
 

 
 
 

UNIVERSITI PUTRA MALAYSIA 
 
 

FAMILY OF SINGLY DIAGONALLY IMPLICIT BLOCK BACKWARD 
DIFFERENTIATION FORMULAS FOR SOLVING STIFF ORDINARY 

DIFFERENTIAL EQUATIONS 
 

 
 
 
 
 
 
 
 
 

SAUFIANIM BINTI JANA AKSAH 

 
 
 
 
 
 
 
 
 
 
 
 

FS 2021 53 



FAMILY OF SINGLY DIAGONALLY IMPLICIT BLOCK BACKWARD
DIFFERENTIATION FORMULAS FOR SOLVING STIFF ORDINARY

DIFFERENTIAL EQUATIONS

By

SAUFIANIM BINTI JANA AKSAH

Thesis Submitted to the School of Graduate Studies, Universiti Putra
Malaysia, in Fulfillment of the Requirements for the Doctor of Philosophy

February 2021
© C

OPYRIG
HT U

PM



COPYRIGHT

All material contained within the thesis, including without limitation text, logos,
icons, photographs and all other artwork, is copyright material of Universiti Pu-
tra Malaysia unless otherwise stated. Use may be made of any material contained
within the thesis for non-commercial purposes from the copyright holder. Commer-
cial use of material may only be made with the express, prior, written permission of
Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

© C
OPYRIG

HT U
PM



DEDICATIONS

To my beloved family
and

Prof. Zarina Bibi Ibrahim

for their endless love and continuous support.

© C
OPYRIG

HT U
PM



Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

FAMILY OF SINGLY DIAGONALLY IMPLICIT BLOCK BACKWARD
DIFFERENTIATION FORMULAS FOR SOLVING STIFF ORDINARY

DIFFERENTIAL EQUATIONS

By

SAUFIANIM BINTI JANA AKSAH

February 2021

Chairman: Zarina Bibi binti Ibrahim, PhD
Faculty: Science

A new family of singly diagonally implicit block backward differentiation formulas
(SDIBBDF) for solving first and second order stiff ordinary differential equations
(ODEs) are developed. Motivation in developing the SDIBBDF method arises
from the singly diagonally implicit properties that are widely used by researchers
in Runge-Kutta (RK) families to improve efficiency of the classical methods. The
strategy is to reduce a fully implicit method to lower triangular matrix with equal
diagonal elements. In order to achieve a particular order of accuracy, error norm
minimization strategy is implemented based on the error constant of the formulas.

Although the derived methods have proven to solve stiff ODEs efficiently, the
extended SDIBBDF (ESDIBBDF) methods are introduced by adding extra function
evaluation to further improve accuracy. As some of the applied problems available
in the literature are modeled as second order ODEs thus, 2ESDIBBDF method is
constructed to meet the requirement. Numerical algorithm of the method is designed
to solve the second order stiff ODEs directly. Subsequently, the constant step
size methods are implemented with the variable step size scheme. The scheme is
proposed to optimize the total steps taken by the methods to approximate solutions
which later displays a better performance in solving the problems.

Necessary conditions for convergence are studied to ensure that the derived methods
are able to approximate solution of a differential equation to any required accuracy.
Since absolute stability is a crucial characteristic for a method to be useful therefore,
stability graphs of the methods derived are constructed by MAPLE programming.
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The stability properties of the methods are discussed to justify their ability for
solving stiff problems. Performance of the methods are verified from the numerical
results executed via the C++ programming by comparing them with existing
methods of the same nature.

Finally, the applications of developed methods in the field of applied sciences, life
sciences and engineering are presented. From the numerical experiments conducted,
it can be concluded that the proposed methods can serve as an alternative solver for
solving stiff ODEs of first and second order directly, and applied problems.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

KELUARGA BLOK FORMULA PEMBEZAAN KE BELAKANG
PEPENJURU TERSIRAT TUNGGAL UNTUK MENYELESAIKAN

PERSAMAAN PEMBEZAAN BIASA KAKU

Oleh

SAUFIANIM BINTI JANA AKSAH

Februari 2021

Pengerusi: Zarina Bibi binti Ibrahim, PhD
Fakulti: Sains

Keluarga baru blok formula pembezaan ke belakang pepenjuru tersirat tunggal
(BFPBPT) bagi menyelesaikan persamaan pembezaan biasa (PPB) kaku peringkat
pertama dan kedua dibangunkan. Galakan bagi membangunkan kaedah BFPBPT
ini datang dari ciri-ciri pepenjuru tersirat tunggal yang digunakan secara meluas
oleh penyelidik-penyelidik dalam keluarga Runge-Kutta (RK) bagi menambah baik
keberkesanan kaedah-kaedah klasikal. Strateginya adalah dengan menurunkan
kaedah tersirat penuh ke matriks segi tiga bawah dengan elemen-elemen pepenjuru
yang sama. Bagi mencapai peringkat ketepatan khas, strategi peminimuman norma
ralat dilaksanakan berdasarkan pemalar ralat formula-formula tersebut.

