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:   Engineering 

Controlled drug release has been used to improve the bioavailability properties of 
various drugs. These systems enable better regulation of drugs administered for 
treatments and reduce their side effects in therapeutic levels with minimum 
concentrations.  In this study, gum arabic )GA(  and chitosan (CS) nanoparticles were 
used as nanocarriers to encapsulate orotic acid (OA) and magnesium orotate (MgOr) 
due to their attractive physicochemical properties which can improve targeted drug 
delivery. Therefore, the main objectives of the current study were to develop a 
nanomaterial-based carrier as a novel drug delivery system of OA and MgOr by using 
gum arabic nanoparticles )GANPs( and chitosan nanoparticles )CSNPs( for enhanced 
delivery efficiency.  

Then, the antioxidant and in vitro antihypertensive properties of the nanoparticles 
(NPs) were assessed. Comparisons were made between active compounds, respective 
polymers and synthesised nanopartilces )NPs( in terms of their antioxidant, 
antihypertensive and cytotoxicity properties. The resulting four NPs, namely 
MgOrGANPs, MgOrCSNPs, OAGANPs and OACSNPs, were prepared using the 
freeze-drying technique.  The physicochemical characteristics of NPs, specifically the 
functional groups, crystallinity, thermal behaviour, surface morphology, and drug 
loading percentage, were examined using Fourier-transform infrared spectroscopy 
)FTIR(, X-ray diffractometry )XRD(, differential scanning calorimetry )DSC(, and 
transmission electron microscopy )TEM(. Furthermore, the antioxidant potential 
activities of  orotic acid nanoparticles )OANPs( and magnesium orotate nanoparticles 
)MgOrNPs( were assessed using 1,1-diphenyl-2-picrylhydrazyl )DPPH(, nitric oxide 
)NO(, and β-carotene bleaching assays. Apart from that, the antihypertensive activity 
was performed using angiotensin-converting enzyme )ACE(. In addition, HepG2 
)human liver cancer cell lines(, MCF7 )human breast cancer cell lines(,  HT29 )human 
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colon cancer cell line(, MCF10A )normal breast cell lines (, ARPE-19 )human retinal 
epithelial cell line(, and 3T3 )mouse fibroblast cell line(   were treated with NPs for 
cytotoxicity evaluation. Meanwhile, The FTIR, XRD and DSC analysis confirmed the 
encapsulation of OA and MgOr into GA/CSNPs. The initial burst of drugs was 
improved with polymer coating agents, resulting in their controlled release of drugs 
from their nanoparticles. On the other hand, the preliminary in vitro cytotoxicity tests 
suggested that OANPs and MgOrNPs were not acutely toxic and significantly inhibit 
the growth of cancer cells. Thus, the findings demonstrated that polymer coating 
significantly improved the antioxidant, antihypertensive and cytotoxicity properties of 
drug-loaded nanoparticles compared to the uncoated ones. In conclusion, the desirable 
characteristicsof of the OANPs and MgOrNPs that were developed in this study have 
the potential as drug nanocarriers to deliver poorly water-soluble drugs OA and MgOr. 
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PENILAIAN PERUMUSAN, PENCIRIAN DAN KESITOTOKSIKAN ASID  
OROTIK DAN MAGNESIUM OROTAT YANG DIBEBANKAN KE 

