EFFECTS OF AQUEOUS OZONE PASTEURIZATION ON S. typhimurium INACTIVATION AND QUALITATIVE ATTRIBUTES OF CHOKANAN MANGO (Mangifera indica L.) FRUIT JUICE

NUR AMIRA BINTI MOHD SUPIAN

FK 2021 78
EFFECTS OF AQUEOUS OZONE PASTEURIZATION ON S. typhimurium INACTIVATION AND QUALITATIVE ATTRIBUTES OF CHOKANAN MANGO (Mangifera indica L.) FRUIT JUICE

By

NUR AMIRA BINTI MOHD SUPIAN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

May 2021
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF AQUEOUS OZONE PASTEURIZATION ON S. typhimurium INACTIVATION AND QUALITATIVE ATTRIBUTES OF CHOKANAN MANGO (Mangifera indica L.) FRUIT JUICE

By

NUR AMIRA BINTI MOHD SUPIAN

May 2021

Chairman : Nor Nadiah Abdul Karim Shah, PhD
Faculty : Engineering

The juice and beverages industry shows rapid growth from year to year in line with the rise of fruits consumption. The consumers tend to add fresh fruit juice to supplement their healthy lifestyle and these choices include nutrient-rich mango fruit of Chokanan variety. Nonetheless, the risk of cross-contamination of fresh fruits are increasing as the import volume from other countries are also amplifying. The risk may exacerbate if the hygiene practice of the fruit juice handlers is abysmal. Secondary preservation methods to produce safe fruit juice is imperative as S. typhimurium contamination of mango juice could potentially cause severe harm to consumers since this pathogen can attach and infiltrate the mango fruit. Even though the thermal pasteurization method has been proven effective towards microorganism inactivation, the treatment can affect the nutritional quality of mango juices (MJ). Thus, the juice industry and academia are actively investigating alternative pasteurization technologies and ozone is one of the novel technologies attracting their interests because it does not leave any undesirable residue in the treated food product in addition to its ability to destroy harmful pathogens. However, it is challenging to predict ozone’s antimicrobial behaviour in fruit juices as it depends not only on the ozone processing parameters (processing time and ozone dose) but also on the treated juice composition. Hence, this study was done to evaluate the efficiency of ozone as a substitute pasteurization method to thermal treatment towards S. typhimurium inactivation and retention of physicochemical and antioxidant properties of various concentration ratios of Chokanan mango juice diluted with distilled water (DW); 100MJ:0DW, 75MJ:25DW, and 50MJ:50DW. The above-mentioned mango juice samples were then treated to ozone treatment with ozone doses of 0.33, 0.67, 1.00, and 1.33 mg/mL for 10, 20, 30, and 40 min. The
results from this study have shown that the efficacy of ozone pasteurization is significantly ($p < 0.05$) affected by mango juice concentration ratios; where it can be seen that the inactivation rates for 5-log reduction of *S. typhimurium* was observed at 36.39 min, 1.20 mg/mL (for sample 100MJ:0DW), 28.38 min, 0.95 mg/mL (for sample 75MJ:25DW) and 24.82 min, 0.82 mg/mL (for sample 50MJ:50DW). In addition to that, the inactivation of *S. typhimurium* in MJ samples has successfully achieved the 5-log reduction within 40 min (at ozone dose of 1.33 mg/mL) and 30 min (at ozone dose of 0.33 mg/mL) and these results fitted well to the Weibull model. This study also offers some insight into the effects of ozone on the quality attribute of MJ samples. The results showed significant changes ($p < 0.05$) in the pH and total soluble solids (TSS) value of MJ samples. Ozone was found to be effective in lowering the pectin methylesterase (PME) activity ($p < 0.05$) from de-esterifying the pectin molecules and increased ($p < 0.05$) the DPPH activity of MJ samples, thereby increasing the juice’s quality. However, a significant decrease ($p < 0.05$) was seen in the total color difference (TCD), ascorbic acid, and total phenolic content (TPC) on ozone-treated MJ samples. Therefore, to further support physicochemical analysis findings, colour kinetic was studied to predict mango fruit juice’s quality degradation due to ozone treatment. The first-order reaction model was shown to best fit the color L^*, b^*, and TCD values. A significant difference ($p < 0.05$) can be observed between the degradation rate constant (k-value) for all MJ samples, which implies that the k-value is not only affected by ozone dose but also by juice’s matrix. The 50MJ:50DW sample also shows the lowest percentage changes in color (b^*) value and k_{TCD} degradation corresponds to juice composition. In summary, the results of this study proved that aqueous ozone can potentially be used as pasteurization method in juice processing; where it can reduce *S. typhimurium* by 5-log reduction and managed to minimize the nutrient content changes in MJ samples. Nevertheless, it is imperative to examine the juice composition as a crucial intrinsic parameter in order to gauge the efficacy of juice preservation perusing ozone technology.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN PASTEURISASI OZON BERAIR TERHADAP PENYAHAKTIFAN S. typhimurium DAN SIFAT KUALITI JUS BUAH MANGGA CHOKANAN (Mangifera indica L.)

