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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 

fulfilment of the requirement for the degree of Doctor of Philosophy. 

CHROMATIC EQUIVALENCE CLASSES AND CHROMATIC 

DEFINING NUMBERS OF CERTAIN GRAPHS 

By 

BEHNAZ OMOOMI 

March 2001 

Chairman: Associate Professor Peng Vee Hock, Ph.D. 

Faculty: Science and Environmental Studies 

There are two parts in this dissertation: the chromatic equivalence classes and 

the chromatic defining numbers of graphs .  

In the first part the chromaticity of the family of generalized polygon trees with 

intercourse number two, denoted by Cr (a, b; c, d) , is studied. It is known that 

Cr( a, b; c, d) is a chromatic equivalence class if min{ a, b, c, d} � r+3. We consider 

Cr( a, b; c, d) when min{ a, b, c, d} � r + 2. The necessary and sufficient conditions 

for Cr( a, b; c, d) with min{ a, b, c, d} � r + 2 to be a chromatic equivalence class 

are given. Thus, the chromaticity of Cr (a, b; c, d) is completely characterized. 

In the second part the defining numbers of regular graphs are studied. Let 

d(n, r, X = k) be the smallest value of defining numbers of all r-regular graphs 

of order n and the chromatic number equals to k. It is proved that for a given 

integer k and each r � 2(k - 1 )  and n � 2k, d(n, r, X = k) = k - 1 .  Next, 

a new lower bound for the defining numbers of r-regular k-chromatic graphs 

with k < r < 2( k - 1 )  is found. Finally, the value of d( n ,  r, X = k) when 

k < r < 2(k - 1 )  for certain values of n and r is determined. 
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KELAS KESETARAAN KROMATIK DAN NOMBOR 

PENTAKRIF KROMATIK BAGI GRAF TERTENTU 

Oleh 

BEHNAZ OMOOMI 

Mac 2001 

Pengerusi: Profesor Madya Peng Vee Hock, Ph.D. 

FakuIti: Sains dan Pengajian Alam Sekitar 

Dissertasi ini ada dua bahagian: kelas kesetaraan kromatik dan nombor pentakrif 

kromatik bagi graf. 

Dalam bahagian pertama, kekromatikan famili pokok poligon teritlak dengan 

nombor hubungan bersamaan dua, diberi lambang Cr( a, b ; c, d) dikaj i .  Famili 

Cr( a, b ; c, d) diketahui merupakan suatu kelas kesetaraan kromatik j ika min{ a, b, 

c, d} � r+3. Kita menyelidiki kekromatikan Cr (a, b ; c, d) dengan min{ a, b, c, d} :::; 

r + 2.  Syarat perlu, dan cukup bagi Cr( a, b ; c, d) dengan min{ a, b, c, d} :::; r + 

2 menjadi kelas kesetaraan kromatik ditemui . Dengan yang demikian, kekro-

matikan Cr (a,  b ;  c, d) terciri secara lengkap. 

Dalam bahagian kedua, nombor pentakrif bagi graf sekata dikaji .  Misalkan 

d(n, r, X = k) nilai terkecil nombor pentakrif bagi semua graf r-sekata berper­

ingkat n dengan nombor kromatik bersamaan k. Bagi sebarang integer k dan 

setiap r � 2(k - 1 ) dan n � 2k, kita buktikan d(n, r, X = k) = k - 1 . Seterus­

nya, suatu batas bawah baru bagi nombor pentakrif graf 1'-sekata k-kromatik 

dengan k < r < 2(k - 1 )  telah ditemui. Akhirnya, nilai d(n , 1\ X = k) apabila 

k < r < 2(k - 1 )  bagi parameter tertentu juga telah diperolehi . 
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CHAPTER 1 

INTRODUCTION 

In this chapter we refer to some definitions and terminology which will be used 

throughout this thesis. Since the outline of each chapter is given at the beginning 

of the chapters ,  we shall give only a brief outline of the thesis in Section 1 .2. 

1.1 Preliminaries, Definitions, and Notations 

Throughout this thesis, a graph G is a finite, nonempty vertex set V(G) together 

with an edge set E( G) , where each edge in E( G) is an unordered pair of vertices. 

