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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 
the requirement for the degree of Master of Science

OPTIMAL POWER FLOW OF POWER SYSTEMS USING HARRIS HAWKS 
OPTIMIZATION AND SALP SWARM ALGORITHM

By

ISLAM MOHAMMAD ZOHRUL

February 2021

Chairman : Associate Professor Ir. Noor Izzri bin Abdul Wahab, PhD
Faculty  : Engineering

Optimal Power Flow (OPF) is one of the most significant tools used over a decade to till 
date in energy management system for reliable operation and planning of modern power 
system. The main objective is to adjust all the controlling parameters by satisfying
equality and inequality constraints in order to optimize several objective functions.

The recent deregulation of power industry, growing energy demand, limitations of 
extension of existing transmission and distribution line have intensified the acute 
implementation of optimization techniques. Moreover, the deploying available natural 
resources and ever-increasing concern of the environmental pollutant gases, such as CO2,

emission during power generations and its serious impact on environment has gained
more attention.

This thesis has proposed recently developed Harris Hawks Optimization (HHO) and Salp 
Swarm Algorithm (SSA) to solve single- and multi-objective OPF problems considering 
fuel cost, power loss and environment emission. Additionally, the proposed methods 
solved multi-objective OPF problem with the help of no preference weighted sum 
method.

Standard IEEE-30-bus and 57-bus test system data have been studied to justify the 
effectiveness of the proposed methods for single- and multi-objective OPF problems 
considering fuel cost, power loss and environment emissions. Additionally, no 
preference weighted sum method has been employed to solve multi-objective OPF 
problems simultaneously. The obtained results showed the decent improvement 
comparing to other swarm-based techniques like Whale Optimization Algorithm 
(WOA), Math Flame (MF), and Glowworm Optimization Algorithm (GOA) in terms of 
convergence performance and quality. As per the results, the proposed HHO technique
outperforms to give the fuel cost of 801.829$/h improving by 0.01% indicating the best 
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optimal solution for single-objective solution among the various methods presented. 
Likewise, power loss and environment emission improved predominantly by 0.37 % and 
3.72% respectively. Multi-objective OPF results recorded at 0.02% to 0.55% for 
different cases. Lastly, three objectives were scrutinized together where the performance 
increased by 0.45% comparing to benchmark method.
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Abstrak tesis yang dikemukakan kepada senat Universiti Putra Malaysia sebagai 
memenuhi keperluan untuk ijazah Master Sains

SISTEM ALIRAN KUASA OPTIMAL MENGGUNAKAN TEKNIK 
PENGOPTIMUMAN HARRIS HAWKS DAN ALGORITMA SALP SWARM

Oleh

ISLAM MOHAMMAD ZOHRUL

Februari 2021

Pengerusi : Professor Madya Ir. Noor Izzri bin Abdul Wahab, PhD
Fakulti  : Kejuruteraan

Aliran Kuasa Optimum (OPF) adalah salah satu alat paling penting yang digunakan 
selama satu dekad hingga kini dalam sistem pengurusan tenaga untuk operasi dan 
perancangan sistem kuasa moden yang boleh dipercayai. Objektif utama adalah untuk 
menyesuaikan semua parameter pengendalian dengan memenuhi kekangan kesamaan 
dan ketaksamaan untuk mengoptimumkan beberapa fungsi objektif.

Dewasa ini, deregulasi industri tenaga, permintaan tenaga yang semakin meningkat, 
batasan penyambungan saluran transmisi dan pengedaran yang ada telah memperhebat 
pelaksanaan teknik pengoptimuman secara akut. Lebih-lebih lagi, penggunaan sumber 
daya alam yang ada dan keprihatinan gas pencemaran alam sekitar yang semakin 
meningkat, seperti pelepasan CO2 semasa penjanaan kuasa dan kesannya yang serius 
terhadap alam sekitar telah mendapat perhatian yang lebih.