NANOPARTIKEL GAM ARAB DAN KITOSAN UNTUK PENGHANTARAN 
UBATAN 

Oleh 

HASSANI ABDELKADER 

September 2020 

Pengerusi 
Fakulti 

:   Profesor Madya Datin Siti Aslina Hussain, PhD, CEng 
:   Kejuruteraan  

Pelepasan ubat yang terkawal digunakan untuk meningkatkan sifat biokeperolehan 
pelbagai ubat.  Sistem ini membolehkan pengawalan ubat yang lebih baik yang 
diberikan untuk rawatan dan mengurangkan kesan sampingannya pada tahap terapi 
pada tahap kepekatan minimum. Dalam kajian ini, nanopartikel gam arab (GA) dan 
kitosan (CS) digunakan sebagai pembawa nano untuk merangkum asid orotik (OA) 
dan magnesium orotat (MgOr) kerana sifat fizikokimia yang wujud dapat 
meningkatkan penghantaran ubat ke sasaran. Objektif utama kajian ini adalah untuk 
membangunkan pembawa berasaskan bahan nano sebagai sistem penyampaian ubat 
baru OA dan magnesium orotat (MgOr) dengan menggunakan nanopartikel gam arab 
(GANPs) dan nanopartikel kitosan (CSNPs) untuk meningkatkan kecekapan 
penghantaran. Kemudian, sifat antioksidan dan nanopartikel antihipertensi in vitro 
(NPs) dinilai. Perbandingan dilakukan di antara sebatian aktif, polimer masing-masing 
dan NP yang disintesis daripada segi sifat antioksidan, antihipertensi dan 
kesitotoksikan. Empat NP yang dihasilkan, iaitu MgOrGANPs, MgOrCSNPs, 
OAGANPs dan OACSNPs dimendakkan menggunakan teknik pengeringan sejuk 
beku. Ciri fizikokimia NP, khususnya kumpulan berfungsi, kekristalan, perlakuan 
terma, morfologi permukaan, dan peratusan pemuatan ubat, diperiksa menggunakan 
spektroskopi inframerah transformasi Fourier (FTIR), difraktometer sinar-X (XRD), 
kalorimetri pengimbasan pembezaan (DSC) dan mikroskop elektron penghantaran 
(TEM). Tambahan pula, aktiviti potensi antioksidan nanopartikel asid orotik (OANPs) 
dan nanopartikel magnesium orotat (MgOrNPs) dinilai menggunakan 1,1-diphenyl-2-
picrylhydrazyl (DPPH), nitrik oksida (NO) dan asai peluntur β-karotena). Selain itu, 
aktiviti antihipertensi dilakukan menggunakan enzim pengubah angiotensin (ACE). 
Tambahan pula, HepG2 (titisan sel barisan sel barah hati manusia), MCF7 (titisan sel 
barah payudara manusia) HT29 (titisan sel barah kolon manusia), MCF10A (titisan sel 
payudara normal), ARPE-19 (titisan sel epitel retina manusia) dan 3T3(titisan sel 
fibroblas tikus) dirawat dengan NP untuk penilaian kesitotoksikan. Sementara itu, 
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analisis FTIR, XRD dan DSC mengesahkan pengkapsulan OA dan MgOr ke GA / 
CSNPs. Deretan awal ubat diperbaiki dengan agen pelapisan polimer, mengakibatkan 
pelepasan ubat terkawal dari nanopartikel. Sebaliknya, ujian kesitotoksikan in vitro 
awal menunjukkan bahawa OANPs dan MgOrNPs tidak beracun secara akut dan 
secara signifikan menghalang pertumbuhan sel barah. Oleh itu, dapatan menunjukkan 
bahawa lapisan polimer dengan ketara meningkatkan sifat antioksidan, antihipertensi 
dan sitotoksisiti nanopartikel yang dimuatkan ubatan berbanding yang tidak dilapisi. 
Kesimpulannya, ciri-ciri OANP dan MgOrNP yang diinginkan dalam kajian ini 
berpotensi sebagai pembawa nano ubat untuk menyampaikan ubat larut air OA dan 
MgOr. 
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CHAPTER 1 

1 INTRODUCTION 

1.1      Background of Study 

The controlled-release formulation at a specific site within optimum time and 
protection of bioactive agents has been made possible via the encapsulation technique. 
Nanoencapsulation is considered the most effective technology to entrap various 
bioactive agents. It is both feasible and advantageous for efficient absorption by 
different human cells and targeted site-specific delivery ( Behnaz et al., 2019). 
Moreover, it allows the formulation of many pharmaceutical products, protecting; 
reforming and improving their bioactivity in the body (Muthukrishnan et al., 2019). 
Nanoencapsualtion not only results in enhanced drug formulation but also improved 
oral or parenteral delivery systems. At present, numerous encapsulated products are 
marketed mainly as pharmaceutical products (Puneet & Subramony, 2018). 