Walaupun kaedah-kaedah yang diterbitkan telah terbukti menyelesaikan PPB kaku
dengan berkesan, kaedah-kaedah lanjutan BFPBPT (LBFPBPT) diperkenalkan
dengan menambah fungsi penilaian tambahan untuk menambah baik lagi ketepatan.
Memandangkan sebahagian masalah-masalah gunaan yang terdapat dalam kajian
lepas dimodelkan sebagai PPB peringkat kedua, oleh yang demikian kaedah
2LBFPBPT dibina bagi memenuhi permintaan tersebut. Algoritma berangka kaedah
tersebut direka untuk menyelesaikan PPB kaku peringkat kedua secara langsung.
Seterusnya, kaedah-kaedah saiz langkah malar dilaksanakan dengan skim saiz
langkah berubah. Skim ini diusulkan untuk mengoptimumkan jumlah langkah
yang diambil oleh kaedah-kaedah tersebut bagi menganggarkan penyelesaian yang
seterusnya memaparkan prestasi lebih baik dalam menyelesaikan masalah.

Keadaan-keadaan perlu bagi penumpuan dikaji bagi memastikan bahawa kaedah-
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kaedah yang diterbitkan boleh menganggarkan penyelesaian persamaan kepada
mana-mana ketetapan yang dinginkan. Memandangkan kestabilan mutlak adalah
karakter penting bagi sesuatu kaedah untuk berguna, oleh itu graf kestabilan kaedah-
kaedah yang diterbitkan dibina dengan pengaturcaraan MAPLE. Ciri-ciri kestabilan
pada kaedah-kaedah dibincangkan untuk menjustifikasi kebolehan kaedah-kaedah
tersebut dalam menyelesaikan masalah-masalah kaku. Prestasi kaedah-kaedah
disahkan daripada keputusan berangka yang dilaksankan melalui pengaturcaraan
C++ dengan membandingkan kaedah-kaedah tersebut dengan kaedah-kaedah sedia
ada dari sifat yang sama.

Akhir sekali, aplikasi kaedah-kaedah yang dibangunkan dalam bidang sains gunaan,
sains kehidupan dan kejuruteraan dibentangkan. Dari eksperimen berangka yang
dijalankan, boleh disimpulkan bahawa kaedah-kaedah yang diusulkan boleh digu-
nakan sebaga penyelesai alternatif untuk PPB kaku peringkat pertama dan kedua
langsung, dan masalah-masalah gunaan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Differential equations (DEs) are the essential mathematical tools to model scientific
problems of various fields. Solution for DEs may exists in the form of linear where
its derivative occur to the first degree only and nonlinear when second or higher
degree derivatives are involved. In addition to that, the equations can be classified
as ordinary where the derivatives are taken with respect to a single independent
variable or partial when several independent variables are involved.

For this research, we are focusing on the solution of ordinary differential equations
(ODEs). In the research involving mathematical modeling of a scientific problems
for applied sciences, engineering and life sciences, system of ODEs are usually
categorized into stiff and non-stiff. This is due to the decaying components at widely
differing rates which exhibit behavior associates with stiffness.

Due to the complexity of the problems modeled by DEs up to extend where analyt-
ical methods are not adequate to find the accurate solution, numerical methods are
the only option. Numerical methods for solving ODEs are commonly categorized
as one-step or multistep processes. The difference lies on the number of previous
point used to compute solution where one-step uses only one point while multistep
method uses several previous points. Family of Runge-Kutta (RK) and backward
differentiation formulas (BDF) are among the famous solvers under the one-step and
multistep method respectively.

1.2 Ordinary Differential Equations

This research focuses to solve ODEs of various nature; single, system, linear and
nonlinear. The work is initially designed to deal with the first order ODEs of the
form

y′(x) = f (x,y), y(a) = µ, x ∈ [a,b], (1.2.1)

where yT = (y1(x),y2(x), . . . ,yd(x)), f T = ( f1(x), f2(x), . . . , fd(x)) and µT =
(µ1(x),µ2(x), . . . ,µd(x)). Eq. (1.2.1) is said to be linear if f (x,y) = A(x)y+Φ(x),
with A(x) is a constant d×d matrix and Φ(x) is a d−dimensional vector.