Tesis ini mengemukakan Pengoptimuman Helang Harris (HHO) dan Algoritma 
Kawanan Salpa (SSA) yang dikembangkan baru-baru ini untuk menyelesaikan masalah 
OPF tunggal dan pelbagai objektif yang mempertimbangkan kos bahan bakar, 
kehilangan kuasa dan pelepasan persekitaran. Selain itu, kaedah yang dicadangkan 
menyelesaikan masalah OPF pelbagai objektif dengan bantuan kaedah jumlah wajaran 
tanpa pilihan.

Data sistem ujian standard IEEE 30-bas dan 57-bas telah dikaji untuk mewajarkan 
keberkesanan kaedah yang dicadangkan untuk masalah OPF tunggal dan pelbagai 
objektif yang mempertimbangkan kos bahan bakar, kehilangan kuasa dan pelepasan 
persekitaran. Selain itu, tidak ada kaedah jumlah wajaran pilihan yang digunakan untuk 
menyelesaikan masalah OPF pelbagai objektif secara serentak. Hasil yang diperoleh 
menunjukkan peningkatan yang baik dibandingkan dengan teknik berasaskan kawanan 
lain seperti Pengoptimuman Algoritma Paus (WOA), Nyalaan Kupu-kupu (MF), dan 
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Pengoptimuman Algoritma Cacing Cahaya (GOA) dari segi prestasi dan kualiti 
penumpuan. Keputusan yang didapati menunjukkan teknik HHO yang dicadangkan 
mengatasi teknik-teknik lain dengan memberikan biaya bahan bakar sebanyak 801.829 
$/jam yang membaiki sebanyak 0.01% menunjukkan solusi optimum terbaik untuk 
penyelesaian objektif tunggal di antara berbagai kaedah yang dikemukakan. Begitu juga, 
kehilangan kuasa dan pelepasan persekitaran masing-masing diperbaiki sebanyak 0.37% 
dan 3.72%. Hasil OPF pelbagai objektif dicatatkan pada 0.02% hingga 0.55% untuk kes 
yang berbeza. Terakhir, tiga objektif diteliti bersama di mana prestasi meningkat 
sebanyak 0.45% jika dibandingkan dengan kaedah penanda aras. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Background of the Study 
 
 
Over the decades, the optimal power flow (OPF) tool is an inevitable part of energy 
management system for reliable operation and proper planning of modern power system. 
The significant importance of optimization of generation dispatch to meet the load 
demand has taken a giant leap with the advent of advanced computer technologies. In 
recent years, the optimization techniques were tremendously used in solving power 
system problems. Owing to the continuous growth of power demand, also the concern of 
uninterrupted and quality power supply, environmental emissions, and restructuring of 
power system due to the introduction of renewable energy sources because of limited 
natural resources. These motivated the researchers to employ heuristic-based several 
optimization techniques in reducing the losses of the system and also supplying quality 
power to the end consumer with optimal operating cost of power generation. 
 
 
The restructuring in power sector has been observed in many countries like the UK, 
Sweden, Finland, and USA to make the monopoly system of power supply to open 
market systems (Sumit Verma et al., 2016). The electric power system is a complex 
interconnected network comprises of power generation, transmission lines, and 
distribution facilities, whose main goal is to deliver the electricity from power grid to a 
wide range of consumers (Mohd Herwan Sulaiman et al.,2015). To meet the increased 
demand of electricity, the power system has been very intricate than ever before which 
requires effective optimization of existing networks while the dramatically fluctuating 