Polymeric nanoparticulate is considered a drug delivery systems that can be 
administered in various forms such as nanospheres, nanocapsules and nanoparticles 
 (Erdoğar et al., 2018). Despite the invention of nanotechnology and knowledge 
advancement in pharmaceutical chemistry, molecular biology, and bioscience, the 
significant changes in the approaches and methodologies of the drug delivery systems 
have introduced new challenges.  

Now, there is a need for new nanomedicine devices and drug formulations to suit the 
requirements of molecular drug delivery systems (Makkizadeh, 2018). Nanoparticles 
offer a solution to this predicament with their ability to improve hydrophobic 
properties of various compounds and deliver them to tissues and specific target sites 
for cancer treatment (Chen et al., 2018). Nanoparticles, which often measure between 1 
nm and 10 nm, have gained prominence in drug delivery systems due to their 
physicochemical properties and enhanced performance )Jeevanandam et al., 2018(.The 
prepared nanoparticles target diseased tissues (e.g., cancer treatment) to protect healthy 
human body cells and perform preliminary diagnostics of diseases (Richel et al., 2019). 
Nanomedicine is beneficial for numerous medical applications due to its unique 
characteristics, such as surface ratio, size distribution, quantum properties, and 
adsorption capacity of the biocompounds (Daniel et al., 2018).  

Drug delivery refers to administering or using pharmaceutical compounds to achieve 
potential therapeutic targets in animals or humans. For this reason, numerous drug 
delivery release systems have been improved and explored for oral, pulmonary, and 
nasal delivery, including nanoparticles, liposomes, gels, and proliposomes. In most 
cases, drug delivery systems that involve nanoparticles consist of biodegradable 
polymers, which display high efficiency to meet the requirements of these delivery 
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systems (e.g., stability, biocompatibility, and site-specific targets) (Kyoung et al., 
2018). Most of these drugs are characterised by their capacity to release bioactive 
agents at specific targets within the expected time.  

Many studies have suggested the application of biocompatible and biodegradable 
functional forms and techniques to improve these properties.  

Furthermore, these techniques are used to control toxicity, concentration of bioactive 
ingredients, and drug loading efficiency  (Xue et al., 2019). The importance of drug 
bioavailability in terms of nanoencapsulation efficiency has been widely 
acknowledged.  

The technique is also used for medical purposes, such as after the oral administration 
for improved therapeutic activity and bioavailability of drugs (Qilong et al., 2018). Its 
capability to enhance the hydrophobic properties of drugs has propelled the use of 
these systems to deliver drugs to the target sites. Nanoparticle systems are prepared to 
overcome the limitations of cancer therapy in conventional treatments and diagnostics. 
The uses of biodegradable polymers as coating materials, such as CS and GA, are 
highly significant for researchers and patients as well as in the field of nanomedicine 
and nanotechnology, as these polymers can be loaded with potential bioactive and 
therapeutic substances with operational stability, such as proteins, vitamins, and 
antioxidants (Juan et al., 2018; Ida et al., 2018; Manan et al., 2017(. 

Gum Arabic )GA( is essential for a wide range of nanoparticles in the drug delivery 
system given its capabilities to enhance colloidal stability and offer relevant functional 
groups for the coupling of bioactive agents (Sarika et al., 2015). GA refers to a 
common polysaccharide from Acacia species, which is used in numerous biomedical 
applications. Besides that, its encapsulation properties and unique emulsification 
evaluated the toxicology assessements of drugs (Zulaikha et al., 2018). GA is a 
polysaccharide-coating material with antioxidant and antihypertensive properties. It 
has been reported that this material inhibits ethylene fabrication and prevents 
dehydration process. Among its many properties, the strong antioxidant property of the 
natural polysaccharide like chitosan is the most widely documented (El-Batal et al., 
2018). 