Oleh

NUR AMIRA BINTI MOHD SUPIAN

Mei 2021

Pengerusi : Nor Nadiah Abdul Karim Shah, PhD
Fakulti : Kejuruteraan

Industri jus dan minuman menunjukkan pertumbuhan pesat dari tahun ke tahun sejajar dengan peningkatan pengambilan buah-buahan. Pengguna cenderung menambah jus buah segar untuk menokok gaya hidup sihat mereka dan pilihan ini termasuklah buah mangga dari jenis Chokanan yang kaya dengan nutrien. Namun begitu, risiko pencemaran silang dari buah segar semakin meningkat apabila jumlah import dari negara lain juga semakin bertambah. Risiko boleh bertambah jika amalan kebersihan pengendali jus buah adalah buruk. Dengan itu, kaedah pengawetan sekunder untuk menghasilkan jus buah yang selamat adalah mustahak kerana pencemaran jus mangga oleh S. typhimurium berpotensi menyebabkan kemudaratan kepada pengguna lantaran patogen ini dapat melekat pada permukaan dan menyusup masuk ke dalam buah mangga. Walaupun kaedah pasteurisasi terma telah terbukti berkesan terhadap penyahaktifan mikroorganisma, rawatan tersebut dapat merosotkan kualiti nutrien jus mangga (MJ). Oleh itu, industri jus dan ahli akademik sedang aktif meneliti teknologi pasteurisasi alternatif dan ozon adalah salah satu teknologi baru yang menarik minat mereka kerana ia tidak meninggalkan sisa yang tidak diingini dalam produk makanan yang dirawat selain kemampuannya untuk memusnahkan patogen merbahaya. Walau bagaimanapun, adalah sukar untuk meramalkan tingkah laku antimikrobial ozon di dalam jus buah kerana ia tidak hanya bergantung pada parameter pemprosesan ozon (masa pemprosesan dan dos ozon) tetapi juga pada komposisi jus yang dirawat. Oleh itu, kajian ini dijalankan untuk menilai kecekapan ozon sebagai kaedah pasteurisasi menggantikan rawatan terma terhadap penyahaktifan S. typhimurium dan pengekalan sifat fizikokimia dan antioksidan pelbagai nisbah kepekatan jus mangga Chokanan yang dilarutkan dengan air suling (DW); 100MJ: 0DW, 75MJ: 25DW, dan 50MJ: 50DW. Sampel jus mangga yang disebutkan di atas kemudian dirawat dengan rawatan ozon dengan dos ozon sebanyak 0.33, 0.67, 1.00, dan 1.33 mg / mL selama 10, 20, 30, dan 40 minit. Hasil dari kajian ini menunjukkan bahawa keberkesanan pasteurisasi ozon adalah dipengaruhi secara signifikan...
Dalam kajian ini, perubahan yang ketara \((p < 0.05)\) telah dilihat dalam kadar penyahaktifan untuk mengurangkan 5-log \(S.\ typhimurium\) telah diperhatikan pada kadar 36.39 min, 1.20 mg/mL (untuk sampel 100MJ: 0DW), 28.38 min, 0.95 mg/mL (untuk sampel 75MJ: 25DW) dan 24.82 min, 0.82 mg/mL (untuk sampel 50MJ: 50DW). Selain itu, penyahaktifan \(S.\ Typhimurium\) dalam sampel MJ juga berjaya mencapai pengurangan 5-log dalam masa 40 minit (pada dos ozon 1.33 mg/mL) dan 30 minit (pada dos ozon 0.33 mg/mL) dan keputusan ini adalah berpadanan dengan model Weibull. Kajian ini juga memberikan beberapa gambaran mengenai kesan ozon terhadap sifat kualiti sampel MJ. Hasil kajian telah menunjukkan perubahan yang ketara \((p < 0.05)\) pada nilai pH dan jumlah pepejal larut (TSS) sampel MJ. Ozon didapati berkesan dalam menurunkan aktiviti pectin metilesterase (PME) \((p < 0.05)\) daripada membebaskan ikatan molekul pektin dan meningkatkan \((p < 0.05)\) aktiviti DPPH pada sampel MJ, dengan secara langsung meningkatkan kualiti jus. Walau bagaimanapun, penurunan yang ketara \((p < 0.05)\) dapat dilihat pada jumlah perubahan warna \((TCD)\), asid askorbik, dan jumlah kandungan fenolik (TPC) pada sampel MJ yang dirawat oleh ozon. Oleh itu, untuk lebih menyokong penemuan analisis fizikokimia, kinetik warna telah dikaji untuk meramalkan kemerosotan kualiti jus buah mangga akibat rawatan ozon. Model reaksi tertib pertama ditunjukkan paling sepadan dengan nilai warna \(L^*, b^*,\) dan \(TCD\). Perbezaan yang ketara \((p < 0.05)\) dapat diperhatikan di antara pemalar kadar degradasi (nilai-\(k\)) untuk semua sampel MJ, yang menunjukkan bahawa nilai-\(k\) tidak hanya dipengaruhi oleh dos ozon tetapi juga oleh matrik jus. Sampel juga 50MJ: 50DW menunjukkan perubahan nilai peratusan terendah untuk nilai warna \((b^*)\) dan kemerosotan \(k_{TCD}\) yang berkadar dengan komposisi jus. Secara ringkasnya, hasil kajian ini membuktikan bahawa rawatan ozon berair berpotensi digunakan sebagai kaedah pasteurisasi dalam pemprosesan jus; di mana ia dapat mengurangkan \(S.\ typhimurium\) sebanyak 5-log pengurangan dan dapat mengawal perubahan kandungan nutrien yang minimum dalam sampel MJ. Walau bagaimanapun, adalah sangat mustahak untuk mengkaji komposisi jus sebagai parameter intrinsik yang sangat penting untuk mengukur keberkesanan pengawetan jus yang menggunakan teknologi ozon.
ACKNOWLEDGEMENTS

In the name of Allah, the Most Compassionate and Most Merciful. Alhamdulillah, all praise and thanks to Almighty Allah, with His blessing, gave me the strength, passion, and patience to finish this study until this manuscript is completed and compiled.