We write uv for the edge {u, v}. If uv E E(G), then u and v are adjacent. We 

write u f-7 v to mean "u is adjacent to v". The vertices contained in an edge 

are its endpoints. If vertex v belongs to edge e, then v and e are incident. The 

repeated edges or edges with both endpoints the same are called mu ltip le edges 

and loops, respectively. Here we consider the graphs without multiple edges and 

loops. The number IV(G) I  and IE(G)I are called the order and the size of G, 
respectively. The complement of a graph G, written G, is a graph having the 

same vertex set as G, such that u, v are adjacent in G if and only if u, v are not 

adjacent in G. 

A subgraph of a graph G is a graph H such that V(H) � V(G) and E(H) � E(G)j 
we write this as H � G. An i nduced subgraph of G is a subgraph H such that every 

edge of G contained in V(H) belongs to E(H) . If H is an induced subgraph of G 
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with vertex set S, then we write H = (S). Similarly, if F is a nonempty subset of 

E(G), then the subgraph (F) induced by F is the graph whose vertex set consist 

of those vertices of G incident with at least one edge of F and whose edge set 

is F. A subgraph H of a graph G is called a spann ing subgraph if V(G) = V(H). 

The degree of a vertex v in graph G, written degG(v) or deg(v) ,  is the number of 

edges containing v. The maximum degree is �(G) ; the minimum degree is c5(G). 
An isolated vertex has degree O .  A graph G is regular of degree r if for each vertex 

v of G, deg( v )  = r; such graphs are also called r-regular graphs. The neighborhood 

of v, written NG(v) or N(v) ,  is {x E V(G) I x t-+ v} . 

An i ndependent set in a graph G i s  a vertex subset S S;; V(G) , such that the 

induced subgraph (S) has no edges. A graph is bipartite if its vertex set can 

be partitioned into two independent sets. A graph is k-partite if V( G) can be 

partitioned into k independent sets. The independent sets in a specified partition 

are partite sets. 

A complete graph is a graph in which every pair of vertices forms an edge. We 

denote a complete graph of order n by Kn. The complement K n of the complete 

graph Kn has n vertices and no edges and is referred to as the empty graph of 

order n. A complete bipart ite graph is a bipartite graph in which the edge set 

consists of all pairs having a vertex from each of the two independent sets in the 

vertex partition. 

A path of length n in a graph, denoted by Pn, is an ordered list of distinct 

vertices Vo, "', Vn such that Vi-l Vi is an edge for all 1 � i � n. Similarly, a 

cycle of length n in a graph, denoted by en, is an ordered list of distinct vertices 

Vb' . .  , Vn such that vi-l Vi , 2 � i � n, and also VnVl are edges. The girth of 

a graph G, denoted by g(G), is the length of a shortest cycle in G. The first 

and last vertices of a path are its endpoints; and the rest are interior vertices. A 
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(u, v)-path is a path with endpoints u and v. A path in graph G is called a simple 

path if the degree of each interior vertex is two in G. A graph G is con nected if 

it has a (u, v)-path for each pair u, v E V (G). 

A graph G1 is isomorph ic to a graph G2 , written G1 � G2 , if there exists a 

one-to-one mapping ¢, called an isomorph ism , from V(G1) onto V(G2) such that 

uv E E(Gd if and only if ¢(u)¢(v) E E(G2). 

The u n ion of graphs G and H, written G U H, has vertex set V(G) U V(H) and 

edge set E(G) U E(H). To specify the disjoint u n ion with V(G) n V(H) = 0, we 

write G + H. The joi n  of G and H, written G V H, is obtained from G + H by 

adding the edges {xy I x E V(G), y E V(H)}. If X is an nonempty subset of 

E(G), then G - X denotes the graph obtained from G by removing the edges 

in X. 

Let Gl and G2 be graphs containing subgraphs Q1 and Q2 , respectively, such that 

Q1 and Q2 are isomorphic to some Q.  Then a Q-glu ing of G1 and G2 is a graph 

obtained from the union of Gl and Gz by identifying Ql with Q2 . When Q = K1 

or Q = I<2 , the Q-gluing of G1 and G2 is called vertex-glu ing and edge-glu ing, 

respectively. 

