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Fossil fuels have been the most important energy and fuel sources over centuries. 

However, there has been growing distressed regarding on energy crisis caused by the oil 

reserve depletion and the effect of environmental issues (e.g. acid rain and global 

warming). Due to the high demand for energy, renewable energy has gained extensive 

attention worldwide in the past ten years as alternative energy to replace fossil fuels. In 

particular, fuels obtained from biomass (biofuels) has become a great option as a 

sustainable substitute for fossil fuels. Deoxygenation processes that exploit milder 

reaction conditions under H2-free atmospheres appear environmentally and economically 

effective for the production of green diesel. However, the presence of a catalyst in the 

deoxygenation reaction is important to excite optimum catalytic activity of the 

synthesized catalyst for a specific reaction system. The catalyst support plays an essential 

role in synthesizing catalyst, which is to improve the interaction between active metal-

support, promoting active metal dispersion on the surface and providing the adequate 

active site. Herein, green diesel was produced by catalytic deoxygenation of chicken fat 

oil (CFO) over oxides of binary metal pairs (Ni–Mg, Ni–Mn, Ni–Cu, Ni–Ce) supported 

on multi-walled carbon nanotubes (MWCNTs). The yield of hydrocarbons are arranged 

in the order of blank < MWCNT < Ni₁₀/MWCNT < Ni₁₀-Mn₁₀/MWCNT < Ni₁₀-

Cu₁₀/MWCNT < Ni₁₀-Mg₁₀/MWCNT < Ni₁₀-Ce₁₀/MWCNT. The deoxygenation reaction 

will lead to the formation of C15 and C17 of diesel fractions as the main product. Thus, 

the n-(C15+C17) selectivity are arranged in the increasing order of blank < MWCNT ~ 

Ni₁₀-Cu₁₀/MWCNT < Ni₁₀-Ce₁₀/MWCNT < Ni₁₀-Mn₁₀/MWCNT < Ni₁₀-Mg₁₀/MWCNT 

< Ni₁₀/MWCNT. The result shows that Ni₁₀/MWCNT has highest  n-(C15+C17) selectivity 

b u t  wi t h  l o w h yd r o c a rb o n  y i e l d  d u e  t o  i t s  f av o r  to wa r d  c r a c k i n g -

decarboxylation/decarbonylation (deCOx) reaction. Therefore, presence of Mg and Mn 

with Ni seems effective in deoxygenation activity, with hydrocarbon yields of >75% and 

n-(C15+C17) selectivity of >81%, indicating that deCOx of CFO is favored by the 

existence of the high amount of lower strength strong acidic sites along with noticeable © C
OPYRIG
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strongly basic sites. Based on a series of studies of different Mg and Mn dosages (5–20 

wt %), the oxygen free-rich diesel-range hydrocarbons produced efficiently by Ni10-

Mg15/MWCNT and Ni10-Mn5/MWCNT catalysts yielded >84% of hydrocarbons, with n-

(C15+C17) selectivity of >85%. The findings reveal that Ni10-Mg15/MWCNT shows high 

resistancy toward coke formation (coke < 5 wt %) under TGA analysis. In addition, Ni10-

Mg15/MWCNT shows high catalytic stability and reusability up to 5 cycles with >73% 

of yield and n-(C15+C17) selectivity of >66%.
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Bahan api fosil telah menjadi tenaga dan sumber bahan api yang paling penting sejak 

berabad-abad. Walau bagaimanapun, terdapat kerisauan yang semakin meningkat 

mengenai krisis tenaga yang disebabkan oleh kekurangan rizab minyak dan kesan 

daripada isu-isu alam sekitar (contohnya hujan asid dan pemanasan global). Oleh kerana 

permintaan yang tinggi, tenaga yang boleh diperbaharui telah mendapat perhatian luas 

di seluruh dunia sejak sepuluh tahun yang lalu sebagai tenaga alternatif untuk 

menggantikan bahan api fosil. Khususnya, bahan api diperoleh daripada biojisim (bahan 

api bio) telah menjadi pilihan yang baik sebagai pengganti bahan api fosil yang mapan. 