First and foremost, I would like to express my deepest gratitude to Ts. Dr. Nor Nadiah Abdul Karim Shah for her valuable and constructive suggestions for this research work. Her willingness to give her time so generously and her words of encouragement have inspired me throughout my master's study. My thanks are also extended to the following supervisor committee, Dr. Aliffdalino Sulaiman and Prof. Rosnah Shamsudin, for their assistance and valuable feedback for this study. Not to forget, the laboratory technicians; En. Raman Morat, Pn. Siti Hajar Zakaria, En. Zahiruddin Daud, and En. Shahrufrizal Zakaria, for their help in handling the instruments and machines.

I am also particularly grateful to Azizah Mohamad and the postgraduate students "Geng Lab Havoc" group for their help and for sharing their knowledge in research with me.

A special and huge thank you is given to my beloved parents En. Supian and Puan Yati and my naughty little sister, Amila, and my sweet twin sister, Amiza, for their unconditional love, endless support, prayer throughout my study. Thank you for always being with me during my happy or stressful moments.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Nor Nadiah binti Abdul Karim Shah, PhD
Senior Lecturer Ts.
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Rosnah binti Shamsudin, PhD
Profesor Ts.
Faculty of Engineering
Universiti Putra Malaysia
(Member)

Alifdalino bin Sulaiman, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

ZALILAH MOHD SHARIFF, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 14 October 2021
Declaration by graduate student

I hereby confirm that:

• this thesis is my original work;
• quotations, illustrations and citations have been duly referenced;
• this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
• intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
• written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
• there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ______________________ Date: __________________

Name and Matric No.: Nur Amira Binti Mohd Supian GS48183
Declaration by Members of Supervisory Committee

This is to confirm that:
• the research conducted and the writing of this thesis was under our supervision;
• supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________________
Name of Chairman of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________

Signature: __________________________
Name of Member of Supervisory Committee: __________________________
TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

APPROVAL

DECLARATION

LIST OF TABLES

LIST OF FIGURES

LIST OF ABBREVIATIONS

LIST OF NOMENCLATURES

CHAPTER

1 INTRODUCTION

1.1 Research background

1.2 Problem statement

1.3 Research objectives

1.4 Scope of research

1.5 Thesis structure

1.6 Contribution of thesis

2 LITERATURE REVIEW

2.1 *Mangifera indica* L.

2.1.1 Origin & varieties

2.1.2 Nutritional values

2.1.2.1 pH and total soluble solids (TSS)

2.1.2.2 Turbidity and PME activities

2.1.2.3 Total phenolic content (TPC) and antioxidant activities (DPPH)

2.1.2.4 Ascorbic acid and color

2.1.3 Mango production and market potential

2.1.3.1 Worldwide’s statistics

2.1.3.2 Malaysia’s statistic

2.2 Fruit juice

2.2.1 Fruit juice processing

2.2.2 Cold-pressed technology

2.2.3 Concern of food borne illness/outbreak

2.2.4 Fruit juice regulation

2.3 Pasteurization method of fruit juice

2.3.1 Conventional pasteurization & preservation
2.3.2 Non-thermal pasteurization 27
2.3.3 Ozone 35
 2.3.3.1 Advantages and disadvantages of ozone 36
 2.3.3.2 Ozone regulations 36
 2.3.3.3 Ozone usage in fruit juice 37
2.4 Kinetic modeling of bacterial inactivation 44

3 EXPERIMENTAL DESIGN AND METHODOLOGY 48
3.1 Research design 48
3.2 Preparation of mango (Mangifera indica L.) juice (MJ) 51
3.3 Ozone treatment 51
 3.3.1 Ozone dose measurement 52
3.4 Microbiological analysis 52
 3.4.1 S. typhimurium culturing & inoculation process 52
 3.4.2 Enumeration of S. typhimurium 53
 3.4.3 The inactivation kinetics of S. typhimurium 53
3.5 Physicochemical & antioxidant analysis 55
 3.5.1 Total soluble solid (°Brix) & pH measurement 55
 3.5.2 Turbidity test 56
 3.5.3 Pectin methylesterase (PME) activity 56
 3.5.4 Total phenolic content (TPC) 56
 3.5.5 DPPH radical scavenging activity 57
 3.5.6 Ascorbic acid content 57
 3.5.7 Color measurement 58
 3.5.7.1 Kinetic modeling of color 59
3.6 Statistical analysis 59

4 RESULTS AND DISCUSSION 60
4.1 Preliminary studies on physicochemical properties, antioxidant capacities, & microbiological populations on various ratios of mango juice 60
4.2 Effect of aqueous ozone treatment on S. typhimurium of mango juice (MJ) 63
 4.2.1 Inactivation kinetics of S. typhimurium in mango juice (MJ) 65
 4.2.2 Summary of findings 67
4.3 Ozone treatment on physicochemical and antioxidant properties of mango juice (MJ) 70
 4.3.1 Effect of ozone treatment on physicochemical properties of mango juice (MJ) 70
4.3.2 Effect of ozone treatment on antioxidant properties of mango juice

