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The production and utilization of biodiesel have led to a significant increase in its by-

product, glycerol, leading to a glut and value depreciation. Catalytic conversion of 

glycerol to acetin, a versatile industrial chemical, is one of the routes to improve its 

utilization. Currently, the homogeneous catalysts deployed are associated with many 

negative effects, while some of the existing heterogeneous catalysts exhibits low 

selectivity to triacetin, which is the most valued product. Carbon-based material, palm 

kernel shell (PKS), was processed and carbonized using direct, chemical, and template 

methods under CO2 environment and subsequently functionalized using inorganic, 

organic, and hybrid of organic-inorganic sulfonating agents. The catalysts were 

characterized using proximate analysis, acid-base titration, CHNS analyzer, X-ray 

diffraction (XRD), Fourier transform infra-red (FTIR) spectroscopy, temperature 

programmed desorption of ammonia (TPD-NH3), N2 physiosorption analysis (BET), 

scanning electron microscopy coupled with energy dispersive X-ray spectroscopy 

(SEM-EDX), thermogravimetric-differential thermogravimetric analysis (TGA-

DTG), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and solid state 

Nuclear Magnetic Resonance (NMR) spectroscopy, respectively. The carbon-based 

catalysts were deployed in glycerol acetylation and the product was analyzed using 

gas chromatography coupled with mass spectrometer (GC-MS), gas chromatograph 

equipped with flame ionization detector (GC-FID), FTIR and NMR. The catalyst 

obtained via template carbonization method at 800℃ exhibited excellent glycerol 

conversion (GC) with the highest triacetin selectivity. On optimization using RSM 

based on two-level, three-factor, face-centred central composite design (23 CCD), 97% 

GC and selectivity of 4.9, 27.8, and 66.5% monoacetin (MA), diacetin (DA), and 

triacetin (TA) were achieved under the optimum conditions of temperature 126±2℃, 

glycerol-to-acetic acid mole ratio (G/AA) 1:10.4, and catalyst load (CL) 0.45 g in 3 h 

reaction time. Amongst the organosulfonic acid functionalized catalysts, the 

ethanesulfonic acid (ESA) catalyst exhibited the highest TA selectivity and on 
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optimization using RSM, 99.03% GC and selectivity of 6.91, 54.86, and 37.71% MA, 

DA, and TA were achieved at the optimum conditions of temperature 120±2℃, G/AA 

mole ratio 1:8, CL of 0.69 g and 3 h reaction time. Furthermore, the carbon-based 

catalyst obtained from the functionalization using the hybrid mixture of concentrated 

ethanesulfonic acid and sulfuric acid (1:9) exhibited excellent results after 

optimization. 99.8% GC and selectivity of 1.48, 24.64, and 73.81% MA, DA, and TA, 

respectively, were obtained under optimum conditions of temperature 110±2℃, G/AA 

mole ratio 1:10, and catalyst load 0.6 g in 3 h reaction time. On validation, all the 

model results exhibited good fit with good agreement between the predicted and the 

experimental data with the determination coefficient (R2) > 0.9500 and adequate 

signal-to-noise ratio >4. The high performance of the synthesized carbon catalysts was 

attributed to the synergistic effect of good physicochemical characteristics, including 

good textural properties and high acidic site density and very importantly, the 

configuration of the surface acid moieties on the catalyst allowing unhindered access 

to the active sites during the reaction. On evaluating the reusability and stability of the 

selected catalysts in five reaction cycles each, they maintained excellent performance 

in glycerol conversion but inferior in TA selectivity after the first use. The DA 

selectivity became higher in the subsequent reaction cycles. The instability of TA was 

due to the leaching of active sites (-SO3H). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© C
OPYRIG

HT U
PM



 

iii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

 

 

PENGHASILAN PEMANGKIN BERASASKAN KARBON TERSULFON 

DARIPADA TEMPURUNG ISIRUNG SAWIT UNTUK PENGASETILAN 

GLISEROL 

 

 

Oleh 

 

 

