF TABLES

| Table |                                                                                                                                                                                                    | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Radii of Tetrahedral and Octahedral Sites in Some Ferrites                                                                                                                                         | 22   |
| 2     | Saturation Magnetostrictions of Some Ferrites                                                                                                                                                      | 41   |
| 3     | Error estimates for characteristics of the MnZn ferrite samples                                                                                                                                    | 69   |
| 4     | Density for Ultrafine $Mn_{0.25}Zn_{0.25}(Fe_2O_4)_{0.5}$                                                                                                                                          | 83   |
| 5     | Magnetic Properties of MRQ1 and MRQ2                                                                                                                                                               | 90   |
| 6     | Resistivity of MRQ1 and MRQ2                                                                                                                                                                       | 93   |
| 7     | Comparison of Some Magnetic Properties for Samples Prepared<br>in This Work and Application Classification Data                                                                                    | 96   |
| 8     | Data for samples $Mn_{0.25}Zn_{0.25}(Fe_2O_4)_{0.5}$ with different sintering conditions.                                                                                                          | 110  |
| 9     | Data for Indutance, L and Permeability, $\mu$ for ultrafine Mn <sub>0.25</sub> Zn <sub>0.25</sub> (Fe <sub>2</sub> O <sub>4</sub> ) <sub>0.5</sub> after sintering using ultrafine ferrite powder. | 111  |
| 10    | Data for Indutance, L and Permeability, $\mu$ for x=0.01, 0.02 and 0.03 of the ferrite Mn <sub>0.25</sub> Zn <sub>0.25-x</sub> (Fe <sub>2</sub> O <sub>4</sub> ) <sub>0.5+x</sub>                  | 112  |



## **LIST OF FIGURES**

| Figure |                                                                                                                                                                                                                                                                                                                                           | Page |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Maximum permeability as a function of the year attained                                                                                                                                                                                                                                                                                   | 6    |
| 2      | Maximum $\mu Q$ product as a function of the year attained                                                                                                                                                                                                                                                                                | 7    |
| 3      | Permeability of a MnZn ferrites as a function of grain size in microns                                                                                                                                                                                                                                                                    | 13   |
| 4      | Permeability of high-permeability MnZn ferrites as a function of grain size                                                                                                                                                                                                                                                               | 14   |
| 5      | Crystal Lattice of Spinel Structure                                                                                                                                                                                                                                                                                                       | 21   |
| 6      | Effect of zinc substituition on the magnetic moments of some ferrites                                                                                                                                                                                                                                                                     | 25   |
| 7      | Permeability spectrum plot of a nickel ferrites showing the frequency course of the real imaginary permeabilities                                                                                                                                                                                                                         | 30   |
| 8      | Gradual change in direction of moments inside a domain wall (Bloch wall)                                                                                                                                                                                                                                                                  | 33   |
| 9      | Magnetic induction B vs applied field H hysteresis loop for a ferromagnetic material                                                                                                                                                                                                                                                      | 34   |
| 10     | Compositional dependence of crystal anisotropy and magnetostriction constant in the mixed oxide system ( $MnZnFe$ )- $Fe_2O_4$                                                                                                                                                                                                            | 37   |
| 11     | Constant permeability contours relative to zero crystal anisotropy $K_1$ , and Saturated magnetostriction for the (MnZnFe)-Fe <sub>2</sub> O <sub>4</sub> system                                                                                                                                                                          | 38   |
| 12     | Variation of temperature dependencies of the permeability of some MnZn ferrites with composition. (a) $50.6\%$ Fe <sub>2</sub> O <sub>3</sub> , $31\%$ MnO. (b) $53.6\%$ Fe <sub>2</sub> O <sub>3</sub> , $31\%$ MnO. (c) $53.6\%$ Fe <sub>2</sub> O <sub>3</sub> , $31\%$ MnO. (d) $53.6\%$ Fe <sub>2</sub> O <sub>3</sub> , $31\%$ MnO. | 42   |
| 13     | Variation of permeability and magnetostriction as a function of Fe <sub>2</sub> O <sub>3</sub> content                                                                                                                                                                                                                                    | 44   |



