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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirement for the degree of Doctor of Philosophy 

MACHINE-LEARNING-BASED ADAPTIVE DISTANCE PROTECTION 
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By 
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November 2020 

Chairman :   Associate Professor Ts. Ir. Mohammad Lutfi Othman, PhD 
Faculty :   Engineering  

There is impending distance relay (DR) zone-3 backup protection element 
safety compromise in a midpoint integrated STATCOM on the utility grid 
system. This impending protection limitation is due to the relay under-reach 
effect due to the infeed reactive current injection into the grid from the midpoint 
integrated STATCOM device during the far-end short circuit fault at the zone-3 
element protection coverage boundary. The infeed injected current led to the 
wrong line impedance estimation from the relay location to the faulty line 
section. Such compensated power grid protection actualization is a critical 
concern to the power system protection engineer due to the involvement of the 
injected reactive current from the STATCOM in the apparent impedance fault 
loop used seen by the relay for every fault beyond the DR midpoint location for 
effective short circuit fault isolation. This nuisance current contribution from the 
midpoint integrated STATCOM device assists in the power system voltage 
stability but causes a protection compromise for the backup zone-3 protection 
element during the far-end short circuit faults at the relay protection boundary. 
The estimated fault impedance value by the zone-3 elements is slightly higher 
than the actual pre-fault estimated threshold value under normal operating 
conditions. Thereby locating the apparent impedance trajectory outside the 
preset protection coverage as if there was no fault in the system, leading to 
protection safety compromise. Several conventional adaptive distance relay 
(ADR) and computational based intelligent modifications presented to solve the 
impending compromise by using faulted line voltage and current parameters 
for the various protection relay controller modification, optimizing synchronized 
measurement to block or limit the fault current penetration into the grid. The 
computational complexity and mathematical formulation solutions are some 
limitations in optimizing the relay characteristic changes with changes in the 
system reactive power penetration for effective fault detection and isolations. 
The ADR schemes also presented high computational time due to 
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communication channel breakdown, latency, and susceptibility to the cyber-
attack since the communication channel is used for the trip command 
transmission and considering the high cost of communication medium. The 
earlier intelligent approach presented an offline approach using only faulty line 
parameters for intelligent classifier model training to detect, classify and locate 
faults. The model limitation is in retraining for new knowledge with changes in 
the power system network topology and lacks robustness. This current study 
proposes an intelligent data mining approach for the Machine Learning-
Adaptive Distance Relay (ML-ADR) fault classification model using novel 
extracted 1-cycle transient voltage and current signals hidden knowledge from 
both healthy and faulty lines parameters. The hybrid discrete wavelet 
multiresolution analyses and machine learning (DWMRA-ML) algorithm is 
deployed to discover the hidden useful knowledge extraction from the 1-cycle 
short circuit transient fault signals (voltage and current) from healthy and fault 
lines section. These parameters are used to develop a standalone intelligently 
machine learning adaptive distance relay (ML-ADR) modification. The 
intelligent algorithm ML-ADR fault classifier model could discriminate 10 
different far-end short circuit fault types from two network topology changes 
with and without midpoint integrated STATCOM on the Matlab/Simulink power 
grid system model. Other system parameter variations are 4 different fault 
resistances (0.001 Ω, 10 Ω, 50 Ω, 100 Ω), and two inception angles (0 oC and 
30 oC). The prior result from the Matlab model of the adaptive numerical 
distance relay connected on midpoint integrated STATCOM power grid system 
indeed establish the existence of the under-reach effect for the relay zone-3 
elements ing far-end short circuit fault at the coverage boundary leading to 
wrong impedance estimation. The BayesNet provides the best integrated ML-
ADR fault classifier model better at a 5 % significance level than other 
deployed algorithms in the intelligent supervised learning model realization. 
The BayesNet ML-ADR classifier model performance evaluation with the 
highest kappa statistic value of 0.991, the lowest mean absolute error value of 
0.0009, weighted average precision values of 99.2 %, ROC area coverage of 
100 %, the most down trip decision time of 10 ms better than the existing 20 
ms for conventional ADR. The integrated BayesNet ML-ADR fault classifier 
model eliminates the under-reach effect compromise on the zone-3 backup 
protection element for accurate fault detection, classification, and trip decision 
time reduction during far-end boundary faults. This model satisfied and finally 
met the objectives of the desired ADR. 
 
