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Microwave absorbers are used in a wide range of applications to eliminate or reduce 

electromagnetic radiation that could interfere with a system’s operation. There are 

several materials such as metals, various carbonaceous materials (graphene, carbon 

nanotubes, graphite powder and carbon fibers), conductive polymers, and their 

composites which are the ideal candidates for microwave absorbing applications. 

Conventionally metals have been used for this reason for a long time and act as the most 

effective microwave absorber, but they have drawback for corrosion, heavy weight and 
difficult processability. Industries are now concentrating on easy-to-process electrically 

conducting materials based on conductive polymers, conductive fillers in polymer 

matrix that not only have semiconductor properties but can also withstand corrosive 

environments, inexpensive and are light in weight. This thesis presents the development 

of microwave absorbers using polylactic acid (PLA) and empty fruit bunch (OPEFB) as 

the host.   Two types of absorbers were developed in this work as an alternative for 

reducing the limitations of metal-based microwave absorbing materials. The first 

absorber utilized activated carbon (AC) fillers synthesized from OPEFB. The second 

type used commercial multiwalled carbon nanotubes (MWCNTs) fillers obtained from 

US Research Nanomaterials, Inc. OPEFB fiber was crushed and sieved to various fiber 

sizes using laboratory sieve test. The relationship between the different OPEFB fiber 

sizes and the dielectric properties was then determined. 
 

 

The material composition and stuctural properties were analyzed using X-ray diffraction 

(XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray 

analysis (EDX), and fourier transform infrared (FTIR) techniques. The relative complex 

permittivity of the composites was measured using open-ended coaxial probe technique 

while the microwave absorption properties were measured with the microstrip. The 

results showed that relative complex permittivity of the OPEFB fiber increased with 

reduced fiber size. Additionally, relative complex permittivity of the OPEFB-PLA, 

© C
OPYRIG

HT U
PM



ii 

OPEFB-PLA-AC, and OPEFB-PLA-MWCNTs increased with filler content and were 

higher in the OPEFB-PLA-MWCNTs composites. At 10 GHz the dielectric constants of 

OPEFB-PLA, OPEFB-PLA-AC, and OPEFB-PLA-MWCNTs composites were found 

to be between 2.98 to 3.40, 3.14 to 3.96 and 3.40 to 4.25 respectively while the loss 

factor values were from 0.34 to 0.48, 0.41 to 0.52 and 0.51 to 0.64. The measured |S11| 

and |S21| were used to determine the reflection loss (SER), absorption loss (SEA), and 
total electromagnetic interference (EMI) shielding effectiveness (SET) of all the 

composites. The SET values were found to increase with filler loadings and were higher 

in the OPEFB-PLA-MWCNTs composites than the OPEFB-PLA and OPEFB-PLA-AC 

composites which is ascribed to the MWCNTs’ high loss factor. At 12 GHz, the range 

of SET values for OPEFB-PLA-MWCNTs composites was from 20.31 to 25.01 dB while 

OPEFB-PLA-AC and OPEFB-PLA composites were from 17.45 to 22.25 dB and 10.67 

to 12.50 dB respectively, which suggest their usefulness for microwave absorption.  AC 

derived from OPEFB fiber has the potential for use as a filler in polymeric composites 

and its application can reduce the cost of MWCNTs-based microwave absorbing 

materials significantly. 
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PEMBANGUNAN ASID POLIKLAKTIK DIISI DENGAN SERAT OPEFB, 

KARBON AKTIF DAN KOMPOSIT MWCNTS DIGUNAKAN SEBAGAI 

BAHAN PENGHANTARAN EMI 
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Fakulti :   Sains 

Penyerap mikrogelombang digunakan dalam pelbagai kegunaan untuk menghilangkan 

atau mengurangkan sinaran elektromagnet yang boleh mengganggu operasi sistem. 