| 14 | <ul> <li>(a) Permeability of MnZn ferrites as a function of Fe<sub>2</sub>O<sub>3</sub> content.</li> <li>(b) Variation of magnetostriction of the same MnZn ferrites as a function of Fe<sub>2</sub>O<sub>3</sub> content.</li> <li>(c) Variation of permeability with magnetostriction for MnZn ferrites having the same composition but fired differently.</li> </ul> | 45 |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 15 | Variation of permeability and crystal anisotropy constant, $K_1$ , with temperature in a MnZn ferrite containing 31 MnO-11 ZnO-58 Fe <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                         | 46 |
| 16 | Flow chart for sample preparation                                                                                                                                                                                                                                                                                                                                        | 54 |
| 17 | Conceptual firing cycle                                                                                                                                                                                                                                                                                                                                                  | 59 |
| 18 | Equilibrium weight changes as oxygen as a function of atmospheric oxygen content and temperature                                                                                                                                                                                                                                                                         | 62 |
| 19 | The basic circuit configuration for hysteresis measurement                                                                                                                                                                                                                                                                                                               | 65 |
| 20 | Density measurement set-up                                                                                                                                                                                                                                                                                                                                               | 66 |
| 21 | Illustration of a toroidal shape sample with metal-coated parallel surface.                                                                                                                                                                                                                                                                                              | 67 |
| 22 | Flow chart for microstructure measurement                                                                                                                                                                                                                                                                                                                                | 68 |
| 23 | Equilibrium weight change as oxygen as a function of atmospheric oxygen content and temperature for the system:<br>(MnO) <sub>0.268</sub> (ZnO) <sub>0.183</sub> (Fe <sub>2</sub> O <sub>3</sub> ) <sub>0.549</sub> (after Slick 1971)                                                                                                                                   | 73 |
| 24 | Inductance, L for four samples of Mn <sub>0.25</sub> Zn <sub>0.25</sub> (Fe <sub>2</sub> O <sub>4</sub> ) <sub>0.5</sub> vs Frequency (kHz) with Different Sintering Conditions                                                                                                                                                                                          | 74 |
| 25 | Initial Permeability, $\mu$ for four samples of $Mn_{0.25}Zn_{0.25}(Fe_2O_4)_{0.5}$ vs<br>Frequency (kHz) with Different Sintering<br>Conditions                                                                                                                                                                                                                         | 75 |
| 26 | Quality Factor, Q for four samples of $Mn_{0.25}Zn_{0.25}(Fe_2O_4)_{0.5}$ vs<br>Frequency (kHz) with Different Sintering<br>Conditions.                                                                                                                                                                                                                                  | 77 |
| 27 | Relative Loss Factor, RLF for four samples of Mn <sub>0.25</sub> Zn <sub>0.25</sub> (Fe <sub>2</sub> O <sub>4</sub> ) <sub>0.5</sub> vs Frequency (kHz) with Different Sintering Conditions                                                                                                                                                                              | 78 |

| 28 | The average particle diameter distribution for ultrafine $Mn_{0.25}Zn_{0.25}(Fe_2O_4)_{0.5}$                                                                                                                | 80  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 29 | Inductance, L vs Frequency for two samples of Ultrafine $Mn_{0.25}Zn_{0.25}(Fe_2O_4)_{0.5}$ After Sintering Using Ultrafine Ferrite Powder.                                                                 | 81  |
| 30 | Initial Permeability, $\mu$ vs Frequency for two samples of Ultrafine Mn <sub>0.25</sub> Zn <sub>0.25</sub> (Fe <sub>2</sub> O <sub>4</sub> ) <sub>0.5</sub> After Sintering Using Ultrafine Ferrite Powder | 82  |
| 31 | Inductance, L vs Frequency (kHz) for x=0.01, 0.02 and 0.03 of the ferrite $Mn_{0.25}Zn_{0.25-x}(Fe_2O_4)_{0.5+x}$ .                                                                                         | 86  |
| 32 | Initial Permeability, $\mu$ vs Frequency (kHz) for x=0.01, 0.02 and 0.03 of the ferrite Mn <sub>0.25</sub> Zn <sub>0.25-x</sub> (Fe <sub>2</sub> O <sub>4</sub> ) <sub>0.5+x</sub>                          | 87  |
| 33 | Relative Loss Factor, RLF for samples MRQ1 and MRQ2 versus<br>Frequency                                                                                                                                     | 92  |
| A1 | The basic configuration used to measure $B_s$ , $B_r$ and $H_c$                                                                                                                                             | 105 |