4.3.3 Summary of findings

4.4 Effect of ozone treatment on color properties of mango juice (MJ)

4.4.1 Kinetics analysis of color degradation of ozone-treated mango juice

4.4.2 Summary of findings

5 CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 Conclusion

5.2 Recommendation for future research

REFERENCES

APPENDICES

BIODATA OF STUDENT

LIST OF PUBLICATIONS
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>The general characteristics of mango var. Chokanan (Abdullah, 2018)</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Proximates, minerals, and vitamins composition of raw mangoes: Tommy Atkins, Keitt, Kent, and Haden’s cultivars (USDA, 2018)</td>
<td>11</td>
</tr>
<tr>
<td>2.3</td>
<td>Thermal processing on microbial inactivation and quality attributes of fruit juices</td>
<td>23</td>
</tr>
<tr>
<td>2.4</td>
<td>Physicochemical and antioxidant analysis of thermal-treated mango (Chokanan variety) juice by Santhirasegaram et al. (2015) and Santhirasegaram et al. (2013)</td>
<td>26</td>
</tr>
<tr>
<td>2.5</td>
<td>Non-thermal pasteurization on microbial inactivation of fruit juices</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>Non-thermal pasteurization on the quality attribute of fruit juices</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>The inactivation of various microorganisms via ozone treatment</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Ozone treatment on quality and nutritional content of fruit juices</td>
<td>42</td>
</tr>
<tr>
<td>2.9</td>
<td>The bacterial inactivation models used in non-thermal processing</td>
<td>45</td>
</tr>
<tr>
<td>2.10</td>
<td>Modelling microbial inactivation kinetics of ozone processing in fruit juice</td>
<td>46</td>
</tr>
<tr>
<td>3.1</td>
<td>General full factorial</td>
<td>50</td>
</tr>
<tr>
<td>3.2</td>
<td>The mixing ratio of mango juice and distilled water</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>Physicochemical and antioxidant properties of non-ozonated MJ</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Correlation analysis between independent and dependent variables for non-ozonated MJ</td>
<td>62</td>
</tr>
<tr>
<td>4.3</td>
<td>Log-linear models for reductions of S. typhimurium in mango juice (MJ) samples using ozone</td>
<td>68</td>
</tr>
</tbody>
</table>
4.4 Weibull models for reductions of *S. typhimurium* in mango juice (MJ) samples using ozone 68

4.5 Physicochemical changes of untreated and ozone-treated MJ 72

4.6 Antioxidant and color (b^* value) changes of untreated and ozone-treated MJ 76

4.7 Correlation analysis of physicochemical and antioxidant properties of mango juice (MJ) 77

4.8 Color perceivable of untreated and treated MJ 79

4.9 Kinetic parameters of color properties for different MJ during ozone treatment 82
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Structure and classification of mango var. Chokanan</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Flow process diagram (FPD) of juice production. Adopted from Reyes-De-Corcuera et al. (2014)</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Scheme of electrical (corona discharge) method adapted from Gonçalves (2009)</td>
<td>35</td>
</tr>
<tr>
<td>3.1</td>
<td>Research design</td>
<td>49</td>
</tr>
<tr>
<td>3.2</td>
<td>Untreated mango juices (200 mL) before subjected to ozone treatment</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Schematic diagram for ozone treatment system set-up</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Survival curve of S. typhimurium at different treatment time with ozone dose (10 min, 0.33 mg/mL; 20 min, 0.67 mg/mL; 30 min, 1.00 mg/mL; 40 min, 1.33 mg/mL)</td>
<td>65</td>
</tr>
<tr>
<td>4.2</td>
<td>Inactivation of S. typhimurium in different MJ (a) 100MJ:0DW, (b) 75MJ:25DW and (c) 50MJ:50DW at 10 min (0.33 mg/mL), 20 min (0.67 mg/mL), 30 min (1.00 mg/mL) and 40 min (1.33 mg/mL)</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Color quality of untreated and ozone-treated MJ (a) L value, (b) a value, and (c) b value</td>
<td>80</td>
</tr>
<tr>
<td>4.4</td>
<td>Color quality of untreated and ozone-treated MJ (a) TCD value, (b) C value, and (c) H value</td>
<td>81</td>
</tr>
<tr>
<td>4.5</td>
<td>Color changes of L (lightness/darkness), b (yellowness/blueness) and TCD of MJ samples for first-order kinetic model</td>
<td>83</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>AOAC</td>
<td>Association of Official Analytical Chemists</td>
<td></td>
</tr>
<tr>
<td>CAGR</td>
<td>Compound annual growth rate</td>
<td></td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control and Prevention</td>
<td></td>
</tr>
<tr>
<td>CPJ</td>
<td>Cold-pressed juice</td>
<td></td>
</tr>
<tr>
<td>DOA</td>
<td>Department of Agriculture Malaysia</td>
<td></td>
</tr>
<tr>
<td>DPPH</td>
<td>2,2-diphenyl-1-picrylhydrazyl</td>
<td></td>
</tr>
<tr>
<td>DW</td>
<td>Distilled water</td>
<td></td>
</tr>
<tr>
<td>FAMA</td>
<td>Federal Agricultural Marketing Authority</td>
<td></td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
<td></td>
</tr>
<tr>
<td>GPM</td>
<td>Gallon per minute</td>
<td></td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
<td></td>
</tr>
<tr>
<td>MJ</td>
<td>Mango juice</td>
<td></td>
</tr>
<tr>
<td>NACMCF</td>
<td>National Advisory Committee on Microbiological Criteria for Food</td>
<td></td>
</tr>
<tr>
<td>NCTC</td>
<td>National Collection of Type Cultures</td>
<td></td>
</tr>
<tr>
<td>PEMANDU</td>
<td>Performance Management and Delivery Unit</td>
<td></td>
</tr>
<tr>
<td>USFDA</td>
<td>United States Food and Drug Administration</td>
<td></td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF NOMENCLATURES