 
 
 
 
 
 
 
 
 
 
 

© C
OPYRIG

HT U
PM



iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

 
 

GEGANTI PERLINDUNGAN JARAK ADAPTIF BERDASARKAN 
PEMBELAJARAN MESIN UNTUK MENGATASI MASALAH BAWAH 

JANGKAUAN PERLINDUNGAN ZON-3 PADA TALIAN PENGHANTARAN 
TERPAMPAS STATCOM   

 
 

Oleh 
 
 

AKER ELHADI EMHEMED ALHAAJ AMMAR 
 
 

November 2020 
 
 

Pengerusi :   Profesor Madya Ts. Ir. Mohammad Lutfi Othman, PhD 
Fakulti :   Kejuruteraan  
 
 
Pada sistem grid utiliti terdapat kompromi keselamatan dalam elemen 
perlindungan sandaran jarak jauh geganti (DR) zon-3 dalam STATCOM 
bersepadu titik tengah. Batasan perlindungan yang  berlaku ini disebabkan oleh 
kesan geganti di bawah jangkauan kerana penyuntikan arus reaktif masuk ke 
dalam grid dari peranti STATCOM bersepadu titik tengah semasa kesalahan litar 
pintas di sempadan perlindungan elemen zon-3. Arus yang disuntikkan 
menyebabkan anggaran galangan talian yang salah dari lokasi geganti ke 
bahagian  talian yang rosak. Perlindungan grid kuasa yang dikompromi seperti 
ini memerlukan perhatian yang serius  dari jurutera perlindungan sistem kuasa 
kerana penglibatan arus reaktif yang disuntikkan oleh STATCOM dalam gelung 
kerosakan impedans yang jelas dilihat oleh geganti untuk setiap kesalahan di 
luar lokasi titik tengah DR untuk jangka pendek yang berkesan bagi 
pengasingan kerosakan litar. Gangguan arus dari peranti STATCOM bersepadu 
titik tengah membantu dalam menstabilkan voltan sistem kuasa tetapi 
menyebabkan kompromi perlindungan elemen sandaran zon-3 semasa 
kerosakan litar pintas pada batasan perlindungan geganti. Nilai anggaran 
impedansi kesalahan oleh elemen zon-3 lebih tinggi sedikit daripada nilai 
anggaran pra-kesalahan sebenar dalam keadaan pengoperasian biasa. Dengan 
itu, mencari lintasan impedans yang jelas di luar liputan perlindungan yang telah 
ditetapkan seolah-olah tidak ada kesalahan dalam sistem menyebabkan 
kompromi perlindungan keselamatan. Beberapa geganti jarak adaptif 
konvensional (ADR) dan modifikasi pintar berdasarkan komputasi yang 
digunakan untuk menyelesaikan kompromi yang akan berlaku dengan 
menggunakan voltan talian yang rosak dan parameter arus untuk pelbagai 
modifikasi kawalan geganti perlindungan, mengoptimumkan pengukuran yang 
diselaraskan untuk menyekat atau membatasi penembusan arus rosak ke dalam 
grid. Kerumitan komputasi dan penyelesaian rumusan matematik adalah 
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beberapa batasan dalam mengoptimumkan perubahan ciri geganti dengan 
perubahan penembusan daya reaktif sistem untuk mengesan dan 
mengasingkan kesalahan dengan berkesan. Skema ADR juga memperlihatkan 
waktu komputasi yang tinggi kerana kerosakan saluran komunikasi, terancam 
dan terdedah kepada serangan siber kerana saluran komunikasi digunakan 