Proses penyahoksigenan yang mengeksploitasi keadaan tindak balas yang sederhana di 

bawah atmosfera bebas H2 muncul secara mesra alam sekitar dan berkesan dari segi 

ekonomi untuk pengeluaran diesel hijau. Walau bagaimanapun, kehadiran pemangkin 

dalam tindak balas penyahoksigenan adalah penting untuk merangsang aktiviti 

pemangkin secara optimum oleh pemangkin yang disintesis bagi sistem tindak balas 

tertentu. Sokongan pemangkin memainkan peranan penting dalam mensintesis 

pemangkin, yang bertujuan untuk meningkatkan interaksi antara logam aktif-penyokong, 

mempromosikan penyebaran logam aktif di atas permukaan dan menyediakan tapak aktif 

yang mencukupi. Di sini, diesel hijau telah dihasilkan oleh penyahoksigenan pemangkin 

bagi minyak lemak ayam (CFO) menggunakan pasangan logam oksida (Ni–Mg, Ni–Mn, 

Ni–Cu, Ni–Ce) yang disokong pada nanotiub karbon berbilang-dinding (MWCNTs). 

Hasil hidrokarbon disusun mengikut urutan tanpa pemangkin < MWCNT < 

Ni₁₀/MWCNT < Ni₁₀-Mn₁₀/MWCNT < Ni₁₀-Cu₁₀/MWCNT < Ni₁₀-Mg₁₀/MWCNT < 

Ni₁₀-Ce₁₀/MWCNT. Tindak balas penyahoksigenan akan membawa kepada 

pembentukan C15 dan C17 daripada pecahan diesel sebagai hasil utama. Oleh itu, 

pemilihan n-(C15+C17) disusun mengikut urutan meningkat tanpa pemangkin < MWCNT  © C
OPYRIG
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~ Ni₁₀-Cu₁₀/MWCNT < Ni₁₀-Ce₁₀/MWCNT < Ni₁₀-Mn₁₀/MWCNT < Ni₁₀-

Mg₁₀/MWCNT < Ni₁₀/MWCNT. Hasil menunjukkan Ni₁₀/MWCNT mempunyai 

pemilihan n-(C15+C17) yang tertinggi tetapi dengan hasil hidrokarbon yang rendah kerana 

ia lebih memihak kepada tindak balas pemecahan-penyahkarbosilan/penyahkarbonilan 

(deCOx). Oleh itu, kehadiran Mg dan Mn dengan Ni kelihatan efektif dalam aktiviti 

penyahoksigenan, dengan hasil hidrokarbon >75% dan pemilihan n-(C15+C17) >81%, 

menunujukkan bahawa deCOx bagi CFO digemari disebabkan kehadiran jumlah yang 

tinggi bagi kekuatan rendah tapak asid kuat bersekali dengan tapak bes kuat yang sangat 

ketara. Berdasarkan siri kajian pelbagai dos Mg and Mn (5–20 wt %), hidrokarbon 

oksigen bebas tinggi dalam lingkungan diesel terhasil dengan cekap oleh pemangkin 

Ni10-Mg15/MWCNT dan Ni10-Mn5/MWCNT menghasilkan >84% hidrokarbon, dengan 

pemilihan n-(C15+C17) >85%. Penemuan ini menunjukkan bahawa Ni10-Mg15/MWCNT 

mempunyai daya ketahanan yang tinggi terhadap pembentukkan kok (kok <5% berat) 

dibawah analisis TGA. Di samping itu, Ni10-Mg15/MWCNT menunjukkan kestabilan 

pemangkinan yang tinggi dan boleh diguna semula sehingga 5 kitaran dengan >73% hasil 

dan pemilihan n-(C15+C17) sebanyak >66%.
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CHAPTER 1 

INTRODUCTION 

 
 
1.1 Overview on Biomass, Biofuel and Green Diesel Production 

 

 

In a global society, the production of fuels from renewable feedstock has gained great 

attention as an alternative energy source to substitute fossil fuels (coal, petroleum, and 

natural gas). This is due to the extensive utilization of fossil fuels that leads to the 

depletion in fossil fuels reserves and consequently, giving rise to the environmental 

impact, such as global warming, acid rain, and greenhouse gas emission (Rani, 2014) 

which contributed to the environmental health hazard. It further escalates with the 

growing economy and the increasing population that lead to the overwhelming demand 

in energy. Hence, to fulfil the demand and overcome the deficiency of energy, the 

renewable sources have been used to replace the non-renewable energy resources as an 

alternative measure (Satyarthi, 2011).  