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D, δ</td>
<td>Association of Official Analytical Chemists</td>
</tr>
<tr>
<td>k</td>
<td>Inactivation rate (min$^{-1}$)</td>
</tr>
<tr>
<td>l</td>
<td>Shoulder length (min)</td>
</tr>
<tr>
<td>p</td>
<td>Scale and shape of the inactivation curve</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient determination</td>
</tr>
<tr>
<td>RSME</td>
<td>Root square mean error</td>
</tr>
<tr>
<td>s</td>
<td>Time (seconds)</td>
</tr>
<tr>
<td>SSE</td>
<td>Sum of square error</td>
</tr>
<tr>
<td>t</td>
<td>Time (min)</td>
</tr>
<tr>
<td>z</td>
<td>Number of degrees (Celsius or Fahrenheit) required to change D-value by one factor of ten (°C)</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

1.1 Research Background

The fruit juice market is increasing globally as consumer’s growing health issues have arisen. In 2020, the global fruit juice market gained about 46.8 billion litres and was expected to grow at a compound annual growth rate (CAGR) of 2.1% in the forecast period of 2021-2026 to reach 53 billion litres (Expert Market Research, 2021). The market statistics show that fruit juices are a well-accepted and preferred drink for all age groups, as it contains many essential nutrients beneficial to human health. This includes mango juice as a popular fruit juice among consumers (Expert Market Research, 2021). Mango is rich in vitamins, calcium, iron, potassium, zinc (López-Cobo et al., 2017), and mango’s peculiar characteristics contain many bioactive compounds in addition to the accompanying carotenoid pigment (Ribeiro & Schieber, 2010). In Malaysia, mango var. Chokanan has tremendous commercial value and high demand due to its distinctive taste, pleasant aroma, and palatable color. It is oblong-shaped with tapered tips, firm, fibrous texture, and vibrant yellowish-orangey flesh color (Santhirasegaram et al., 2015b).

Malaysia’s production and hectarage of mango in all states were 15,307 mt and 6,373 Ha (DOA, 2019). The value of mango exports from Malaysia to various countries in the Asia Pacific, Middle East, and the European Union is about USD 5.2 million (International Trade Centre, 2017). In line with the government’s effort to boost gross national income (GNI), twelve National Key Economic Areas (NKEAS), which include the agricultural sector, were launched by the Performance Management and Delivery Unit (PEMANDU) agency in September 2010 (PEMANDU, 2010). In addition, the Economic Planning Unit Agency under the Prime Minister Department of Malaysia has prepared the National Agro-food Policy (DAN) 2011-2020, specifically for the agro-food industry (FAMA, 2011). One of this policy’s main ideas is to increase agricultural modernization by research and development (R & D) technology and strengthening fruit industry production. The Ministry of Agriculture (MOA) Malaysia expects the projected increases in area productivity of 12.9 tonnes per hectare, including mango fruit, which will increase fruit production to 2.6 million tonnes by 2020 (FAMA, 2011). In further realizing this policy, diversifying mango fruit production, exportation, and processing into valuable food products are highly encouraged. The gross income for specifically mango var. Chokanan was reported to be RM 536,200 (191,500 kg) in 2018 (DOA, 2019). In addition, mango (either Chokanan or other variety) ranks at six (49.2%) in weekly fruit consumption among Malaysian adults (Othman et al., 2013). Mango var. Chokanan is well-known in Malaysia, and it is frequently selected to be processed into juice because of its sweet taste and availability throughout the year (Abdullah, 2018).
Production of mango fruit juice currently employs grinding mills with sharp knives rooted on rotating shafts to crush the fruits and centrifugation machine or enzymatic liquefaction for juice viscosity (Mushtaq et al., 2018; Reyes-De-Corcuera et al., 2014; Sharma et al., 2014). Until recently, various studies have been conducted based on demand for least processed juice products to minimize the impact of the juice extraction process. This involves cold-pressed techniques that have the ability to achieve these attributes. Mushtaq et al. (2018) pointed out that mechanical processing used to extract or squeeze the juices can influence fruit juice's nutritional and antioxidant quality. A cold-pressed juicer uses a squeezing method rather than grinding the fruits (Kim et al., 2017; Khor, 2015). The juice produced by this method is known as cold-pressed juice (CPJ) (Hatab et al., 2016) and has been widely popular among individuals seeking juice products with retained nutritional qualities as fresh fruits. Several studies have revealed that a cold-pressed juicer is an ideal method in producing juice with the ability to either maintain or even increase the antioxidant capacity and the juices' yield in purple prickly pear, tomato, and grape juice (Gouws et al., 2019; Kim et al., 2017; Kim et al., 2015).