untuk penghantaran arahan trip serta pertimbang atas kos komunikasi yang 
tinggi. Pendekatan pintar yang awal menggunakan pendekatan luar talian yang 
hanya menggunakan parameter arus yang salah untuk membangunkan model 
latihan pengkelasan pintar untuk mengesan, mengklasifikasikan dan mencari 
kesalahan. Batasan model ini adalah keperluan untuk menjalani latihan semula 
bagi pengetahuan baru disebabkan perubahan topologi rangkaian sistem kuasa 
dan ianya kurang mantap. Kajian semasa ini mencadangkan pendekatan 
perlombongan data pintar untuk model klasifikasi kesalahan Machine Learning-
Adaptive Distance Relay (ML-ADR) menggunakan voltan sementara 1 kitaran 
yang diekstrak dan isyarat semasa yang tersembunyi dari kedua-dua parameter 
talian sihat dan rosak. Analisis multiresolusi wavelet diskrit hibrid dan algoritma 
pembelajaran mesin (DWMRA-ML) digunakan untuk pengekstrakan 
pengetahuan berguna yang tersembunyi dalam isyarat kerosakan sementara 
litar pintas 1 voltan (voltan dan arus) dari bahagian talian sihat dan rosak. 
Parameter ini digunakan untuk membangunkan modifikasi jarak jauh adaptif 
pembelajaran geganti jarak jauh (ML-ADR). Model pengkelasan kesalahan 
algoritma ML-ADR pintar dapat membezakan 10 jenis kesalahan litar pintas 
jarak jauh yang berbeza dari dua perubahan topologi rangkaian dengan dan 
tanpa STATCOM bersepadu titik tengah pada model sistem grid kuasa Matlab / 
Simulink. Variasi parameter sistem lain adalah 4 rintangan kesalahan yang 
berbeza (0,001 Ω, 10 Ω, 50 Ω, 100 Ω), dan dua sudut permulaan (0 oC dan 30 
oC). Hasil sebelumnya dari model Matlab dari geganti jarak berangka adaptif 
yang disambungkan pada sistem grid kuasa STATCOM bersepadu titik tengah 
sememangnya membuktikan wujudnya kesan di bawah jangkauan untuk elemen 
geganti zon-3 dengan kesalahan litar pintas pada batas liputan kepada 
anggaran impedans yang salah. BayesNet menyediakan model pengkelasan 
kesalahan ML-ADR terpadu yang lebih baik pada tahap kepentingan 5% 
daripada algoritma lain yang digunakan dalam merealisasikan model 
pembelajaran yang diselia pintar. Penilaian prestasi model pengkelasan 
BayesNet ML-ADR dengan nilai statistik kappa tertinggi 0.991, nilai ralat mutlak 
min terendah 0.0009, nilai ketepatan purata berwajaran 99.2%, liputan kawasan 
ROC 100%, masa keputusan perjalanan paling rendah 10 ms lebih baik 
daripada 20 ms yang ada untuk ADR konvensional. Model pengkelasan 
kesalahan BayesNet ML-ADR yang terintegrasi menghilangkan kompromi kesan 
di bawah elemen perlindungan sandaran zon-3 untuk pengesanan kesalahan, 
klasifikasi, dan pengurangan masa perjalanan yang tepat semasa kesalahan 
sempadan jarak jauh. Model ini menepati dan memenuhi objektif ADR yang 
diinginkan.. 
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CHAPTER 1 