NDA-UMAR USMAN IDRIS 

 

 

Disember 2020 

 

 

Pengerusi :   Profesor Madya Irmawati bt Ramli, PhD 

Fakulti :   Sains 

 

 

Peningkatan penghasilan dan penggunaan biodiesel telah menyebabkan berlakunya 

pertambahan produk sampingan iaitu gliserol yang menyumbang kepada lambakan 

dan kemerosotan nilai produk sampingan tersebut. Penukaran bermangkin gliserol 

kepada asetin merupakan salah satu kaedah untuk miningkatkan penggunaan biodisel 

kepada bahan kimia industri yang serba boleh. Pada masa kini, penggunaan mangkin 

homogen dikaitkan dengan banyak kesan negatif, manakala mangkin heterogen sedia 

ada mempunyai kepemilihan terhadap triasetin yang rendah iaitu produk yang paling 

bernilai. Bahan berasaskan karbon iaitu Tempurung isirung sawit (PKS) diproses dan 

dikarbonasi menggunakan kaedah langsung, kimia dan templat di dalam persekitaran 

CO2 dan kemudiannya dirawat menggunakan agen pensulfonan tak organik, organik 

dan hibrid organik-tak organik. Mangkin yang terhasil diuji menggunakan pelbagai 

analisis termasuk analisis kehampiran, penitratan asid-bes, analisis CHNS, 

pembelauan sinar-X (XRD), spektroskopi infra-merah transformasi Fourier (FTIR), 

nyahjerapan terprogram suhu ammonia (TPD-NH3), analisis fizijerapan N2 (BET), 

mikroskopi elektron pengimbasan berpasangan spektroskopi sinar-X sebaran elektron 

(SEM-EDX), analisis gravimetri terma-pembezaan gravimetri terma (TGA-DTG), 

spektroskopi Raman, spektroskopi fotoelektron sinar-X (XPS) dan spektroskopi 

keadaan pepejal resonans magnet nukleus (NMR). Produk tindak balas telah dianalisis 

menggunakan kromatografi gas berpasangan dengan spektroskopi jisim (GC-MS), 

kromatografi gas dilengkapi dengan pengesan nyala pengionan (GC-FID), FTIR dan 

NMR. Pemangkin yang dihasikan pada suhu 800℃ menggunakan menggunakan 

kaedah templat mampu menukarkan gliserol (GC) dengan sangat baik dengan 

kepemilihan triasetin yang tinggi.Pengoptimum mengunakan RSM dilakukan 

berdasarkan dua-aras, tiga-faktor, reka bentuk komposit pusat berpusatkan permukaan 

(23 CCD), 97% GC dan kepemilihan terhadap monoasetin (MA), diasetin (DA), dan 

triasetin (TA) masing-masing 4.9, 27.8, dan 66.5% yang dicapai dalam keadaan 

optimum iaitu pada suhu 126±2℃, nisbah mol gliserol-kepada-asid asetik (G/AA) 
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1:10.4, dan muatan mangkin (CL) 0.45 g untuk tindak balas selama 3 j. Asid 

etanasulfonik (ESA merupakan salah satu rawatan yang mengunakan reagen asid 

organosulfunik dan mempamerkan kepemilihan TA tertinggi dan pengoptimuman 

RSM, 99.03% GC dan kepemilihan 6.91, 54.86, dan 37.71% masing-masing MA, DA, 

and TA telah dicapai pada keadaan optimum suhu 120±2℃, nisbah mol G/AA 1:8, 

CL pada 0.69 g dan masa tindak balas selama 3 j. Seterusnya, mangkin yang dirawat 

menggunakan kaedah hibrid campuran asid pekat etanasulfonik dan asid sulfurik (1:9) 

menunjukkan keputusan yang baik iaitu 99.8% GC dan kepemilihan terhadap MA, 

DA dan TA adalah masing-masing 1.48, 24.64, and 73.81% setelah pemodelan dan 

pengoptimuman dalam keadaan suhu optimum 110±2℃, nisbah mol G/AA 1:10 dan 

CL 0.6 g dalam tindak balas selama 3 jam. Semasa pengesahan, kesemua model 

menunjukkan persamaan antara data ramalan dan data kajian dengan koefisien 

diperolehi (R2) > 0.9500 dan memadai nisbah isyarat-kepada-hingar >4. 