The rapid growth of cold-pressed juice in the national or global market depended on the higher juice yield after extraction with minimum nutritional quality losses (Biancaniello et al., 2018; Koutchma et al., 2016). After extraction, fruit juices may be sold directly with their original content (100% fruit juice), reconstituted with water, or mixed with other fruit juices. Fruit juices diluted with water are not offering high nutritional quality as 100% fruit juice; but can fulfill the juice market's availability and consumers' demand for drink products (Kuo et al., 2008). Furthermore, the pathogen such as S. typhimurium has been recorded by USFDA (2003) as a microorganism frequently discovered in the juice industry and is a health risk to the human body. S. typhimurium is a Gram-negative bacteria (Shahbaz et al., 2018) and very susceptible to heat. The close contact with wildlife, contaminated irrigation water, untreated manure, and inadequate hygiene methods all have the potential to expose fresh fruit or juice to S. typhimurium infection (Iwu and Okoh, 2019). Mukhopadhyay & Ramaswamy (2012) also indicate that the absence of a natural skin barrier may lead to S. Typhimurium contamination in fresh fruit. Thus, an ideal method is needed to inactivate the S. typhimurium in mango juice (MJ) while preserving its nutritional consistency. For these purposes, non-thermal pasteurization technology, ozone, has been proposed in this study.

Ozone is the allotropic form of obtuse-angled oxygen and naturally presents as a colorless gas, and the odor smell close to "clean air after a thunderstorm" (Oner & Demirci, 2016). It is also known as a powerful oxidizing agent (+2.07 eV) (Asokapandian et al., 2018), effective as bactericidal towards microbiological activity pertinent in fruit juice. The United States Food and Drug Administration (USFDA) has acknowledged that ozone as Generally Regarded as Safe (GRAS) in the gaseous and aqueous state as an antibacterial agent for treatment, storage, and processing of foods (FDA, 2001). In the juice industry, the juice processor must obey the 5-log reduction performance standard requirement to treat the fruit juice, and ozone has been proven to inactivate pertinent microorganisms such as S. typhimurium effectively. Furthermore, ozone has
been the research subject since the 1990s as one alternative treatment for food processing. Previous researches include the ozone-treated acai, apple, melon, probiotic orange juice, peach, and sugarcane juices (Bernardi et al., 2019; Diao et al., 2019; Abhilasha & Pal 2018; Fundo et al., 2018; Jaramillo-Sánchez et al., 2018; Oliveira et al., 2018; Rodrigues et al., 2017; Almeida et al., 2015; Garcia-Loredo et al., 2015; Song et al., 2015; Sung et al., 2014; Torlak, 2014; Choi et al., 2012). Ozone provides environmentally-friendly antimicrobial agents where the absence of residual effect of ozone makes it highly suitable for fruit juices processing.

1.2 Problem statement

The frequency of fresh fruit outbreaks increases as there are increments in cross-country shipping and/or importing products from other countries. Contamination of fruit juice with spoilage and pathogen bacteria can potentially cause harm to consumers. Fresh produce, including fruits, has been recognized as a common source for *Salmonella* since the bacteria can attach and internalize in fruit (Kilonzo-Nthenge and Mukuna, 2018). The *S. typhimurium* outbreaks linked to fresh fruits have occurred in 2012 and 2010 at multistate locations in the United States (CDC, 2012; CDC, 2010). The outbreaks were caused by Cantaloupe melon and frozen Mamey fruit pulp consumption, respectively, with 228 and 9 infected individuals. In 2005, a multistate outbreak of *S. typhimurium* infection linked with unpasteurized orange juice was reported in the United States involved 152 cases (Jain et al., 2009).

A foodborne illness caused by *Salmonella* sp. infection is called *Salmonellosis*. Most people infected with *Salmonella* sp. will have diarrhea, fever, stomach cramps, and required hospitalization if severe. Meanwhile, Typhoid fever is a foodborne illness caused by *Salmonella* serotype Typhi bacteria (CDC, 2018). In Malaysia, the exact number of *Salmonellosis* incidences associated with fresh fruits remains unknown as a chain of events must be addressed before it is brought to the authority. The only *Salmonella* cases in fruit juice were recorded locally in a research study by Diana et al. (2012). The study had stated that the prevalence and concentration of *S. typhimurium* in apple juice was 30% and 9.20 MPN/g, meanwhile for orange juice was 10% and 6.10 MPN/g and in starfruit juice at 10% and 3.00 MPN/g, sold by fruit juice vendors and hawker stall in Serdang and various places in Klang Valley. It was proven that fruits could be a reservoir for *Salmonella*. Hence, more prevalence studies on *Salmonella* in fresh produce and its by-products are needed to produce food safety and quality.

Consequently, the juice industry is encouraged to implement the proper pasteurization and preservation technique in its processing line to avoid food safety issues. This includes conventional heating methods used widely in the fruit juice processing industry to pasteurize and preserve fruit juice products. The low-temperature long-time (LTLT) and high-temperature short-time (HTST) heating methods are conventionally applied as a preservation method in fruit juice to achieve the minimum 5-log reduction of the microbial pathogen (USFDA,
The conventional heat pasteurizing method on mango juice utilizes a temperature of 90 ± 5°C and time up to 60 seconds (Jolayemi, 2019; Abedelmaksoud et al., 2018; Santhirasegaram et al., 2015a). Although the thermal treatment has been proven its effectiveness towards the inactivation of microbial growth, the treatment affected the nutritional quality of fruit juices, including bioaccessibility of carotenoids leading to the degradation of beneficial phenolic contents (Aschoff et al., 2015).