## LIST OF PLATES

| Plate |                                                        | Page |
|-------|--------------------------------------------------------|------|
| 1     | Scanning Electron Micrograph (SEM) of MnZn Ferrite     | 84   |
| 2     | Microstructure of sample MRQ1 with magnification x2000 | 94   |
| 3     | Microstructure of sample MRQ2 with magnification x2000 | 95   |



### LIST OF SYMBOLS AND ABBREVIATIONS

| $\mu_{i}$      | initial permeability                       |
|----------------|--------------------------------------------|
| Q              | quality Factor                             |
| TC             | Temperature coefficient                    |
| D              | disaccommodation                           |
| Ms             | Saturation magnetization                   |
| M <sub>A</sub> | Saturation magnetic moment for A site      |
| M <sub>B</sub> | Saturation magnetic moment for B site      |
| В              | Induction                                  |
| Н              | Applied field                              |
| μο             | Magnetic constant                          |
| t              | Thickness                                  |
| Do             | Outer diameter                             |
| $D_i$          | Inner diameter                             |
| Ν              | Number of wire turn                        |
| L              | Inductance                                 |
| μ'             | Real part of permeability or magnetic loss |
|                |                                            |

 $\mu$ " Imaginary part of permeability or magnetic loss



- f<sub>r</sub> Loss resonance frequency
- γ Gyromagnetic ratio
- Tan  $\delta$  Loss tangent
- RLF Relative Loss Factor
- μ<sub>m</sub> Maximum permeability
- B<sub>s</sub> Saturated induction
- B<sub>r</sub> Remanence induction
- H<sub>c</sub> Coercive force
- K<sub>1</sub> Crystal anysotropy
- $\mu^{R}$  Intrinsic rotational permeability
- $\mu^{W}$  Wall permeability
- σ Internal stress
- $\mu_B$  Bohr magneton
- P<sub>Zn</sub> Pressure of zinc
- H<sub>max</sub> Magnetic field for effective saturated induction

### **CHAPTER I**

### **GENERAL INTRODUCTION**

### **Historical Overview**

Magnetite or ferrous ferrite (Fe<sub>2</sub>O<sub>4</sub>) is an example of a naturally occurring ferrite. It has been known since more than 2000 years ago and its weak permanent magnetism found application in the compass of the early navigators. Nevertheless, there was hardly any progress in scientific research concerning ferrites until the  $19^{th}$ century (Ishino, 1987). Ferrite came into prominence only at the end of the Second World War (Goldman, 1990).



In an early work in 1909, Hilpert published the first systematic study of the relation between the chemical and magnetic properties of a number of the binary iron oxides but experienced difficulty in identifying the magnetic phase of his preparation. He claimed that ferrites had caused high-energy loss when subjected to alternating magnetic fields and thus had no commercial values. Around 1928 Forestier in France and Hilpert and Wille in Germany made quantitative investigations into the relation between the chemical composition, the saturation magnetization and the Curie temperature.