A A-colou ring of a graph G is an assignment 

c : V ( G) -+ {I,···, A} 

V t---+ c( v) 

such that if u ++ v, then c( u) =f. c( v). A graph G is A-colou rable if it has a 

A-colouring. The chromatic n umber, X(G), is the minimum A such that G is A­

colourable. In a given graph G, a set of vertices S with an assignment of colours 

is said to be a defi n ing set (with respect to vertex colouring) for G if there exists 

a unique extension of the colours of S to a X( G)-colouring of the vertices of G. 



4 

A defining set with minimum cardinality is called a smal lest defi n ing set (of vertex 

colouring) and its cardinality is the defin i ng number, denoted by d( G, X) . 

The vertices having a given colour in a A-colouring must form an independent 

set . Hence G is ).-colourable if and only if G is A-partite. Two A-colourings, Cl 

and C2 of G are different if and only if Cl (v) =I- C2 (v) for some v E V (G) . The 

number of distinct A-colourings of G is denoted by P (G, A ) or P (G) if there is 

no danger of confusion. For any graph G, P (G, A) is in fact a polynomial in A ,  

called the ch romatic polynomial of G. 

Two graphs G and H are chromatically equ ivalent denoted by G rv H, if P (G, A) = 

P (H, ).) . A graph G is chromatically u n ique if G � H for any graph H such that 

H '" G. Trivially, the relation '",' is an equivalence relation on the class of graphs. 

We shall denote by (G) the ch romatic equ ivalence class determined by G under 

'",' ; indeed, (G) is the set of all graphs having the same chromatic polynomial 

P (G, X). Thus a graph G is chromatically unique if and only if (G) = {G} (up 

to isomorphism) . In other words, a set of graphs S is a chromatic equivalence 

class if (i) any two graphs in S are chromatically equivalent and (ii) for any 

graph H with H '" G, where G E S, we have H E S. A property of a graph or 

a quantity associated with a graph is called X-i nvariant if it is preserved under 

the equivalence relation. To study the ch romaticity of a class S of graphs means 

to study the problem of determining the chromatic equivalence classes of graphs 

in S. 

A generalized polygon tree is a graph defined recursively as follows. Each cycle Cp, 
p 2:: 3 ,  is a generalized polygon tree. If H is a generalized polygon tree containing 

a simple path Pk , k 2:: 1 ,  as a subgraph, then every Pk-gluing of H and Cr , where 

k � r is also a generalized polygon tree. Every generalized polygon tree is a 

graph obtained in this manner within a finite number of steps. 
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Consider the generalized polygon tree G: (a, b ;  c, d) shown in Figure 1 . 1 .  The 

integers a , b, c, d, s ,  and t represent the lengths of respective paths between the 

vertices of degree three, where s � 0 and t � O. Let r = s + t. We now form a 

family Cr( a,  b ;  c, d) of the graphs G: ( a ,  b ;  c, d) where the values of a ,  b, c, d and 

r are fixed but the values of s and t vary; that is 

Cr ( a, b ;  c, d) = { G: ( a,  b ;  c, d) I r = s + t, s � 0, t 2 0 } .  
s 

a d 

t 

Figure 1 . 1: G:(a, b; c, d) . 

For example, 

C5 (2, 5 ;  3 , 6) = {G�(2, 5 ;  3, 6 ) ,  G! (2, 5 ;  3, 6 ) ,  G;(2, 5 ;  3 , 6 )} 

and 

C1(2, 5 ;  3 , 6) = {G�(2, 5 ;  3 , 6)} .  

In general, there are exactly l�J + 1 non-isomorphic graphs III the family 

Cr (a, b ;  c, d) . 

The concept of the chromatic polynomial of graphs was first introduced by G.D .  

Brikhoff [4) in 1912 as a possible means t o  solve the four-colour problem. For more 

information about the chromatic polynomial the reader may refer to [35] , [37] , 
and [38 ] . The concept of chromatic uniqueness of graphs was first introduced by 

Chao and Whitehead [6) in 1978. For expository papers giving a survey on most 

of the works done on chromatically unique graphs and chromatic equivalence 

classes, the reader is referred to Koh and Teo in [20] and [21 ] .  
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1.2 Outline of Chapters 

There are two parts in this dissertation: The first part, consisting of Chapters 2 

and 3,  is about chromatic equivalence classes, and the second part, consisting of 

Chapters 4, 5, and 6, is about the defining numbers of graphs. 