1 INTRODUCTION 

1.1   Background  

There has been a constant global increase in global electric power energy 
demands in recent years [1, 2]. These have necessitated the commissioning of 
new power generation stations, alongside the expansion of the transmission 
and distribution network grid to meet these new trends [3, 4]. The concern on 
the successful evacuation of generated power from different energy sources to 
the end load terminals with minimum losses through the transmission network 
is also important [5]. There are drops in the voltage values (voltage-sag) at the 
midpoint of the long-distance transmission lines system [6, 7]. This limitation 
encourages the introduction of Flexible Alternating Current Transmission 
System (FACTS) devices [8], like the Static Synchronous Series Compensator 
(SSSC) [9], Static VAR compensator (SVC) [10], Static Synchronous 
Compensators (STATCOM) [11], and composite compensator like the unified 
power flow controller (UPFC) [12]. The FACTS devices facilitate the maximum 
electric power delivery from the generation source to the end-terminal 
substations at a high voltage level with minimal power losses and voltage 
variation [13]. The FACTS devices' presence changes the transmission lines 
parameters in the event of a fault affecting the measured impedance value 
compared to the pre-fault estimated value [14, 15]. This problem highlights the 
importance of studying and analyzing the effects of the STATCOM device on 
the distance relay protection operation on a high voltage transmission line [16-
18]. The STATCOM device absorbs or injects current into the connecting 
buses, affecting the distance relay protection device's operation performance 
during short circuit fault scenarios on the compensated grid system. This 
injected infeed penetrations led to the protection relay under-reach or over-
reach effect when connected between the distance protective relay location 
and the faulty point [19-21]. Hence, an equivalent apparent impedance is 
injected into the fault loop, which prevented the accurate fault impedance 
estimation by the distance relay, thereby compromising the relay safety 
operation compromise at zone-3 backup operation [22, 23].  

The midpoint integration of the STATCOM FACTS device on the transmission 
lines enables power transfer capability and optimum power system 
infrastructure utilization. Albeit being very useful, the shunt FACT device 
causes misoperation of the distance relay due to wrong faults impedance 
estimations due to the constant current penetrations from the connected 
STATCOM at the mid-point of connection to the utility grid [24, 25]. Some of 
the challenges encountered by the protection relay on such a compensated 
high voltage transmission line include false detection of faults, wrong fault zone 
identification, incorrect fault types classification, and inaccurate fault location 
estimation on the line [26-28]. 
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1.2   Problem Statement  

A power system utility grid with midpoint integrated STATCOM compensation 
device compromising the estimated apparent impedance seen by the distance 
protection relay. The distance relay estimated voltage and current signals are 
affected by the STATCOM penetration impact within the fault loop for far-end 
faults (zone-3) beyond the compensator location [29, 30]. Hence, impact the 
wrong trip command initiation (no-trip) based on the underreach effect in 
zones-3 backup protection element coverage [31, 32]. For a short circuit fault 
beyond the STATCOM midpoint location, the STATCOM contributes a reactive 
component into the utility grid leading to a slight increment in the estimated 
apparent impedance above the pre-set reference value. The estimated 
impedance increment is due to the additional STATCOM reactive current 
injection impact within the fault loop, resulting in the zone-3 protection element 
compromise (under-reaching effect). The relay initiated a no-trip command as 
the estimated impedance locate fault outside the zone-3 protection element 
coverage. Several Adaptive Distance Relay protection (ADR) schemes 
modifications were presented to address this safety compromise considering 
the high-risk involvement to equipment installation and personnel. Different 
adaptation levels on the relay operational setting characteristic changes in line 
with variation in the injected reactive current from the STATCOM into the grid. 
The earlier presented ADR schemes challenged have computational 
complexity in optimizing the relay operational characteristic changes in line 
with the system reactive current penetration changes for effective fault 
detection and classification. The possibility of cyber-attack compromises on the 
introduced communication link adoption for the adaptive characteristic setting 
changes and data transmission between the relay location and the sub-station 
is also a matter of concern.  

Given all these challenges, this study proposed an intelligent Machine Learning 
(ML) algorithm-based ADR (ML-ADR) to eradicate the zone-3 backup 
protection element trip compromise on the midpoint STATCOM compensated 
transmission line. The current study proposes an intelligent standalone 
machine learning algorithm (ML) adaptive distance relay (ML-ADR) 
modification model for effective elimination of zone-3 backup protection 
element compromise due to under-reach effect from midpoint integrated 
STATCOM during far-end fault at the relay zone-3 coverage boundary. 
Adopting intelligent computational algorithms to deploy artificially intelligent 
algorithms for the ADR modification will address the conventional distance 
relay protection compromise limitation. The proposed ML-ADR scheme will 
improve the detection of the zone-3 under-reach effect on fault classification, 
cyber-attack elimination, and fast trip decision algorithm generation that will 
isolate the relay far-end zone-3 backup protection trip compromise. 
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1.3   Research Objectives 