Natural polymers, such as chitosan )CS(, are usually biocompatible, biodegradable, 
and inexpensive. CS, which is one of the natural biodegradable polymer groups, is 
extensively used for the microencapsulation of drugs like isoniazid, propranolol, and 
aspirin. This natural polysaccharide benefits many pharmaceutical applications, such as 
oral and parenteral delivery of drugs. It is important for a wide range of scientific and 
industrial processes to recognise the applications of CSNPs loaded drugs in the 
pharmaceutical field. Recently, this issue was the objective of many research papers in 
the literature. CS can also be combined with other polymers for the encapsulation of 
many drugs in order to achieve targeted performance delivery.  
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The recent advancement in the nanoencapsulation methods has facilitated studies on 
the use of CS to load drugs. CS is a natural, biodegradable, and linear polysaccharide 
that consists of distributed (deacetylated units) that enable slow/controlled drug 
release, which reduces toxicity and enhances stability and solubility of drugs )Kabo et 
al., 2018(. 

1.2      Problem statement  

There are various limitations in the current techniques used to administer conventional 
drugs via tablets or liquids, such as low solubility and limited drug efficacy.  

Orotic acid )OA( is a pyrimidine carboxylic acid that serves as an intermediate in the 
synthesis of pyrimidine )Figure 1.1(. 

Most studies tend to focus on the antitumour and anti-inflammatory activities of OA. 
Orotic acid is manufactured in the human body from dihydroorotate dehydrogenase 
enzyme )Kostova et al., 2015(.  

The presence of non-covalent recognition sites, van der Waals forces, hydrogen bonds 
and carboxylate group in orotic acid improve ligand binding properties and 
accumulation into a higher-dimensional product based on multifunctional and 
supramolecular frameworks )Siddiqui et al., 2016(. 

 
 
 
 
 
 
 
 
Figure 1.1 : Structure of orotic acid 
)Source : Kostova et al., 2015( 
 
Magnesium orotate )MgOr( aids the development of various biological components as 
an anticancer and antihypertensive agent (Hacht & Taaya, 2006) )Figure 1.2(. 
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Figure 1.2 : Magnesium orotate structure 
)Source: Matthew et al., 2015( 
 
 
The conversion and absorption of orotate can be improved in the presence of 
magnesium through the modulation of uridine metabolism )Matthew et al., 2015(. The 
penetration of OA through cells can be performed via the uracil transporter )Matthew 
et al., 2015(. Moreover, magnesium orotate complex has been used as a therapeutic 
compound for the treatment of cancer )Kafeel et al., 2016(. The potential effects of 
MgOr and OA are limited due to their poor water solubility. Furthermore, the 
maximum percentage of drugs administered can be immediately metabolised before 
reaching the therapeutic targets.   

Therefore, polymeric nanoparticle delivery systems with lower drug dosages can 
improve the solubility, bioavailability and targeting properties of MgOr and OA )Kabo 
et al., 2018; Juan et al., 2018(. The unique properties of nanoparticles (e.g., large 
surface-to-volume ratio) enhance the therapeutic effectiveness of components with 
specific shapes and sizes )Narges et al., 2018(.  

Chitosan is a biodegradable, non-toxic polysaccharide widely used in drug delivery 
systems due to its ideal surface properties depending on its chemical structure )Ren et 
al., 2019(. Chitosan nanoparticles were used in controlled-release systems to improve 
the effectiveness of orotic acid therapy )Wafaa et al., 2018( )Figure 1.3(.  

The intercalation of neutral OA into CS provides a positive charge on its surface, 
leading to favourable endocytosis of cells and subsequently enhancing the anticancer 
activity. The repulsive force generated with negative charges of cell walls prohibits the 
cellular internalisation of various drugs )Alberto et al., 2018(. A previous study 
described the use of CS in improving oral bioavailability and explored the 
mucoadhesive characteristics of CS )Wang et al., 2018( . It is also used to increase the 
stability of drugs, enhance tumour targeting, and control the release of hydrophilic 
compounds (e.g., metformin-coated liposomes of CS and glycerolphosphate) (Sanjurjo 
et al., 2019). Therefore, the control of the cationic nature of CS is appropriate for 
maintaining the stability of ionic complexes over a wide range of pH values. 
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Figure 1.3 : Structure of chitosan 
)Source : Islam et al., 2017( 
 
 
GA or acacia gum is frequently grown in Africa, India, and Australia. It is a natural 
gum that is extracted from branches and stems of Acacia Senegal (Leguminosae) 
)Figure 1.4(. Its hydrophilic, non-toxic glycoprotein polymer serves as a stabiliser for 
pharmaceutical and food applications )Elshama, 2018(. Furthermore, it is an 
amphiphilic polysaccharide with good stability at high temperature and high ionic 
strength environments 
)Ren et al., 2019(. 
 