Suppose that H is a graph such that P (  H) = P( G: (a , b ;  c, d)) .  Then we know 

that H is also a generalized polygon tree with intercourse number two (see The­

orem 2.2). Thus, H = G:: (a', b' ; e, d') where r' = s' + t'. The question now is 

whether or not the graph G:: (a', b' ; c', d') is in the family Cr (a, b ;  c, d). In other 

words, is Cr (a, b ;  c, d) = (G: (a, b ;  c, d))? Moreover, what is the necessary and 

sufficient condition for Cr (a, b ;  c, d) to be a chromatic equivalence class? 

In Chapter 2, we first present a brief survey of known results on Cr (a, b ;  c, d) . 
Then, we consider Cr (a, b ;  c, d) for r = 1 .  It is clear that for r = 1 ,  the family 

Cr ( a, b ;  c, d) contains only one graph G�( a, b ;  c, d) . Thus, the family C1 (a, b ;  c, d) 
is a chromatic equivalence class if and only if G�( a, b ;  c, d) is a chromatically 

unique graph. We shall discuss the chromatic uniqueness of G�( a, b ;  c, d) . In [33] 

it is proved that G�( a, b ;  c, d) is a chromatically unique graph if min{ a, b, c, d} � 4. 

Also, the chromaticity of G�( a, b ;  c, d) for min {a, b, c, d} = 1 is characterized 

in [44] . We consider the cases min{ a, b, c, d} = 2 and min{ a, b, c, d} = 3 in Sec­

tions 2 .3  and 2.4, respectively, and give a necessary and sufficient condition for 

G�( a , b ;  c, d) to be a chromatically unique graph. 

In Chapter 3 ,  we study the chromaticity of Cr (a, b ;  c, d) for r � 2. Peng et al. [34] 

proved that Cr (a , b ;  c, d) is a chromatic equivalence class if min{ a, b, c, d} � r + 3 .  

The chromaticity of Cr (a, b ;  c, d) for min{a , b, c, d} = 1 is characterized in [44] . 

We consider the case min{ a, b, c, d} = r + 2 in Section 3.3 and give a characteriza­

tion theorem for Cr (a, b ;  c, d) to be a chromatic equivalence class when r � 2 and 
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min{ a,  b, c, d} = r + 2.  This theorem implies that the conjecture proposed in [34] 

is not true for r � 2. In Sections 3.4, we consider 2 � min{ a ,  b, c, d} � r + 1 
and give a necessary and sufficient condition for Cr (a,  b ;  c, d) to be a chromatic 

equivalence class. Thus, Problem 2 in [21 ]  is completely solved. 

Our proofs ,  roughly, are by comparing polynomials and are lengthy. Apparently, 

we do not have better methods. Perhaps, because of the nature of the problem, 

it is not easy to find a shorter proof; for instance, the proof of Theorem 2. 1 2  on 

page 228 in [ 17] required more than one hundred pages. 

In Chapter 4, we present a review of the concept of defining set in different areas 

such as latin squares, block designs and graph theory. We also state some related 

known results which are used in Chapters 5 and 6 .  

Mahmoodian and Mendelsohn [26] in 1 999 studied the defining numbers of regular 

graphs. Let d(n, r, X = k) be the smallest value of d(G, X) for each r-regular 

graph G of order n and chromatic number k. In Chapter 5, we prove that for a 

given integer k and each r � 2(k - 1) and n � 2k, d(n ,  r, X = k) = k - 1 .  Thus, 

the answer to Question 2 in [26] is in the affirmative. 

In Chapter 6, we find a new lower bound for the defining number of r-regular 

k-chromatic graphs with k < r < 2(k - 1 ) .  We also determine the value of 

d(n , r, X = k) for certain values of nand r. 

In Appendix A, we list the papers that were derived from this thesis. 



CHAPTER 2 

CHROMATIC CHARACTERIZATION OF C1(a,b; c,d) 

2.1 Chapter Outline 

In this chapter, we first review known results on Cr(a , b ;  c, d) which are useful in 

establishing our theorems. Then we consider the chromaticity of Cr (a, b ;  c, d) for 

r::: 1 in Sections 2 .3 and 2.4. The chromaticity ofCr(a, b ;  c, d) , when r � 2, will 

be discussed in Chapter 3. Recall that 

Cr(a,b ;  c, d)::: { G :(a, b ;  c, d) I r::: s + t,s � O,t � O } . 