The main aim is to develop an intelligent standalone Machine Learning (ML) 
algorithm based Adaptive Distance Relay (ML-ADR) Protection Scheme. The 
ML-ADR addresses the midpoint integrated STATCOM compensating device's 
impact on the distance relay zone-3 element compromise on the grid 
transmission lines during the far-end short circuit fault. The proposed ML-ADR 
scheme will improve on the detection of the zone-3 under-reach effect on fault 
classification, cyber-attack elimination, and fast trip decision algorithm 
generation using the following specific objectives: 

i. To model a Matlab/Simulink distance relay with the midpoint integrated 
STATCOM utility transmission grid system to demonstrate the 
impending zone-3 under-reach effect from STATCOM injected current 
impact on the distance relay zone-3 backup protection element 
compromise during the far-end short circuit.  
 

ii. To discover knowledge from the extracted 1-cycle fault data from 
midpoint STATCOM integrated and non-integrated models during far-
end zone-3 faults, using hybrid Discrete Wavelet Multiresolution 
Analysis and ML for the intelligent ML-ADR model development. 
 

iii. To validate the standalone intelligent ML-ADR trip decision algorithm 
performance using a new fault dataset for fault detection, classification, 
and fast trip decision command.   

 
 
1.4   Research Hypothesis 

An intelligent machine learning adaptive distance relay (ML-ADR) algorithm 
model will eliminate the distance relay zone-3 protective element compromise 
due to infeed current contribution from midpoint integrated STATCOM during a 
far-end fault. 

1.5   Research Scope and Limitation 

This research study focuses mainly on testing the formulated hypothesis to 
achieve the stated objectives to improve the existing ADR zone-3 backup 
protection element compromise and operational efficiency during the far-end 
fault from the integrated STATCOM under-reach effects. The study presented 
the midpoint STATCOM integration grid system's impact on the distance relay 
protection scheme by focusing only on the distance relay zone-3 fault 
misdiagnosis and subsequent relay maloperation. The relay operation 
compromise is due to the wrong estimated fault impedance based on the 
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under-reach effect from the capacitive operation mode of the STATCOM for 
far-end faults. The scope of the current study involves   

i. MATLAB/Simulink software modeling of the distance relay 
demonstrates the under-reaching effect on the relay zone-3 element 
compromise for far-end faults. 
 

ii. Matlab/Simulink modeling of the 400 kV, 60 Hz modified Libya double 
circuits power transmission model with midpoint integrated STATCOM.  
 

iii. Conducting the far-end short circuit fault simulation and 1-cycle 
transient fault signals (voltage and current) extraction from STATCOM 
integrated and non-integrated networks topologies. 
 

iv. Knowledge extraction from transient signal logged data using hybrid 
DWML-ML algorithm for the extraction of useful unique signatures 
adoption for the intelligent ML-ADR model development in WEKA data 
mining software platform. 
 

v. Testing trained ML-ADR models to classify far-end short circuit fault 
with and without integrated STATCOM models with varying current 
injection into the grid to eliminate zone-3 element compromise. 
 

vi. Validate the modified ML-ADR for generalization based on the 
characteristic operating performance of the zone-3 backup protection 
element coverage with and without the presence of the STATCOM 
under constant loading and various far end-fault locations scenarios.  
 

vii. Modify the existing ADR scheme with the extracted generated code 
from the ML-ADR model. 