Terdapat beberapa bahan seperti logam, pelbagai bahan berkarbonat (graphene, nanotiub 

karbon, serbuk grafit dan gentian karbon), polimer berkonduksian, dan kompositnya 

yang sangat sesuai untuk kegunaan penyerap mikrogelombang. Secara konvensionalnya, 

logam telah lama digunakan untuk tujuan tersebut dan ia bertindak sebagai penyerap 

mikrogelombang yang paling berkesan, tetapi ia sukar untuk diproses, berat dan boleh 
menyebabkan hakisan. Kini, industri tertumpu kepada bahan pengalir elektrik yang 

mudah diproses berasaskan polimer berkonduksian, pengisi berkonduksian dalam 

matriks polimer bukan sahaja bersifat semikonduktor tetapi juga murah, ringan dan dapat 

menahan persekitaran yang mengkakis. Kajian ini membentangkan perkembangan 

penyerap mikrogelombang menggunakan asid polilaktik (PLA) dan tandan kosong 

(OPEFB) sebagai perumah. Dua jenis penyerap dibangunkan dalam kajian ini sebagai 

alternatif dalam mengurangkan kekurangan bahan penyerap mikrogelombang 

berasaskan logam. Penyerap pertama menggunakan pengisi karbon aktif (AC) yang 

disintesis daripada OPEFB. Jenis kedua menggunakan pengisi nanotiub karbon 

berbilang dinding komersial (MWCNTs) yang diperoleh dari US Research 

Nanomaterials, Inc. Serat OPEFB banyak dijumpai sebagai sisa pepejal dari kilang 

kelapa sawit. Serat OPEFB dihancurkan dan diayak kepada pelbagai saiz serat 
menggunakan ujian saringan makmal. Hubungan antara pelbagai saiz serat OPEFB dan 

pemalar dielektrik ditentukan. 

Komposisi bahan dan sifat struktur dianalisis dengan menggunakan belauan sinar-X 

(XRD), pemancaran medan mikroskopi imbasan elektron (FESEM), analisis tenaga 

serakan sinaran-X (EDX), dan teknik transformasi Fourier inframerah  (FTIR). 

Kebertelusan komposit relatif rumit diukur menggunakan teknik kuar sepaksi terbuka 

sementara itu, sifat serapan mikrogelombang diukur menggunakan mikrojalur. Dapatan 
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menunjukkan kebertelusan komposit relatif rumit serat OPEFB meningkat dengan saiz 

serat yang dikurangkan. Selain itu, kebertelusan komposit relatif rumit bagi OPEFB-

PLA, OPEFB-PLA-AC, dan OPEFB-PLA-MWCNT meningkat dengan kandung 

pengisi dan lebih tinggi di dalam komposit OPEFB-PLA-MWCNT. Pada 10 GHz, 

pemalar dielektrik OPEFB-PLA, OPEFB-PLA-AC, dan komposit OPEFB-PLA-

MWCNT masing-masing didapati berada di antara 2.98 hingga 3.40, 3.14 hingga 3.96 
dan 3.40 hingga 4.25. Sementara itu, nilai faktor kerugian adalah dari 0.34 hingga 0.48, 

0.41 hingga 0.52 dan 0.51 hingga 0.64. Ukuran |S11| and |S21| digunakan untuk 

menentukan kehilangan pantulan (SER), kehilangan serapan (SEA), dan jumlah gangguan 

elektromagnet (EMI) keberkesanan pemerisaian (SET) bagi semua komposit. Nilai SET 

didapati meningkat dengan muatan pengisi dan lebih tinggi pada komposit OPEFB-

PLA-MWCNTs berbanding komposit OPEFB-PLA dan OPEFB-PLA-AC yang 

dikaitkan dengan faktor kehilangan tinggi MWCNT. Pada 12 GHz, julat nilai SET bagi 

komposit OPEFB-PLA-MWCNT adalah dari 20.31 hingga 25.01 dB sementara 

komposit OPEFB-PLA-AC dan OPEFB-PLA masing-masing dari 17.45 hingga 22.25 

dB dan 10.67 hingga 12.50 dB. Ini membuktikan kebergunaanya dalam serapan 

mikrogelombang. AC, terbitan dari gentian OPEFB berpotensi untuk digunakan sebagai 

pengisi dalam komposit polimer dan kegunaannya dapat mengurangkan kos bahan 
penyerap gelombang mikro berasaskan MWCNT dengan ketara.  
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CHAPTER 1 