Kecemerlangan prestasi mangkin karbon yang disintesis adalah disebabkan oleh kesan 

sinergistik ciri-ciri fizikal-kimia yang baik, termasuk tekstur yang baik, dan 

ketumpatan tapak asid yang tinggi dan faktor utama adalah disebabkan oleh 

konfigurasi lembapan asid permukaan mangkin yang membenarkan akses tanpa 

halangan kepada tapak aktif semasa tindak balas berlangsung. Kajian kebolehgunaan 

dan kestabilan untuk lima kitaran tindak balas dan di dapati mangkin tersebut mampu 

mengekalkan prestasi yang sangat baik dalam penukaran gliserol, 

walaubagaimanapun kepemilihan terhdap TA berkurang setelah penggunaan yang 

pertama dalam tindak balas. Kepemilihan terhadap DA bertambah pada kitaran yang 

selanjutnya. Keputusan yang diperolehi ini membuktikan ketakstabilan TA 

disebabkan pelarutlesapan tapak aktif (-SO3H). 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Renewable energy sources are now considered viable and sustainable alternatives to 

the conventional oil. These renewables sources include solar, wind, geothermal and 

biomass. Biomass, which is a wide range of biological materials, contributes the 

highest share to the global energy supply of all the renewable resources and the 

energy has been deployed in heating, electricity and transportation (biofuels) 

purposes (REN21, 2020). Biofuel is a general name for fuels from biomass which 

include bioethanol, biodiesel, biomethanol, biogas, biohydrogen, bio-dimethyl ether, 

bio-ETBE (ethyl-tert-butyl-ether), bio-MTBE (methyl-tert-butyl-ether), synthetic 

biofuels (hydrocarbons) and bio-oil (vegetable) (Balat, 2011; EU-Commission, 

2003; Thanh et al., 2012). Biodiesel, a monoalkyl ester of fatty acids obtained from 

vegetable oil or animal fat through esterification or transesterification reaction with 

alcohol in the presence of a catalyst, is the most researched and most viable for the 

transportation system at the moment owing to its advantages. It is biodegradable, 

non-toxic, renewable, of high cetane number, in-built oxygen content, higher 

combustion without or with low sulfur, aromatic components and other regulated 

emissions, complete carbon cycle, availability of raw materials and fit into the 

existing engines with little or no modification and with high flash point (Babajide, 

2013; Gaurav et al., 2016; Knothe and Razon, 2017). 

The directive by the European Union (EU) for member countries to add at least 5-

20% of biofuels to conventional fuel by the year 2020 and the need to reduce CO2 

emission has increased the production of biodiesel (Dimitratos et al., 2009; EU-

Commission, 2003). Biodiesel production in EU member countries increased from 

1.93 million tons in 2004 to 10.37 million tons in 2013 (EBB, 2017). Similarly, the 

United State biodiesel production grew from 0.5 million gallons in 1999 to 250 

million gallons in 2006 (Gliceryny and Ubocznego, 2011) and 2.89 billion gallons 

in 2016 (NBB, 2017). Generally, global biodiesel production is on the increase, as 

illustrated in Figure 1.1. Currently, over 40 billion litres is being produced with 

Indonesia, Brazil, United State, Germany and France among the top five producers, 

as indicated in Figure 1.2 (REN21, 2020).  
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Figure 1.1 : Annual total biodiesel production for the last ten years (2010-2019) 

(REN21, 2013-2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2 : The global biodiesel production of the top 15 countries in 2019 

(REN21, 2020) 

 

 