Then, the work is extended to directly solve the second order ODEs with the follow-
ing form directly.
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y′′i (x) = fi(x,yi,y′i), yi(a) = µi, y′i(a) = µ
′
i , (1.2.2)

where i = 1,2, ...,s for a≤ x≤ b.

Solution of differential systems is commonly dependent on the exact classification
of the equations. On some cases, that respective equation might not possess a real
solution. However, when the system has a solution, the concern will be directed
to whether that solution is the only one possible or not. By that, we present the
following definition.

Definition 1.1 A function f : R×Rd→ Rd is said to satisfy Lipschitz condition in its
second variable if there exist a constant L such that for any x∈ [a,b] and y1,y2 ∈ Rd ,

| f (x,y1)− f (x,y2)| ≤ L|y1− y2|, (1.2.3)

where L is called Lipschitz constant.

The Lipschitz condition is a necessary condition for the existence of unique solution
to Eq. (1.2.1). Therefore, the following theorem should be considered.

Theorem 1.1 Let f (x,y(x)) be defined and continuous ∀ points
(
x,y(x)

)
in a domain

D defined by a ≤ x ≤ b,y ∈ (−∞,∞), a and b are finite, and that f (x,y(x)) satisfies
Lipschitz condition. Then for any given number µ , there exists a unique solution y(x)
of Eq. (1.2.1), where ∀

(
x,y(x)

)
∈ D, y(x) is continuous and differentiable.

Detailed proof on the theorem can be found in Henrici (1962).

1.3 Stiffness

Throughout years, there have been numbers of definition for stiffness proposed by
researchers from various field based on the perspective of their research background.
Therefore, there is no consensus on the definition of stiffness as agreed by Shampine
and Thompson (2007) which stated that no universally accepted definition of stiff-
ness exists. For instance, in the field of numerical analysis, Curtis and Hirschfelder
(1952) has mentioned that stiff equations are equations where implicit methods
perform better, usually tremendously better, than explicit one. While according to
Dahlquist (1974), stiffness is systems containing very fast components as well as
very slow components.

In addition to that, a system is said to be stiff in a particular interval when a
numerical method with a finite region of absolute stability, applied to a system with
initial condition, is forced to use a certain interval of integration of step length
which is excessively small in relation to the smoothness of the exact solution in
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that interval, Lambert (1991). By referring to the argument raised by Brugnano et
al. (2011), the most successful definitions seems to be the one based on particular
effects of the phenomenon (stiff) rather than on the phenomenon itself.

Therefore, for this research, we interpreted the behavior of stiffness based on the
definition by Lambert (1973).

Definition 1.2 The linear system in Eq. (1.2.1) is said to be stiff if

1. Re(λi)< 0, i = 1,2, . . . ,d

2. max
i
|Re(λi)|>> min

i
|Re(λi)|, where λi are the eigenvalues of A and

3. the ratio S =
max

i
|Re(λi)|

min
i
|Re(λi)|

is called the stiffness ratio.

1.4 Linear Multistep Method

This section provides the crucial elements for the analysis of a linear multistep
method (LMM) which is the order, convergence and stability of the method. A brief
review on LMM by Lambert (1991) will be given first.

Definition 1.3 The general LMM for first and second order ODEs are as follows.
First order:

k

∑
j=0

α jyn+ j = h
k

∑
j=0

β jy′n+ j (1.4.1)

Second order:
k

∑
j=0

α jyn+ j = h
k

∑
j=0

β jy′n+ j +h2c jy′′n+ j (1.4.2)

where α j, β j and θ j are constants by assuming that not both α0, β0 and θ0 are zero,
with αk 6= 0. k is the order of the method and h is the step size.

To determine order of LMM for first and second order ODEs, we will be referring to
the following definitions respectively by Henrici (1962).

Definition 1.4 The LMM in Eq. (1.4.1) is said to be of order p if

C0 =C1 = ...=Cp = 0, Cp+1 6= 0 (1.4.3)

where Cp+1 is error constant.
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Definition 1.5 The LMM in Eq. (1.4.2) is said to be of order p if

C0 =C1 = ...=Cp =Cp+1 = 0, Cp+2 6= 0 (1.4.4)

where Cp+2 is error constant.