1 INTRODUCTION  

The need for microwave absorbers and radar-absorbing materials are on the rise in 

military application dealing with reduction of radar signature air crafts and ships whilst 

in civilian applications dealing with electromagnetic interference among electronic and 

telecommunication systems. Composite absorber that uses carbon based materials in 
conjunction with a polymer matrix produces flexibility which can be manipulated by 

changes (in formulations) in both the filler and the matrix. Depending on the application 

for which the absorber is intended, the percentage of filler and the matrix are two 

important factors to be understood. In addition, microwave absorption properties are 

determined by the complex permittivity and permeability, sample thickness, 

microstructure of the absorber, and class of material. In the industry of aerospace, for 

example, innovative solutions are needed to shield effectively sensitive electronic 

equipment such as antennas from EMI without adding much of weight to aircraft. In the 

past, the problem of EMI was tackled by isolating the electronic device through some 

metallic housing. Metals are excellent conductors of electricity that are capable to 

absorb, reflect, and transmit electromagnetic interference. Metals like Silver, Iron, 

Aluminum, Nickel Copper, and Barium were used in most of the EMI shielding 
applications (Xiang et al., 2007). The disadvantage was that the metals were easily 

susceptible to oxidation or corrosion and so could not be utilized for outside applications. 

The heavyweight and price of the metal shields also limit the use of metals as shielding 

materials (Jagatheesan et al., 2015). Nowadays, the most common method of shielding 

by reflection is the use of metallic plates or absorption by carbon-based materials. 

Polymeric materials have also acquired popularity due to their flexibility, lightweight, 

corrosion resistance, and lower cost to metals. Researches had also been carried out on 

the applications of polymer composites incorporated with conductive fillers, fibers, 

nanotubes, and dispersing particles (Chen et al., 2015). The metal plate problems 

centered primarily on the discomfort of poor mechanical flexibility due to high rigidity, 

high weight density and high cost. Low density, high conductivity, efficient broadband 
absorption, and excellent thermal stability are the main parameters for a typical EM 

absorbing material. The microwave absorption mechanism classifies the materials into 

two main sections; dielectric loss materials and materials that are magnetically lossy. 

(Arief et al., 2017). The design of an EMI shielding material with a certain degree of 

attenuation while meeting a set of environmental requirements, retaining economics and 

regulating shielding have been suggested. The main purpose behind the proper design of 

the shield is to create a product that can comply with International electromagnetic 

Interference Regulatory Standards. The research of new active materials used as 

microwave absorbers for the EMI shielding of various electronic devices is one of 

present-day activities (Paligova et al., 2004).  

Measurement of complex permittivity is required not only for scientific but also for 

industrial applications. Dielectric properties measurement is an important factor in 
defining the physical and chemical properties related to storage and energy loss in 

various kind of materials (Wee et al., 2009). The term dielectric constant is misleading, 
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the dependency on dielectric material frequency causes it to have two parts, that is, the 

real and imaginary permittivity. The ratio of the imaginary part to the real part of 

permittivity is referred to as loss tangent. Permittivity and permeability are complex 

numbers of which the imaginary part is correlated with losses. 

Scattering parameter, permittivity and permeability of materials measured using 

microwaves components are controlled by the basic properties of microwaves. In good 
conducting materials, microwave has low penetrating depth. To investigate the 

interaction between microwaves materials, Maxwell’s equation is often employed. 