Given the above scenario of biodiesel production, huge volume of glycerol is 

expected to be generated. It has been reported that for every 100 kg of biodiesel 

produced, 10 kg (10%) of glycerol is obtained as the by-product leading to surplus 

in the market (Anuar and Zuhairi, 2016; Bauer and Hulteberg, 2013; Quispe et al., 

2013). Recent literature indicates that by the year 2020, the global production of 

glycerol will move up to 41.9 billion litres (Nanda et al., 2014b). This number is 

expected to increase with the recent prediction that biodiesel will account for over 

70% of the global transportation fuel by 2040 (Naylor and Higgins, 2017). This 

forecast is supported by many deliberate policies put in place by different countries 

and organizations to encourage biodiesel production and its utilization, such as the 

implementation of mandatory biodiesel blending targets, tax exemptions, 
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government support, investment subsidies, and research and development programs 

(Naylor and Higgins, 2017). 

Therefore, the current upsurge in biodiesel production will further depreciate the 

commercial value of glycerol (Trifoi et al., 2016) and underutilization may lead to 

some environmental challenges as such scientists around the world are developing 

new techniques in converting glycerol to high-value products or chemicals, which is 

expected to improve the economics of biodiesel. Of these techniques, catalysis and 

catalysts play a significant role in its transformation.  

1.2 Catalysis and catalysts 

Since the discovery of catalyst in the 17th century, catalysis has been playing 

significant roles in the chemical industry not only in promoting chemical reactions 

as it is traditionally known but also in enhancing selectivity of products, reducing 

reagent waste and unwanted products, removal or conversion of dangerous pollutants 

into products of lower toxicity amongst others (Singh and Tandon, 2015; Waclawek 

et al., 2018). Catalysts are now the heart of nearly all the chemical process because 

almost 85 - 95% of industrial products are produced through catalytic processes and 

the global catalyst market has been estimated to be about $15 billion per year (O’neill 

et al., 2015; Waclawek et al., 2018). Most chemical industries are traditionally 

accustomed to the use of acidic homogeneous catalysts like sulfuric acid, 

hydrochloric acid, nitric acid, etc, in their production processes due to their high 

catalytic activity and selectivity with little or no problem of diffusion. However, 

these catalysts are characterized with the formation of side products, low thermal 

stability, low water tolerance, corrosive tendency, energy consumption, difficulty of 

separation from the product, difficult to recycle, an additional step of washing, 

disposal challenge and general unfriendly environmental concern (Fauziyah et al., 

2020; Ngaosuwan et al., 2016). To overcome the drawbacks of the homogeneous 

catalysts and to conform with the philosophy of green chemistry, extensive 

exploration of solid heterogeneous catalysts have been conducted and still ongoing 

to achieve similar efficiency and selectivity with less environmental impact. This is 

because solid acid heterogeneous catalysts are thermally more stable, easy to 

separate, reusable, corrosion-free, withstand harsh reaction conditions, low cost, and 

susceptible to wide applications (Nagasundaram et al., 2020; Waclawek et al., 2018). 

Given the gains made in the use of heterogeneous catalysis, approximately 85 % of 

it is used in various industries processes in the recent times with homogeneous and 

biocatalysts accounting for the remaining 15% (Waclawek et al., 2018). Though 

some of the heterogeneous catalysts have also exhibited low activity, selectivity, 

deactivation, and mass diffusion challenges, efforts are ongoing to improve these 

defects by way of functionalization and other measures leading to the introduction 

of heterogenized-homogeneous catalysts to improve the functionality of both classes 

of catalysts. The functionalization involves the immobilization or attachment of 

homogeneous active sites on solid, insoluble supports usually of large surface area 

and largely porous by covalent or non-covalent bonding (adsorption, electrostatic 

interaction, entrapment, etc.) to give room for high activity, high selectivity, easy 

separation and reusability (Barbaro and Liguori, 2009). This type of catalyst is seen 
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as the catalyst of the present and the future. Glycerol valorisation to other high-value 

products will require the right catalysts with the appropriate technology. Figure 1.3 

shows the classification of catalysts based on the state of aggregation in which they 

act. 