 
 
The study does not cover other FACTS devices' impact on the distance relay 
zone-3 protection coverage compromise. It does not address the over-reach 
effect during the inductive operational mode of the STATCOM, where the 
STATCOM absorbs the inductive current from the utility grid system. The 
estimated apparent impedance falls within the protection coverage zone and 
does not compromise the protection elements. Also, the distance relay's 
instantaneous primary operation in instantaneous zone-1 and backup zone-2 
protection coverage are not covered under this current study because they are 
not affected by this under-reach phenomenon. The present research is limited 
to the offline deployment of modified ML-ADR fault classifier model without the 
real-time sensors data acquisition deployments. © C
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1.6   Research Contributions  

This research study Addressed the impending challenges of distance relay 
misdiagnosis of faults based on the wrong estimation of apparent line 
impedance during the under-reach effect caused by STATCOM connected at 
the midpoint of the utility line during the far-end zone-3 short circuit faults. The 
wrong estimation of the distance relay located fault impedance trajectory barely 
outside the zone-3 backup coverage is the primary reason for the relay 
maloperation in the zone-3 element. This phenomenon indicates no-fault 
conditions on the transmission line system, and the relay will not initiate any 
trip command to all associated breakers under such conditions. Hence, this is 
a major safety compromise that must be urgently addressed in the primary 
protection relay's failure for the next adjacent line sections. The following are 
the contributions to the existing body of knowledge in this area of power 
system protection analysis. 

i. Improvement on the existing ADR operational efficiency with the new 
modified ML-ADR decision algorithm for the capacitive operation mode 
of zone-3 backup protection element compromise from the integrated 
STATCOM under-reach effects during the far-end short circuit faults. 
 

ii. Improved power system safety, reliability, and dependability with the 
self-automated intelligent ML-ADR protection model effectively 
discriminate several fault types, using faulty and healthy line hidden 
signatures for informed decision trip to eliminate the impending 
STATCOM under-reach effect.  
 

iii. Provide a teaching aid through the Matlab/Simulink model of the 
distance relay with the STATCOM connected to the transmission line 
midpoint to demonstrate the impact of shunt FACTS devices on 
distance relay zone-3 elements protection coverage operation.  
 

iv. The modified ML-ADR algorithm-code modification improved the relay 
decision trip-time with a minimum value below the conventional 
minimum recorded 20 ms.  

 
 
1.7   The layout of the thesis     

Chapter 1 (Introduction) contains the introduction section of the research study, 
the background information on the distance relay protection zone-3 element 
compromise drawbacks' effect during the far-end short circuit fault from the 
midpoint integrated STATCOM device. Highlights on the significance of solving 
the problems associated with the distance relay misoperation presented. The 
study's formulated hypothesis, objectives, and research scope/limitations 
divulged.  
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Chapter 2 (Literature Review) enumerates details FACTS configurations with 
much emphasis on STATCOM devices, the operational principles, and under-
reach effects on the distance relay backup protection element performance for 
the zone-3 far-end fault. A detailed review of recent related published literature 
on the adverse under-reach effect of STATCOM during capacitive operation 
mode on the distance relay accurate estimation of the line apparent impedance 
between the relay location and the faulty point under-connected large loads 
presented. Several methods were adopted in earlier studies to eliminate wrong 
impedance estimation on STATCOM integrated transmission line for zone-3 
backup protection coverage zone divulged in detail.   

Chapter 3 (Methodology) presents the proposed method for the research 
procedures, starting from the proposed modeling of the distance relay using 
Matlab/Simulink software to mimic the actual distance relay operation scheme 
and trip signal decision generation. The model demonstrates the under-reach 
effect from the midpoint integrated STACOM on the distance relay zone 3 
elements backup protection comprise during far-end short circuit faults. The 
modeling of intelligent standalone ML-ADR model that could address the 
impending zone-3 element compromise presented. The useful adoption of 
hidden knowledge extraction from the one-cycle fault transient signals (voltage 
and current) from integrated and non-integrated STATCOM simulation models 
during far-end short circuit faults using DWMRA-ML. 

Chapter 4 (Results and Discussions) presents a detailed analysis of the results 
from all propose objective execution in chapter 3 for a detailed discussion. The 
best intelligent standalone ML-ADR model selection conducted using operation 
performance comparison and trip-decision time reduction constraints. The ML-
ADR model validation demonstrated.  

Chapter 5 (Conclusion and Recommendations) summarises results 
implications based on achieved objectives and the future recommendations for 
further studies in the same research area. 
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