Properties like propagation mode, reflection, refraction, transmission, and impedance 

are defined from the equation. The broad nature of material properties allows the use of 

different techniques for measurement at microwave frequency range. A number of 

methods have been used in the measurements of electromagnetic properties at 

microwave frequencies. Amongst these methods are the transmission and reflection line 

technique, free space measurement technique, open-ended coaxial probe technique, and 

resonant method (Teppati et al., 2013).     

1.1 Problem Statement 

The incorporation of OPEFB fiber into PLA matrix is expected to improve the complex 

permittivity, absorption, and attenuation as well as reduce the fabricated composites 

transmission coefficient making a better microwave absorbing material. OPEFB-PLA 

composites have been used extensively in many microwave application. However, due 

to lack of detailed knowledge on the relationship between the filler composition and the 
electromagnetic properties, its potential has not been fully exploited. The dielectric 

properties and scattering parameters of OPEFB-PLA composites of different filler and 

types, matrix and material properties have not been studied in depth both theoretically 

and experimentally (Abdalhadi et al., 2018). In developing absorbing composites, 

ferrites are commonly used. However, like any other metals ferrites are heavy, corrosive, 

expensive, and non-biodegradable. Therefore, the use of metals such as ferrites for EMI 

shielding could lead to galvanic corrosion which in turn increased the nonlinearity 

behavior and decreased its shielding effectiveness.  

Oil palm empty fruit bunch fiber (OPEFB) offers various advantages such as low cost, 

low density, better thermal and insulating properties, good flexural strength, and 

biodegradability. Although microwave properties of OPEFB-PLA/PCL reinforced with 

Fe2O3 have recently been studied (Abdalhadi et al., 2018; Mensah et al., 2019) but the 
dielectric loss factor for the nanocomposites was found to be low and microwave 

absorbers need to have high loss factor for higher absorbing properties. In this research 

AC was synthesized from OPEFB and the dielectric properties subsequently improved 

after activating the OPEFB fiber via physical activation. The AC with improved 

dielectric properties could be useful in reducing the limitations of the frequently used 

fibers for microwave absorption applications. Recently, the addition of multiwalled 

carbon nanotubes (MWCNTs) into metal, ceramic, or polymer matrix has been carefully 

studied and a wide variety of different characteristics have been found (Kim et al., 2018 

and Mondal et al., 2018). The incorporation of AC and MWCNTs fillers into OPEFB-
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PLA composites could enhanced the permittivity and microwave absorbing properties 

of OPEFB-PLA-AC and OPEFB-PLA-MWCNTs composites. 

The conventional method to determine the complex permittivity of the composites 

materials is to place the sample in a closed waveguide. The approach is difficult as the 

sample must be firmly placed into the waveguide avoiding any air gaps. In this work, 

the open-ended coaxial probe (OEC) technique was used to investigate the complex 
permittivity of OPEFB-PLA, OPEFB-PLA-MWCNTs, and OPEFB-PLA-AC 

composites. The microwave attenuation due to sample does not only depend on the 

complex permittivity but also the sample thickness. Thick samples measurements are 

always problematic when using waveguide technique due air gap problems. In this 

research, the attenuation of the samples was also analyzed using the open line 

transmission (microstrip) technique. Visualization of the electromagnetic field in the 

samples was carried out where the samples were discretize into small meshes using the 

Finite Element Method (FEM) 

1.2 Research Objectives 

The main objectives of this research are as follows; 

 

1. To characterize the structure, microstructure and elemental properties of 

OPEFB-PLA, OPEFB-PLA-MWCNTs composites using XRD, FTIR, 

FESEM, and EDX techniques.  

2. To determine the effect of OPEFB fiber size on its dielectric constant and loss 

factor values 

3. To determine the complex permittivity and scattering parameters of OPEFB-

PLA, OPEFB-PLA-AC, and OPEFB-PLA-MWCNTs composites using the 

open-ended coaxial probe and microstrip line technique respectively. Also to 
calculate the Scattering parameter values of the composites using FEM and 

compare the results with microstrip line technique then visualize the 

electromagnetic field distribution of the composites using FEM for various 

filler percentage. 