Furthermore, the usage of preservatives, either natural or chemical, could avoid fruit juice spoilage caused by microbes. Chemical preservatives such as sodium benzoate, potassium sorbate, and natural preservatives include bacteriocins and organic acids commonly used to inactivate microbial growth and subsequently prolong fruit juice's shelf life (Pandey & Negi, 2018). However, the excessive presence of these preservatives has been reported to have high risks to human health (Walker & Philips, 2018).

Over the past few years, industry and food academia have explored novel alternative technology to destroy harmful pathogens while improving or maintaining the fruit juice’s quality and shelf life. The Generally Recognized as Safe (GRAS) status by FDA (Food and Drug Administration) (FDA, 2001) makes ozone to be one of the promising non-thermal technology used for pasteurization in the food processing industry. Jermann et al. (2015) reported that ozone has the potential to be used in the drinks and beverages industry, and it has been categorized as a potential technology for commercialization in the next five years. Ozone does not involve a heating process but exploits its oxidation potential (+2.07eV) to pasteurize and preserve fruit juices. Despite that, it is challenging to predict ozone behavior in juices as it depends not only on the ozone processing parameter (time and concentration) but also on the juice matrix or composition. Several studies have proven the microbial reductions in ozone-treated fruit juices, including cantaloupe melon, peach, apple, and orange juice (Sroy et al., 2019; Garcia Loredo et al., 2015; Torlak, 2014, Patil et al. 2010b). Ozone treatment had reduced the L. innocua population to 5.3 log reductions at ozone concentration 7.7 g/L after 6 minutes of ozone exposure in Cantaloupe melon juice (pH and TSS: 6.35 and 10.65 °Brix) (Sroy et al., 2019). However, the majority of previous researches mainly focused on the microbial reduction perusing ozone processing parameters, and studies are limited on the intrinsic parameters of the juice. Prabha et al. (2015) reported that ozone molecules’ reaction in fruit juice could be disturbed by the presence of organic or inorganic matter in juice. The solid content of the juice contributes to the limitation of ozone’s synergistic towards its bactericidal effect. Choi et al. (2012) review that at an ozone concentration of 0.10 and 0.90 g/hr in 36 °Brix of apple juice solid content, it needed 6 to 10 min treatment time to achieve 5.0 log reduction while in 18 °Brix of solid juice content, it took only 6 min. Furthermore, certain microorganisms are able to survive the acidic condition of the juice, including Gram-negative bacteria, S. typhimurium (Pandey and Negi 2018). An acid-loving microorganism such as Salmonella can adapt and survive for a few days or even weeks in an acidic environment formed by organic acids of the fruit juices.
Therefore, it is vital to study the influence of juice composition on aqueous ozone efficacy for antimicrobial activity and its effect on the quality attribute of fruit juices. Specifically, the effects of juice ratio (different pH and TSS) and ozone dose toward mango juices will be studied in-depth.

1.3 Research objectives

This research evaluates the efficiency of ozone treatment towards microbiological inactivation and its effect on physicochemical properties, antioxidant contents, and antioxidant activities of mango (*Mangifera indica* L.) fruit juice (MJ). The specific objectives of this study are:

1) To determine and model the inactivation kinetics of *S. typhimurium* of ozone-treated mango (*Mangifera indica* L.) fruit juice.

2) To study and correlate the effect of ozone treatment on the physicochemical properties (pH, TSS, turbidity, PME activity, and color), antioxidant contents (TPC, AA), and antioxidant activities (DPPH) of mango (*Mangifera indica* L.) fruit juice.

3) To investigate the kinetic modeling of color degradation of ozone-treated mango (*Mangifera indica* L.) fruit juice as a means to predict the effect of ozone treatment on the antioxidant contents of MJ.

1.4 Scope of research

The selected sample was limited to a fully ripe yellow color of mango fruit (var. Chokanan) purchased from the local market in Serdang, Selangor. The samples were prepared according to the ratio (mango juice (MJ): distilled water (DW)) of 100MJ:0DW, 75MJ:25DW, and 50MJ:50DW and stored at the temperature of 4 ± 1 °C prior to ozone treatment. *S. typhimurium* species NCTC 12023 was used in this study as it is the most frequent serovars that caused the foodborne outbreak to human health (Herrero-Fresno & Olsen *et al.*, 2018; Abdul-Mutalib *et al.*, 2015). Even though it was reported that *S. typhimurium* is primarily found in the poultry product, Kilonzo-Nthenge and Mukana (2018) indicate that this pathogen can attach and internalize in fresh fruit. In this study, the untreated mango juices undergo treatment with ozone parameters at a treatment time of 10, 20, 30, and 40 min. The limitation was fixed by the ozone generator model (Model GL-3189, China) with the maximum power and frequency output of 20 W and 50 Hz, respectively. The ozone dose at the specific treatment time of 10, 20, 30, and 40 min was calculated based on Oxidation Technology’s formula (Oxidation Technology, 2017), which gave out 0.33, 0.67, 1.00, and 1.33 mg/mL. Meanwhile, the physicochemical, antioxidant content and antioxidant activity analysis were done based on the previous research method; pH, total soluble

© COPYRIGHT UPM
solids (TPC) (AOAC, 1996), turbidity (Shah, 2015), PME activity (Agcam et al., 2014), color (Aguilar et al., 2018), ascorbic acid (AOAC, 2007), total phenolic content (TPC), and DPPH (Guan et al., 2016). Furthermore, for the microbial study, the method was adopted from the standard EN ISO 6579-1:2017 (ISO, 2017) and research by Sung et al. (2014). The chosen agar and media were explicitly chosen for enumeration of S. typhimurium (refer to Chapter 3) for a positive outcome.