intensive numerical analysis and its study is an indispensable part of power system 
(Ruey-Hsun Liang et al., 2015). Additionally, due to the technical and environmental 
restrictions, the expansion of conventional power plants is well-nigh impossible 
(Mahmoud Pesaran H.A et al., 2017).Therefore, utility industries are repeatedly trying 
to find the best economic manner to run the generating units for supplying the increased 
load demand (Diljinder Singh et al., 2019). Because of the intriguing multi-faceted 
challenges in operation and planning strategy, the increase in role of decision-makers 
plays another significant importance over the operational management and simultaneous 
optimization priorities. As most of the real-life problems have several solutions but 
optimization of one parameter affects the other. So, there is a need to sacrifice some 
possible set of solutions which is not comprisable of all parameters in the system to be 
optimized. The concept of Optimal Power Flow (OPF) was first proposed by the French 
scholar Carpentier in 1960 since then the research on the optimal operation of power 
systems have reached a new dimension. OPF was regarded as an extension of the class 
of power flow (Xuanhu He et al., 2015). OPF seeks to determine the optimal setting of 
control variables by minimizing the selected objective function considering equality and 
inequality constraints of power system (A.E. Chaib et al., 2016).  © C
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In deregulated power market, the OPF problem is a highly non-linear, non-convex, non-
differentiable, and multi-dimensional complex problem with a mixture of discrete and 
continuous variables (Khaled ben oualid Medani et al., 2018). In this context, the main 
goal of OPF is to optimize several objective functions of the system for example fuel 
cost, real and reactive power loss, voltage stability, environmental emissions by 
satisfying the equality and inequality constraints. The control variables include the 
generator real powers except the slack bus, the generator bus voltage, the tap ratio of 
transformer, and the reactive power generation of VAR sources, and the state variables 
include the generator reactive power output, the load bus voltage and network line flow. 
These variables are to be adjusted optimally by optimizing the predefined objective 
function in order to operate the system efficiently and economically over the continuous 
change in the load demand (K. Pandiarajan et al., 2016). 
 
 
More recently, environmental emission has become the biggest concern as a consequence 
of rising global warming and climate change. As a result, minimization of the fuel cost 
of generation is no longer the only focus for power system operator (Ehab E. Elattar et 
al., 2019). Because, these pollutant gases such as oxides of sulfur (SOx), oxides of 
nitrogen (NOx), Carbon monoxide (CO), carbon dioxide (CO2) and also small amounts 
of toxic metals released by the thermal power plants during the power generation process 
into the atmosphere and pollute the environment (Carlos Alberto Oliveira De Freitas et 
al.,2018, Narges Daryani et al., 2016). On the other hand, with the advanced development 
of modern science and technology, the standard of living in our society has immensely 
increased which has led to dramatic growth of the per capita energy consumption. To 
meet this ever-increasing load demand, electricity generation must be increased in 
proportion to the power consumption with minimum environmental emission (Govind 
D. Sen et al., 2017). In fact, most of the power plants all around the world generate 
electricity with natural gas, coal or oil as the basic fuel to run the electrical generators. 
As a result, the greenhouse gas elements, in particular, CO2 is produced more and more 
resulting in global warming (Ranjit Roy et al., 2015). The US clean air act amendments 
of 1990, directed the utility companies to generate energy in keeping the pollution at the 
minimum level in association with other power system constraints (Elnaz Davoodi et al., 
2018). 
 
 
At present, due to the increasing of energy crisis, most of the researchers emphasize the 
fuel cost minimization and operational efficiency in power systems. As a consequence, 
this bulk power generation increases the amount of pollutant gasses in the environment 
which causes serious global warming. Therefore, ignoring the acute environmental 
issues, only considering the fuel cost minimization in the OPF is far enough from the 
economic, and reliable operation of the power system.  Whereas, the emission reduction 
must be taken into the problem for clean, economic and reliable operation (Xiaohui Yuan 
et al., 2017). All these points have given a number of choices to decision-makers to 
optimize the objective function optimally as most of the power system OPF problems 
are conflicting and multi-objective. In fact, no optimal solution is paramount but a group 
of a possible solutions can be obtained in solving the multi-objective optimization (Warid 
et al., 2018).  
  © C

OPYRIG
HT U

PM



3

1.2 Problem Statement

Conventional methods have been successfully implemented to solve the OPF problems. 
These optimization techniques have more than one local optimum and only one global 
optima. Further, these methods trapped at local minima, if the primary guess is not 
assumed close to the solution. Another drawback, the complexity of the problem 
increases because of the number of non-linear constraints and large-scale size of the 
system. 