It is clear that for r ::: 1 ,  the family Cr (a, b ;  c, d) contains only one graph 

G{( a,  b ;  c, d). Thus, the family Cr( a, b ;  c, d) is a chromatic equivalence class 

if and only if G �( a, b ;  c, d) is a chromatically unique graph. We shall discuss the 

chromatic uniqueness of G �( a, b ;  c, d) . 

Peng in [33] proved that the graph G�(a, b ;  c, d) is chromatically unique when 

min{a, b , c, d} � 4. Also, in [32] , it was shown that the graph G �(a, b ; c, d) is 

chromatically unique for certain values of a, b, c, and d. We study the chromatic 

uniqueness of G �( a, b ;  c, d) when 2 ::; min{ a, b, c, d} ::; 3 in Sections 2.3 and 2 .4. 

It is proved that G �( a, b ;  c, d) with min{ a, b, c, d} > 1 is a chromatically unique 

graph except the following five families of graphs: G �(3, 5 ;  5, 8), G �(3, b ;  b + 
1 , b  + 3 )  (b � 2 ) ,  G �(3 , c  + 3 ;  C, c  + 1 )  (c � 2) , G �(3 , 3 ; C, c  + 2) (c  � 3 ) ,  and 

G�(3 ,  b ;  3, b + 2) (b � 3) .  

8 



2.2 Introduction and Known Results 

9 

Very often, to discover or establish new chromatically unique graphs or chromatic 

equivalence classes, some X-invariant properties are required. In the following 

theorem we list some well-known necessary conditions for chromatic equivalence. 

Theorem 2 .1  (Whitney [42] ) Let G and H be chromatically equivalent graphs. 
Then 

(aJ IV(G)I = ]V(H)I; 

(b ) IE (G)I = I E(H)I; 

(c) X(G) = X(H); 

(d) g(G) = g(H); 

(e) G and H have the same number of shortest cycles. 

It follows immediately from Theorem 2 . 1  that all cycles en are chromatically 

unique. A chord of a cycle en , n 2:: 4, is an edge joining a pair of nonadjacent 

vertices in en. A O-graph is a cycle with a chord. Chao and Whitehead [6] 

showed that every O-graph is chromatically unique. This result was extended by 

Loerinc [22] . A graph is called a genera l ized O-graph if it is obtained by connecting 

two distinct vertices by three internally disjoint paths. Such a graph is denoted 

by O( a, b, c) if the lengths of the three paths are a, b, and c. Loerinc [22] proved 

that for any three positive integers a, b, c such that a � b � c and at most one of 

them is 1 ,  the generalized O-graph O( a, b, c) is a chromatically unique graph .  

Let s 2:: 2 .  For any s positive integers kl :::; k2 :::; ... :::; ks with at most one kj = 1 ,  

let O(kI , k2 , · • •  ,ks) denote the graph obtained by connecting two distinct vertices 
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with s internally disjoint paths of lengths kl' k2,' • •  ,ks, respectively. The graph 

O(kb k2,' • •  ,ks) is called a m ulti-bridge or more specifically s-bridge graph. Note 

that for s = 2, 3 the graphs are cycles and generalized O-graphs, respectively, and 

are known to be chromatically unique graphs. 

Definition 2 . 1  A genera l ized polygon tree is a graph defined recursively as fol­
lows. Each cycle Cp, p � 3, is a generalized polygon tree. If H is a general­
ized polygon tree containing a simple path Pk , k � 1 , as a subgraph, then every 
Pk -giuing of H and Cr, where k :s: r, is also a generalized polygon tree. Every 
generalized polygon tree is a graph obtained in this manner within a finite number 
of steps. 

In the above definition, the value of k may vary from step to step. If we require 

that k = 1 in each step, then such a resulting generalized polygon tree is a polygon 

tree. 

Xu [43 ]  investigated the chromaticity of generalized polygon trees and introduced 

an interesting X-invariant for them. In [43], it was proved that every generalized 

polygon tree is a planar graph. 

A pair {u, v} of nonadjacent vertices of a graph G is called an inte rcou rse pa i r  if 

there are at least three internally disjoint (u, v)-paths in G. let c( G) denote the 

number of intercourse pairs of vertices in G. Xu [43] showed that the property 

of being a generalized polygon tree is preserved under '"",' and the quantity c(G) 
of a generalized polygon tree G is a X-invariant . 