1.5 Thesis structure

The introductory chapter (Chapter 1) briefly reviews ozone technology, the selected fruit sample (mango var. Chokanan), and fruit juice’s pathogen (S. typhimurium). This chapter also presents the problem statements, the research objectives, scopes, and this study contribution.

Chapter 2 reviews the previous studies in mango fruit juice, the potential market of mango and its product (juices), and their nutritional value. This chapter also presented information on fruit juice processing (mechanical and cold-pressed technology), fruit juice outbreaks, and the regulation applied in the juice industry. The pasteurization method details on the conventional (thermal) and non-thermal (HPP, PEF, ultrasound, and ultraviolet) was briefly described in this chapter. This chapter also discussed the previous works on ozone pasteurization on fruit juice, including its regulations, advantages, and disadvantages of this treatment. Besides that, the kinetic modeling of bacterial inactivation used in fruit juice studies is also listed and discussed in this chapter.

Chapter 3 fully described all aspects needed for experimental research, and a summary of the overall experimental designs is represented in the flow charts. This chapter highlights mango fruit juice preparation (MJ) and comprehensively presented the experimental ozone treatment setup. In addition, the chapter presents the methodologies for microbiological (S. typhimurium), physicochemical (pH, TSS, turbidity, PME activity, color), and antioxidant analysis (TPC, DPPH, ascorbic acid), and statistical analysis procedures (General Linear Model, Full Factorial Design, and Pearson Correlation).

Chapter 4 reports and discussed the findings of research on the objectives mentioned previously. The preliminary study observes the effect of different untreated (control) mango juice ratios on physicochemical, antioxidant properties, and microbiological (S. typhimurium) population are done and further analyzed. Then, the effects of ozone treatment on physicochemical (pH, TSS, turbidity, PME activity, color), antioxidant properties (TPC, DPPH, ascorbic acid), and microbiological (S. typhimurium) inactivation in various treated mango juices are elaborately discussed. The inactivation kinetics of S. typhimurium (Log-linear model and Weibull model) and modeling color (Zero-order model and First-order model) are also discussed in this chapter.
A summary of all findings is presented in Chapter 5. This chapter also mentioned the recommendation for future work of ozone pasteurization in fruit juice.

1.6 Contribution of thesis

Ozone is actively being studied on various fruit juices because of its antimicrobial properties and zero toxic by-products. Thus, this research study could contribute further knowledge for the fruit juice industry on the usefulness of ozone as an alternative to a non-thermal pasteurization method. This study focused on the effect of ozone-treated mango juice (MJ) on the inactivation kinetics of *S. typhimurium*, physicochemical properties, antioxidant content, and antioxidant activity. This research data could be used as a reference source by food processors or researchers to design or implement aqueous ozone applications in their industry or field of study, respectively.
REFERENCES

García-García, R., Escobedo-Avellaneda, Z., Tejada-Ortigoza, V., Martín-Bellos, O., Valdez-Fragoso, A., & Wetti-Chanes, J. (2015). Hurdle technology applied to prickly pear beverages for inhibiting *Saccharomyces cerevisiae* and *Escherichia coli*. *Letters in Applied Microbiology, 60*(6), 558–564.

Preparatory_Course_(Liachovitzky)/02%3A_Introduction_to_Anatomy_and_Physiology_Chemical_Building_Blocks/2.04%3A_Acids_and_Bases

added *Lactobacillus rhamnosus* GG processed by high pressure.

LIST OF PUBLICATIONS

Articles – Published

Articles – Accepted

Articles – Submitted and Reviewed

Conferences Attended

UNIVERSITI PUTRA MALAYSIA

STATUS CONFIRMATION FOR THESIS / PROJECT REPORT AND COPYRIGHT

ACADEMIC SESSION: First Semester 2021/2022

TITLE OF THESIS / PROJECT REPORT:

EFFECTS OF AQUEOUS OZONE PASTEURIZATION ON S. typhimurium INACTIVATION AND QUALITATIVE ATTRIBUTES OF CHOKANAN MANGO (Mangifera indica L.) FRUIT JUICE

NAME OF STUDENT: NUR AMIRA BINTI MOHD SUPIAN

I acknowledge that the copyright and other intellectual property in the thesis/project report belonged to Universiti Putra Malaysia and I agree to allow this thesis/project report to be placed at the library under the following terms:

1. This thesis/project report is the property of Universiti Putra Malaysia.
2. The library of Universiti Putra Malaysia has the right to make copies for educational purposes only.
3. The library of Universiti Putra Malaysia is allowed to make copies of this thesis for academic exchange.

I declare that this thesis is classified as:

*Please tick (✓)

[] CONFIDENTIAL (Contain confidential information under Official Secret Act 1972).

[] RESTRICTED (Contains restricted information as specified by the organization/institution where research was done).

[✓] OPEN ACCESS

I agree that my thesis/project report to be published as hard copy or online open access.

This thesis is submitted for:

[] PATENT

Embargo from ______ until ______

(date) (date)

Approved by:

(Signature of Student)
New IC No/ Passport No.: (Signature of Chairman of Supervisory Committee)
Name:
Date:

[Note: If the thesis is CONFIDENTIAL or RESTRICTED, please attach with the letter from the organization/institution with period and reasons for confidentially or restricted.]