4. To calculate the reflection loss, absorption loss, and total EMI shielding 

effectiveness of OPEFB-PLA, OPEFB-PLA-AC, and OPEFB-PLA-

MWCNTs composites. 
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1.3 The Scope of the study 

In this study, the melt blending technique using a Brabender machine to fabricate 

OPEFB-PLA biocomposites with MWCNTs and AC incorporated into the composites 

to enhance their electrical properties. The effect of the different percentages of 

MWCNTs and AC filler concentrations on the dielectric properties would be 

investigated using the open-ended coaxial probe technique. The use of a microstrip 

transmission line would be made to investigate the effect of MWCNTs and AC filler on 

the scattering parameters of OPEFB-PLA-AC and, OPEFB-PLA-MWCNTs 

composites. FEM COMSOL software would also be used to calculate the scattering 

parameters and for simulation of electromagnetic waves excited through OPEFB-PLA, 
OPEFB-PLA-AC, and OPEFB-PLA-MWCNTs composites samples when placed on the 

microstrip transmission line. The results obtained through measurement and simulation 

would also be compared. The microstructure, elemental and bonding types would be 

characterized using equipment such as XRD, FESEM, EDX, and FTIR. 

1.4 Organization of the Thesis 

This thesis consist of six chapters and appendix. Chapter one gives the general 

introduction on EMI and the materials used for this research. Followed by the statement 

of the problem, objectives of the study, the scope of the study and the thesis layout. 

Chapter two presents the reviews on the properties of OPEFB fiber, PLA, AC, and 

MWCNTs. Composite material synthesis methods and microwave characterization 

techniques are also reviewed in this chapter. Finally, the FEM as a numerical technique 

for the simulation of electrical field distribution and the determination of the S-

parameters of samples placed on the microstrip is reviewed. 

Chapter 3 presents the theory chapter and it discusses the theoretical concepts of the 

dielectric properties, polarization and basic electromagnetic wave equations. It 
concludes with the transmission and reflection coefficients calculation procedures with 

FEM formulation techniques. Furthermore, sample preparation, morphological, 

microstructural and electromagnetic characterizations are discussed in chapter 4. The 

use of the OEC, microstrip and FEM method are fully discussed in relation to the 

electromagnetic characterization using XRD, FESEM, EDX, and FTIR are all discussed 

in details. 

Chapter 5 is presented in six sections and it discusses the results of the material 

characterization and simulations involving all the samples used in this research. The first 

section presents and discusses the results of morphological and microstructural 

characterizations of the OPEFB fiber, PLA, AC powder, OPEFB-PLA, OPEFB-PLA-

AC, and OPEFB-PLA-MWCNTs composites using measurement technique such as 

XRD, FESEM, EDX, and FTIR. This is followed by the second section which presents 
and discusses the results of the complex permittivity of the OPEFB fiber, PLA, AC 
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powder, and the fabricated composites using the OEC technique. The third section of the 

chapter presents and discusses the results of FEM simulation and visualization of electric 

field intensity distribution for the OPEFB-PLA, OPEFB-PLA-AC, and OPEFB-PLA-

MWCNTs composites based on the microstrip. The fourth and fifth sections discusses 

the results of the S-parameters measurement of the OPEFB-PLA, OPEFB-PLA-AC, and 

OPEFB-PLA-MWCNTs composites using the microstrip technique and FEM 
respectively. The sixth section discusses the results of material absorption where the S-

parameters S11 and S21 of the composites obtained from the microstrip technique were 

used to calculate the reflection shielding effectiveness (SER), absorption shielding 

effectiveness (SEA) and the total shielding effectiveness (SET) of the composites.  

Finally, chapter six summarizes and draws conclusions based on the findings of this 

research and offers suggestions for the future research in this area of study. 
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