Convergence analysis of LMM is based on the following definition.

Definition 1.6 The LMM is said to be convergent if for all initial value problems
(IVPs) satisfying the conditions stated in Theorem 1.1, the following holds for all
x ∈ [a,b], and for all solutions yn of the difference equation satisfying the starting
conditions yµ = ηµ(h) for which lim

h→0
ηµ(h) = η , µ = 0,1, ...,k−1,

lim
h→0,n→∞

yn = y(xn).

Moreover, the following theorem stated the necessary conditions for convergence as
elaborated by Buchanan and Turner (1992).

Theorem 1.2 The LMM is convergent if and only if it is zero stable and consistent.

The following definitions on consistency, zero stability, absolute stability and
A−stability of the LMM are as reviewed in Lambert (1973) adn Lambert (1991).
For consistency of LMM, the following two definitions will be applied.

Definition 1.7 The LMM is said to be consistent if it has order p≥ 1.

Definition 1.8 A block method is consistent if and only if

(i)
k

∑
j=0

A j = 0,

(ii)
k

∑
j=0

jA j =
k

∑
j=0

B j,

(1.4.5)

where A j, B j are r× r matrices and the linear difference operator of the method is

L[y(x);h] =
k

∑
j=0

A jy(x+ jh)−
k

∑
j=0

hB jy′(x+ jh) (1.4.6)

Meanwhile, zero stable LMM is expected to have specific property of roots for its
characteristic polynomial.
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Definition 1.9 An LMM is said to be zero stable if no root of the first stability poly-
nomial, p(ζ ), has modulus greater than one, and if every root with modulus one is
simple.

Where the characteristic polynomial is in the respective form.

Definition 1.10 The characteristic polynomial of LMM in Eq. (1.2.1) assumes

π(r,hλ ) = ρ(r)−hλφ(r) = 0,

where H = hλ and λ =
∂ f
∂y

is complex.

Many applied problems generally comprise systems of equations with solutions con-
taining elements whose rates of change differ distinctly. In most cases, the property
of stability governs the numerical process. Thus, a method is considered useful when
it has a region of absolute stability.

Definition 1.11 The LMM in Eq. (1.2.1) is said to be absolutely stable in a region
R for a given H if and only if for that H, all the roots, rs = rs(H) of the stability
polynomial of the linear k−step method, π(r,H) = ρ(r)−Hφ(r), satisfy |rs| < 1,
s= 1,2, . . . ,k where H = hλ and ρ(r) and φ(r) are the first and second characteristic
polynomials respectively. Otherwise the method is said to be absolutely unstable.

Figure 1.1 shows the illustration of the absolute stability region for LMM on plane
H by Ibrahim et al. (2019).

Figure 1.1: The region of absolute stability for LMM

For a method to be capable for solving stiff ODEs, it must possessed an A−stability
which an essential property for stiffness solver.
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Definition 1.12 A numerical method is said to be A−stable if its region of absolute
stability contains the whole left-hand half-plane, Re(hλ )< 0.

However, the following statement by Dahlquist (1963) revealed that

Definition 1.13 (i) An explicit LMM cannot be A−stable.
(ii) The order of an A−stable implicit LMM cannot exceeded two.
(iii) The second order A−stable implicit LMM with smallest error constant is the
Trapezoidal rule.

In view of this, we present here the two less demanding stability properties which are
acceptable for the solutions of many stiff problems as reviewed in Butcher (2009).

Definition 1.14 A method is stiffly stable with stiffness abscissa D if the stability
region includes all complex numbers z such that Re(z)≤−D.

Definition 1.15 A numerical algorithm is said to be A(α)−stable for some α ∈[
0,

π

2

]
if the region of absolute stability includes the infinite wedge

Sα = {H : |Arg(−H)|< α,H 6= 0}. (1.4.7)

Besides, the local truncation error (LTE) that will be elaborated throughout this re-
search has the following definition.

Definition 1.16 The LTE at xn+k of Eq. (1.2.3) is defined as Eq. (1.4.6) when y(x) is
the theoretical solution of the IVPs in Eq. (1.2.1).

1.5 Problem Statement

Phenomenon of stiffness in ODEs occurs in a wide range of scientific fields, such
as in the studies of electrical circuits, vibrations, chemical reactions and infectious
disease. In addition to that, some of these applied problems are often modeled in the
form of second order ODEs.