 

 

Biomass is one of the renewable sources which is abundant naturally, and typically being 

produced as a waste from the agriculture sector, such as sugarcane bagasse, corn, paddy 

husks, woody biomass, wheat, walnut shell, and bark (Lim et al., 2012; Pradhan et al., 

2019; Saidur et al., 2011; Shafie et al., 2012). Recently, biomass-derived triglycerides-

based feedstock has been utilized as an alternative to renewable raw material. 

Triglycerides are mainly made up of long chains fatty acid esters, which make up the 

structure of vegetable oils and fats. The triglycerides are composed of three fatty acids 

either in the form of saturated, monounsaturated, and polyunsaturated (Sotelo-Boyas et 

al., 2012). Typically, triglycerides are derived from vegetable oil, waste cooking oil and 

animal fats. Hence, biomass-derived triglycerides is a suitable feedstock for conversion 

into biofuel as an alternative clean hydrocarbon fuel which is sustainable and reliable to 

replace conventional fuels (Dale, 2008;  Demirbas, 2007). The benefits of biofuel are 

due to its renewable properties, largely available from various biomass sources, 

biodegradable and environmental-friendly a low-emission of CO2 and NOx upon 

combustion of fuel.  There is various type of biofuels such as biodiesel, bio-hydrogen, 

bio-gas, bio-methane, bio-ethanol, green gasoline, and green diesel. Among these 

biofuels, green diesel offered great interest from the researchers.  

 

Green diesel is also known as the second generation of biofuel, which made up of 

hydrocarbon chain that has a similar structure with petroleum-derived fuels. Even though 

biodiesel or fatty acid methyl esters (FAMEs) has been established widely as the most 

well-known biofuel, but biodiesel has a different chemical structure from petroleum-

derived fuels due to the presence of oxygenated compound (Bezergianni et al., 2010). 

The high-oxygenated compound exists in biodiesel resulting in undesirable properties 

such as high viscosity, low oxidative stability, a high cloud point, nitrogen oxide (NOx) 

emissions, and low energy-density (Orozco et al.,  2017). In contrast, green diesel that is 

comprised of mainly hydrocarbon and free oxygenated species has better properties such 

© C
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as higher heating value, lower density, lower viscosity and greater oxidative stability 

(Neonufa et al., 2017; Santikunaporn & Malee, 2012). Due to these reasons, green diesel 

exhibits the most promising biofuel in replacing conventional fuels due to its outstanding 

fuel properties than biodiesel.   

 

 

Deoxygenation processes are particularly attractive for producing green diesel, and the 

operational costs are relatively lower than the current upgrading process used in existing 

petroleum refineries, the hydrodeoxygenation (HDO) process. The hydrodeoxygenation 

process involves direct conversion of fatty acids via removal of oxygenated species, 

retaining the number of carbon atoms, with H2O as a by-product under H2 atmosphere 

(Hermida et al.,  2015). Meanwhile, deoxygenation processes involve the removal of 

oxygenated species in the forms of CO, CO2 and H2O via decarbonylation and 

decarboxylation (deCOx) under H2-free atmosphere (Asikin-Mijan et al., 2017; Echaroj 

et al., 2015). The hydrocarbon products formed typically contain one less carbon atom 

(Cn-1) than the original fatty acid chain. The green diesel produced from deoxygenation 

exhibits better fuel characteristics with high heating value (HV), high cetane number 

(80–90), lower viscosity and high fuel stability. Thus, it has been widely accepted by 

many research studies that green diesel is the most promising substitute for fossil-based 

diesel (Douvartzides et al., 2019). 