Japanese workers between 1932 and 1935 also studied magnetic oxides. Practical utilization of the ferrites began after the research of Kato and Takei. In 1936, Snoek was studying magnetic oxides in the Netherlands. Snoek and his coworker, Six, realized that the most important property of a material intended as a core for an inductor is the loss tangent divided by the permeability, the so-called loss factor. This is because the loss can always be reduced by the introduction of an air gap provided the resultant permeability remains sufficient. This led Snoek to the development of manganese-zinc-ferrous ferrite in which low loss and high permeability were combined by minimizing the magnetocrystalline anisotropy and the magnetostriction. By 1945 Snoek had laid the foundations of the physics and technology of practical ferrites and a new industry came into being. Another important discovery concerning ferrites was given by Neel 1948, in the theory of ferrimagnetism, which brought about a great advance in the magnetic investigation of ferrites. The large-scale introduction of the television in the 1950s was a major opportunity for the new ferrite industry. Ferrite cores were the material of choice in television sets for the high-voltage transformer and the picture-tube deflection system. In the 1970s, ferrite cores were used widely in telecommunication and electronic equipment such as mainframe computer memories, recording heads, etc. (Hirota et al., 1980). Since the early 1980s, ferrite cores have been used in highfrequency power supplies (Roess, 1982; Bracke, 1983).

#### **Soft Magnetic Materials**

Soft ferromagnetic or ferrimagnetic materials are those which have been developed with technical applications in view, to allow changes in magnetization to occur easily in weak magnetic fields. When the applied fields is removed, they return to a state of relatively low residual magnetism. Important magnetic properties of a soft magnetic material are high permeability, high saturation induction and low coercive force. The converse, the need for high magnetizing field and high remnant magnetism is true for hard magnetic materials.

Ferrites may be defined as magnetic materials composed of oxide containing ferric ions as the main constituent. They are hard, brittle, ceramic-like materials and are classified as ferrimagnetics. Ferrites are polycrystalline and are



generally dark grey or black in appearance. Ferrites have three distinct crystal structures: The hexagonal magnetoplumbite, dodecahedral garnet and the spinel structure (Crangle, 1991; Standley, 1972). The first structure is that of hard ferrites, the later two being those of soft ferrites.

Some of the applications for soft ferrites are for low signal, memory-core, audio-visual, and recording head applications. At low signal levels, soft ferrite cores are used for transformers and low-energy inductors. A large tonnage usage of soft ferrites is for deflection-yoke cores, flyback transformers, and convergence coils for television receivers. For these materials their survival in the intense competition from the growing technologies and their ability to enter newer areas of applications have promoted them to many disciplines. Consequently, the growing information-oriented society and the expanding roles of ferrites in electronic gadgets and other industrial pursuits have, in return, motivated this study.

### **Objective of Work**

Besides Nickel-Zinc (NiZn) ferrites, Manganese-Zinc (MnZn) ferrites are well known as a class of ferrites showing good soft magnetic properties up to the MHz frequency range because of their high magnetic permeability and low electric losses. The development and the continued success of electronics industry have created an expanding commercial market. This market is continually challenging the ferrite industry to produce high-quality ferrite cores capable of operating in increasingly higher frequency. MnZn ferrite is the most important ferrites for such application and constitutes a substantial portion of present-day soft ferrite production.

This project may be considered as a basic research in processing and preparation method of MnZn ferrite. Further research can be done to improve the magnetic permeability of certain composition of MnZn ferrite due to the general formula  $Mn_xZn_{(1-x)}Fe_2O_4$  in order to produce better properties close to commercial specifications.

The objective of this project is to prepare the MnZn ferrites with high initial permeabilities in the range of 2000 to 5000 which are now commercially available, with the higher permeabilities limited to small toroids. Attaining such high permeabilities on a commercial scale has been a technological challenge. As such, this experiment at work can lead to the beginning of important efforts at UPM to attain high permeability soft magnetic materials, starting with MnZn ferrites.

#### **Evolution of Magnetic Properties**

Figure 1 and 2 have shown the values of maximum permeability and  $\mu Q$  product as a function of the year that the values were attained (Slick, 1980). This