Based on the common practice, the second order ODEs is solved by reducing the
problems into a system of first order ODEs. Then, a suitable method is used to
solve the system. However, due to the higher computational cost yields from this
practice, the direct numerical approaches are come in handy due to their efficiency
in accuracy and execution time when computing the solutions.
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In this research, a series of singly diagonally implicit block backward differentiation
formulas (SDIBBDF) are derived for solving the first order stiff ODEs and to solve
directly the second order stiff ODEs. Throughout this research, the proposed for-
mulas will be having various modifications to improve its performances in solving
the problems. As for the foundation of the formula itself, the idea is to implement
strategies from two different families of numerical methods namely the RK and the
block BDF methods.

1.6 Objectives of the Study

This study concerns on the derivation of new block multistep formulas with the im-
plementation of singly diagonally implicit approaches that are established and widely
known among the researchers of RK fields. The proposed formulas are expected to
solve the first and second order stiff ODEs efficiently for both constant and variable
step size mode. Our aim here is to achieve the following objectives:

1. To derive the constant step size SDIBBDF for solving first order stiff ODEs.

2. To construct the constant and variable step size extended SDIBBDF (ES-
DIBBDF) methods with additional function evaluation for first and second
order stiff ODEs.

3. To justify convergence and stability properties of the derived methods.

4. To evaluate performances of the derived methods with comparison of existing
methods.

5. To verify efficiency of the proposed methods to solve for applied problem of
various fields.

1.7 Scope of Study

This research focuses on the derivation of SDIBBDF and ESDIBBDF methods for
solving the first and second order stiff ODEs, where the second order stiff ODEs will
be solved directly without reducing it to first order. The ESDIBBDF methods derived
will undergo numbers of modification in order to improve its efficiency in approx-
imating numerical solutions. They are designed in a constant manner which later
extended to a variable step size form. Some of the numerical experiment conducted
are limited to the results available in scientific literatures only.

1.8 Outline of Thesis

In the first chapter, theorems and definitions related with the first and second order
stiff ODEs are stated. Basic properties of the LMM as the foundation in developing
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the proposed formula are introduced. Objectives, scope and limitation, and outline
of the thesis are also presented in this chapter.

Next chapter presents the scientific literature and theories behind the earlier numeri-
cal methods with singly diagonally implicit properties, error norm minimization and
implementation of block strategy to LMM. It is followed by the review on variable
step size scheme and direct solver method for second order ODEs.

Chapter 3 provides the preliminary research on two point SDIBBDF method of
constant step size for solving first order stiff ODEs. Implementation of error norm
minimization to the derived method is also presented in this chapter. Order of the
method is verified here along with the analysis of convergence and stability to ensure
its capability in solving the stiff ODEs. Efficiency of the methods is justified through
numerical experiment by comparing the results with existing methods available in
the literature.

To improve performance of the methods derived earlier for solving first order stiff
ODEs, family of extended SDIBBDF (ESDIBBDF) methods with extra function
evaluation is introduced in Chapter 4. Each method possessed a different dimension
of solution point and order. Order and convergence of the new extended methods are
justified, and stability graphs of each methods are constructed and analyzed. Results
for all methods in the family of ESDIBBDF are compared with existing methods in
terms of accuracy and computational time.

In Chapter 5, ESDIBBDF method is designed for the variable step size scheme
to solve the first order stiff ODEs. Strategy for step size selection is discussed
in details. Order, convergence and stability region of the method are analysed.
Performance of the variable step size ESDIBBDF method in solving the proposed
test problems is proven through the numerical experiment conducted.

The ESDIBBDF method to solve directly the second order stiff ODEs is presented
in Chapter 6. Details on the derivation and order of the method are described.
Necessary conditions for convergence are investigated and stability region of the
method is constructed. Numerical results of the developed method are compared
with several existing methods available in the scientific literature.

Chapter 7 discussed on the development of variable step size ESDIBBDF method
for second order stiff ODEs. The strategy applied to maintain or varying the step
size ratio is elaborated. Algorithm that shows flow of the computational process is
available in this chapter. Comparison between numerical results of the method with
existing solvers will justify the role of ESDIBBDF method as an alternative solver.
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In Chapter 8, selected methods introduced in Chapter 3 to Chapter 7 are adapted to
solve real-life scientific problems under the field of applied science, engineering and
life sciences. Numerical experiments are conducted to justify performance of the
methods in comparison with existing methods and well-known mathematical solver
for solving the applied problems.

Lastly, the entire thesis is summarized and the overall conclusion of the works are
presented in Chapter 9. Future studies for continuation of the research are also given
in the chapter.
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