 

 

1.2  Chicken Fat Oil as Bio-based Feedstock 

 

 

Selecting the appropriate feedstocks for green diesel production is extremely important 

for industrial practices. Typically, feedstock has been chosen based on the criteria of (1) 

wide-availability of the feedstock, (2) economical manageability and (3) geographical 

for easy access of feedstock. Usually, vegetable oil feedstock used for biofuel production 

consists of edible oil and non-edible oil. However, edible oils facing problems related to 

the competition between food and fuel issues. Meanwhile, non-edible oil such as jatropha 

oil, rubber oil, ceiba oil, karanja oil, sterculia oil and castor oil are expensive which make 

it not suitable to be used in the production of biofuel (Khan et al., 2014). Thus, the 

production of green diesel derived from animal fats has become a great interest. Animal 

fats that are commonly used are beef tallows, chicken fat, mutton fat and pork lard (Boey 

et al., 2011; Hoque et al.,  2011; Jeong et al., 2009; Mutreja et al., 2011). Among these, 

chicken fat oil (CFO) offers a better alternative renewable source. Commonly, chicken 

which is known as staple food worldwide has a production of about 107.1 million metric 

tonnes (Seidavi et al., 2019). It was estimated that fat contents in chicken poultry are 

approximately 10-12% (Alptekin et al., 2014). Thus, there will be around 10.7-12.9 

million metric tons of chicken fat produced per year. The CFO comprised of C16 (palmitic 

acid) and C18 (oleic acid) fatty acids. It was estimated that deoxygenation of CFO via 

decarboxylation/decarbonylation (deCOx) reaction as the main pathway will lead to the 

formation of the hydrocarbon, mostly made up of diesel fractions (n-C15 and n-C17) 

(Kaewmeesri et al., 2015).  
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1.3 Deoxygenation Catalyst 

 

 

Metal oxides seem to be realistic deoxygenation catalysts for the future. Among those 

metal oxide catalysts, Ni metal as the main catalyst shows activity comparable to noble 

metals in converting lipid-based feeds to liquid hydrocarbons. As discussed by Morgan 

et al., Ni on carbon support catalysts showed similar activity to that of Pd- and Pt-

promoted catalysts at higher concentration, which suggested that Ni has good 

performance in replacing noble metals in deoxygenation (Morgan et al., 2010). Although 

Ni seems promising in deoxygenation, it is favored toward excessive cracking reaction 

that resulting in lower yields of diesel range hydrocarbon products and catalyst 

deactivation. In an attempt to enhance the deoxygenation activity of the Ni catalyst, 

oxides of other metals, such as Ce, W, Co, Fe, Cu, Mo, Zn, Mg and Ca, have also been 

used as a promoter in deoxygenation under H2-free conditions (Aysu et al., 2016; Loe et 

al., 2016; Rezgui & Guemini, 2005; Tani et al., 2011). These promoters were added into 

the main catalyst to form the binary metal oxide catalysts. Interestingly, Ce and Cu offer 

better deoxygenation reaction selectivity in diesel-like hydrocarbon production. Aysu et 

al. (2016) studied the deoxygenation of jojoba oil over Ce-promoted catalysts and the 

results showed that the reaction occurred exclusively via deCOx, which yielded higher 

percentages of aliphatic compound. A similar case, with Cu-promoted catalysts studied 

by Loe et al., whereby the Cu-promoted catalyst was demonstrated to be active in 

removing the oxygen atoms from free-fatty-acid-derived oxygenates and yielded >90% 

of diesel-range hydrocarbons (Loe et al., 2016). Additionally, a basic promotion catalyst 

(MgO) also favored the deCOx reaction. Tani et al. (2011) discovered that MgO-

supported catalysts resulted in enhanced triglyceride cracking via decarboxylation and 

the green diesel produced resembled conventional liquid fuel. Moreover, the use of basic 

metal catalysts can suppress coke formation and offer greater catalyst stability (Asikin-

Mijan et al., 2015).  

 

 

Instead of catalyst promoter, the catalyst support always plays a critical role in promoting 

the deoxygenation reaction. This is due to the support being able to enhance active metal 

dispersion, simultaneously increasing the active sites for catalysis of the reaction (Murali 

Dhar et al., 2003). Carbon is promising support, which can be attributed to the high-

specific area and the nature of carbon itself, being thermally stable; thereby minimizing 

the sintering of the active metal during the deoxygenation reaction (Zhao et al., 2013). 