On the other hand, to overcome these shortcomings of conventional techniques, 
researchers for the last few decades have been focusing on meta-heuristic-based 
techniques to attain the solution of OPF problem without trapping into the local minima 
due to the immense development in computer technologies. However, these approaches 
also trapped in local minima due to poor exploration capability and become inefficient. 
Besides, sometimes these methods show infeasible solution by violating operational 
constraints and poor convergence property. Thus, none of these optimization techniques
can assure the consistency of an optimal solution for solving all real-world problems or 
the OPF with many objectives as specified earlier. Therefore, still there is need for 
advanced powerful optimization technique to overcome the existing short comings in 
solving OPF problem effectively by enforcing the security constraints within their limits. 
HHO and SSA are the two recently developed nature-inspired optimization techniques 
which demonstrate promising exploration and exploitation capabilities in attaining 
global optima.

1.3 Research Aims and Objectives

The main objective of this thesis is to propose a novel nature-inspired heuristic-based 
optimization techniques to solve the selective OPF problem considering fuel cost, power 
loss and environment emission while satisfying the power system equality and inequality 
constraints. The prime objectives can be described as,

1. To propose Harris Hawks Optimization (HHO) and Salp Swarm Algorithm
(SSA) to solve single-objective OPF considering total fuel cost, active power
loss and environment emission individually.

2. To apply the proposed HHO and SSA with no preference weighted sum
method for solving multi-objective optimization problems.

3. To validate the proposed HHO and SSA methods by comparing with other
techniques mentioned in the literature.

1.4 Scope and Limitation of this Study

This study has proposed a recently developed optimization techniques for solving the 
non-linear OPF problems in power system network. In this study, only conventional 
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generator is using to test the effectiveness of the proposed methods by formulating three 
selective objective functions namely fuel cost, power loss and environment emission. 
However, the main limitations of this study as follows: 
 

1. This study did not consider the effect of placement of Distributed Generation 
(DG) to reduce the cost and improve the voltage profile. 

 
2. The application of the proposed methods for solving multi-objective OPF in 

large-scale test system were not studied. 
 
 
The further research of the proposed methods can be extended as follows: 
 

1. The concept of OPF problem can be considered for the optimal placement and 
sizing of DG and economic dispatching of renewable integrated power 
system. 

 
2. The proposed methods also can be employed to solve multi-objective OPF 

using Pareto font in real-time large-scale system including other objectives, 
such as, voltage stability. 

 
 
1.5 Thesis Layout 
 
 
The remaining part of this thesis is structured as follows.  
 
 
Chapter 2 deals with the literature review on optimal power flow in the power system 
network. A number of conventional and heuristic based optimization techniques have 
been described in terms of single and multi-objective OPF problems. This section also 
mentioned the comparison among all optimization methods.  
 
 
Chapter 3 presented the mathematical formulation of the single and multi-objective OPF 
problems including network constraints to solve by the proposed method. Likewise, the 
inspiration, problem solving behavior of the proposed heuristic method was illustrated. 
Furthermore, this section showed the application of swarm-based technique in solving 
optimization problem in power system in a flow chart. 
 
 
Chapter 4 discussed the numerical results achieved by the proffered method and the 
comparison among other selected well-known nature-inspired methods of optimization 
in power system. The results were portrayed in the separate sections as single and multi-
objective segment. It also discusses the comparative analysis with literature work for 
case 1. 
 
 
Chapter 5 reiterates the objective of the work and justification of the proposed method. 
It also highlights the findings and the future scope of the work.  
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