Theorem 2 .2  (Xu [43] ) If G is a generalized polygon tree and H "'" G, then H 
is also a generalized polygon tree and c( H) = c( G) . 



1 1  

B y  using the X-invariant c(G), Xu [43] also proved that the class of polygon trees 

is a chromatic equivalence class. This result was obtained earlier by Wakelin and 

Woodall [41 ] .  Note that as-bridge, s � 3 , is a generalized polygon tree with one 

intercourse pair. 

Consider the generalized polygon tree G: (a, b ;  c, d) with two intercourse pairs 

shown in Figure 1 . 1 .  Recall that 

Cr (a, b ;  c, d) = { G:( a, b ;  c, d) I r = s + t, s � 0, t � 0 } .  

Here we present a survey of works done on chromaticity of the family of graphs 

Cr ( a, b ;  c, d) . For r = 0, Cr ( a, b ;  c, d) is a 4-bridge and the chromaticity of this 

family was characterized in [44] . 

Theorem 2.3 (Xu et al. [44] ) The graph Gg( a, b ;  c, d) is a chromatically unique 
graph except Gg( l ,  b ;  c, d) and Cg(2, b ;  b + 1 ,  b + 2) .  

Also, Xu et al. in  [44] studied the chromaticity of Cr (a ,  b ;  c ,  d ) for r � 1 and 

min{a , b, c, d} = 1 .  In Cr (a, b ;  c, d) , without loss of generality, we can assume 

mini a, b, c, d} = a. 

Theorem 2.4 (Xu et al. [44]) The family of graphs 

F = Cr ( 1  , b ;  c, d) U Cc-1 ( 1 ,  b ;  r + 1 ,  d) U Cd-l ( 1 ,  b ;  c, r + 1 ) ,  

where r � 1 and b, c, d � 2 ,  is a chromatic equivalence class except for r = 2 and 
b = d = c + 1 .  Moreover, for r = 2 and b = d = c + 1 the family of graphs 

Co(2 , c ;  c + l , c+ 2)UC2(I, c+ l ;  c, c+ l )UCc_1(I, c+ l ;  3 , c+ l )UCc( l , c + l; c, 3 ) 

is a chromatic equivalence class. 
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Remark 2 .1  In the family of graphs 

:F = Cr (1, b; c, d) U Cc-l (1, b; r + 1, d) U Cd-1 (1, b; c, r + 1), 

if c = d = r + 1, then F == Cr(l,b; r + l , r + 1). Therefore by Theorem 2.4, 

Cr(1,b; r +  1, r +  1) is a chromatic equivalence class. If r = 1, then G�(l,b; 2, 2) 
is a chromatically unique graph (see [40]). 

Teo and Koh [40], by considering Cr (a, b; c, d) as a 2-connected graph of order n 
and size n + 2 of girth 4, proved that Cr(2, 2 ;  c, d) is a chromatic equivalence class 

for any integer r � 1. Chen and Ouyang [9], by considering 2-connected graphs 

of order n and size n + 2 of girth 5, showed that Cr(2,3; c, d) is a chromatic 

equivalence class if and only if (c, d, r )  ::J (k, k + 2, k + 1) or (k + l , k + 3 , k -

1 ) ,  for some k � 2. In [32], Peng studied the chromaticity of Cr(a,b; c, d) for 

certain values of a, b, c, d, and r. Peng et al. [34) established that Cr( a, b; c, d) is 
a chromatic equivalence class if min{ a , b, c, d} � r + 3. 

In [7), Chao and Zhao studied the chromatic polynomials of the family :F of 

connected graphs with k edges and k -2 vertices each of whose degree at least two 

where k at least six. They first divided this family of graphs into three subfamilies 

J=i, :F2 and :F3 according to their chromatic polynomials, and computed the 

chromatic polynomials for the graphs in each subfamily. Then they discussed the 

chromatic equivalence of graphs in F. One of their results is Theorem 2.5 .  Note 

that the graph G:( a, b; c, d) is in :F2. 

Theorem 2 .5  (Chao and Zhao [7] and Peng et al. [34]) All the graphs m 

Cr( a , b; c, d) are chromatically equivalent. 

By Theorem 2.5, we only need to compute P (  G�( a, b; c, d)) for computing the 

chromatic polynomial of G:( a, b; c, d) . 