Nano-sized carbon supports, such as multi-walled carbon nanotubes (MWCNTs) have 

specific pore structures that offer better thermal stability (Zhang., 2009) than micron-

sized activated carbon supports; and the use of MWCNTs as a catalyst support in the 

deoxygenation reaction has been recognized. As discussed by Asikin-Mijan et al., 

MWCNTs were used as catalyst support in the deoxygenation of Jatropha curcas oil, 

resulting in high selectivity toward C15+C17 via the deCOx pathway and producing >80% 

hydrocarbon yield (Asikin-Mijan et al., 2018). Based on the finding it can be suggested 

that the use of MWCNT as catalyst support offers better catalytic stability, thus, 

increased the catalytic activity.© C
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1.4 Problem Statement 

 

 

Even though hydrodeoxygenation (HDO) pathway typically preferred by the refinery 

industry but hydrodeoxygenation process involves direct conversion of fatty acids via 

removal of oxygenated species, retaining the number of carbon atoms, with H2O as a by-

product under high pressure of H2 atmosphere. Due to the absorbent cost of H2 

consumption during the reaction process, makes the hydrodeoxygenation process 

becomes less preferable to be used for the production of green diesel.  Hence, production 

of green diesel via deoxygenation has been proposed since the reaction proceed under 

H2-free atmosphere. Deoxygenation process is typically driven by the presence of a  

catalyst. There is various type of catalyst that has been used, including noble metals, 

sulfided catalyst and metal oxides in promoting deoxygenation. Noble metals such as Pd, 

Pt, and Rh were proven to be the most active metal catalysts of deoxygenation activity 

but yet high-cost constraints made them unattractive. Besides, the sulfided catalyst also 

has the disadvantage to be used as a catalyst owing to sulfur leaching. Hence, research 

has been focused on generating catalyst that is inexpensive and essentially free of sulfur. 

Metal oxides seem to be realistic deoxygenation catalysts for the future. Therefore, NiO 

catalyst has been developed as the main catalyst to perform the deoxygenation reaction. 

This is due to the NiO shows high reactivity for upgrading the triglycerides-based 

biomass into diesel-range alkanes as main products. Besides that, catalyst support plays 

an important role in improving the metal dispersion and facilitating deoxygenation 

reaction effectively. Carbon-based support catalyst has been proven to be effective in 

enhancing the deoxygenation of fatty-acid and its derivatives. MWCNT as one of the 

carbon-based support with nano-sized has gained great interest in recent times due to its 

high surface area to volume ratio affordability. Even though NiO supported MWCNT is 

effective for deoxygenation, but the catalyst still highly favourable toward coke 

formation leading to decrease the catalytic activity (Abdulkareem-Alsultan et al., 2019). 

Nevertheless, the addition of metal oxide promoter such as Mg, Mn, Cu and Ce in NiO 

supported on MWCNTs to form binary metal oxide catalyst will assist in enhancing the 

catalytic deoxygenation process. The promoter with the basic property known as coke 

inhibitor and has most promotional effect in retarding the catalyst deactivation. Thus, the 

present study highlights on the development of a series of oxides binary metal pairs (Ni–

Mg, Ni–Mn, Ni–Cu, Ni–Ce) supported on MWCNTs in the deoxygenation of chicken 

fat oil (CFO) under H2-free conditions. 

 

 

1.5    Objectives 

 

 

The objectives of conducting this research are 

1. To synthesize a series of oxides binary metal pairs (Ni–Mg, Ni–Mn, Ni–Cu, 

Ni–Ce) supported on MWCNTs and to characterize the physicochemical 

properties of catalysts. 

2. To produce green diesel from chicken fat oil via catalytic deoxygenation 

pathways under the reaction condition at 350°C for 2 h reaction time using 3 

wt% catalyst loading under inert flow. 

3. To study the catalyst stability and reusability Ni10-Mg15/MWCNT. 
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