 
 
 
 
 
 
 
 
 
 

Figure 1.4 : Gum Arabic structure 
)Source : Sarika et al., 2015( 
 
 
Its antioxidant activity, low viscosity at high temperature, binding properties, and non-
toxic glycoprotein polymer makes it a good stabiliser in the pharmaceutical and food 
industry. Moreover, the presence of galactose groups in GA improves its anticancer 
activity (Sarika et al., 2015).  The highly branched molecular structure of GA enhances 
colloidal stability, in vitro stability and induces the steric repulsion properties of NPs, 
whereas the carboxyl groups are linked to biocompounds (Guowen et al., 2019; Arora 
et al., 2016;  Andreea et al., 2018).  

The synthesised NPs can cross cell barriers through the enhanced penetration and 
retention effect with minimal harm to the normal cells. Therefore, GANPs and CSNPs 
were selected as nanocarriers for the effective delivery of OA and MgOr in this study.  
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1.3      Scope of study 

The current study is carried out to determine and develop the physicochemical 
properties of GANPs and CSNPs for drug delivery of OA and MgOr.  Release profiles 
and drug loading of MgOrNPs and OANPs were assessed at pH 4.8 and pH 7.4. The 
cytotoxicity properties of drug-loaded nanopartilces were performed againts normal 
cell lines )3T3, ARPE-19, and MCF10-A( and human cancer cell lines )HepG2, 
MCF7, and HT29(. Additionally, the antioxidant and antihypertensive properties of 
NPs compared to its active compounds, OA and MgOr, were determined using DPPH, 
nitric oxide, β-carotene and angiotensin-converting enzyme (ACE) assays. 

1.4      Hypothesis of the study 

As one of the most important components of drugs and compounds developments, 
nanoencapsulation is disseminated in several industrial fields and offers various 
advantages as a drug delivery system. With these unique advantages of NPs, the use of 
GA/CSNPs as a promising drug delivery system for advanced therapeutic treatment is 
evident. GANPs and CSNPs can be loaded with OA and MgOr via encapsulation 
process for drug delivery. The developed MgOrGANPs, MgOrCSNPs, OAGANPs and 
OACSNPs drug-loaded nanoparticles indicated controlled-release properties with 
improved efficiency of the in vitro delivery of OANPs and MgOrNPs compared with 
active compounds and coating agents alone. 

 Due to their non-toxic, biodegradable and bioavailability properties, the drug-loaded 
nanoparticles with lower therapeutic drugs dosages protect healthy cells in vitro. 
Therefore, they can improve the antioxidant, antihypertensive properties of drugs by 
inhibiting the growth of cancer cell lines in vitro.  

1.5      Objectives 

The study aims to develop drug-loaded, polymeric GANPs and CSNPs for effective 
drug delivery. The specific objectives are as follows: 

1. To characterize and determine the properties of the nanopartilces, 
MgOrGANPs, MgOrCSNPs, OAGANPs and OACSNPs. 

2. To investigate the cytotoxicity of MgOrGANPs, MgOrCSNPs, OAGANPs, 
and OACSNPs in normal cell lines )i.e .3T3, ARPE-19, and MCF10-A( and 
human cancer cell lines )i.e. HepG2, MCF7, and HT29( and examine the 
antioxidant and antihypertensive properties of NPs in comparison with its 
active compounds, OA and MgOr, respectively. 

3. To compare the effects of coating agents and their active compounds with 
synthesised NPs in terms of cytotoxicity, antioxidant, and antihypertensive 
properties. 
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