Figure 1.3 : Classification of catalysts 

 

 

1.3 Problem statement 

The global response to the production and utilization of biodiesel as an alternative 

renewable fuel to fossil fuels is throwing up the challenge of surplus glycerol in the 

environment. In view of the surplus, the value of glycerol has also fallen drastically 

in the international market. It is therefore imperative to convert glycerol to other 

high-value products to improve its commercial viability, improve biodiesel 

economics, and eliminate the perceived environmental concern of the surplus.  

The conversion of glycerol to high-value products such as acetin (glycerol esters) is 

an acid-catalysed reaction and therefore requires appropriate catalysts. Currently, 

most of the catalysts deployed are associated with a number of defects. Use of 

homogeneous catalysts, though of high reaction rate, turnover frequency and 

selectivity but are associated with toxicity, corrosion problems, difficult in separation 

and production of unwanted or side products (Dalla Costa et al., 2017, Khayoon et 

al., 2014). The use of heterogeneous solid acid catalysts such as ion exchange resins, 

zeolites, heteropoly acids and metals have also been reported with the advantage of 

easy recovery, reusability, green process and amenable to modification for better 

performance. However, these catalysts have also been characterized with low 

thermal stability, low acid strength, narrow pore size, low mechanical stability, low 

surface area and ease of solubility in aqueous medium (Okoye et al., 2017, Dalla 

Costa et al., 2017, Balaraju et al., 2010).  
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Furthermore, the reports of glycerol conversion to acetin by various researchers 

using some of the above catalysts such as zeolites and heteropoly acids have 

indicated high glycerol conversion with high selectivity to monoacetin, average 

selectivity to diacetin and very little or no production of triacetin (Goncalves et al., 

2012, Goncalves et al., 2008). While catalysts such as sulfonated clay (K-10) and 

sulfonated silica exhibits average selectivity to monoacetin, high selectivity to 

diacetin but low selectivity to triacetin (Kakasaheb et al., 2018, Dalla Costa et al., 

2017). Despite the use of different catalysts, the selectivity to triacetin, the most 

sought-after product of acetylation, is still low. So, low selectivity towards triacetin 

is a major problem that requires appropriate attention. 

It is in the light of above shortcomings that interest has now shifted to identifying 

new catalytic materials that are inexpensive, environmentally friendly, reusable, and 

easily amenable to functionalization to improve their surface characteristics (the 

surface area and the acid density) in order to improve the selectivity of triacetin. 

Carbon-based materials have been identified as a potential good material for such 

synthesis. Hence the study is focused on the development of sulfonated carbon-based 

catalysts derived from palm kernel shell for the purpose of catalysing glycerol 

acetylation to improve triacetin selectivity. 

1.4 Objectives of the research 

The objectives of this research include: 

1.  To investigate the effect of various carbonization methods on the 

development of sulfonated carbon-based catalysts derived from palm kernel 

shell (PKS) and their evaluation in glycerol acetylation with acetic acid. 

2.  To evaluate the effect of functionalization with sulfuric and organosulfonic 

acids reagents on the glycerol acetylation activity of the sulfonated carbon-

based catalysts derived from palm kernel shell (PKS). 

3.  To optimize the glycerol acetylation reaction using the response surface 

methodology (RSM) with a view to improving the selectivity of triacetin. 

4.  To evaluate the reusability and stability of the selected sulfonated carbon-

based catalysts. 

5.  To carry out spectroscopic analysis of the acetylation product. 

 

 

1.5 Scope of the research 

In this research, carbon-based solid catalysts were synthesized using palm kernel 

shell (PKS) as the precursor materials using direct, chemical and template 

carbonization methods under carbon dioxide (CO2) environment and subsequently 

sulfonated using concentrated sulfuric acid. The template carbonized material was 

also sulfonated with different organosulfonic acid reagents as well as the hybrid of 

organic-inorganic sulfonic acid reagent (a mixture of sulfuric acid and ethanesulfonic 

acid). The precursor material and the resultants sulfonated carbon catalysts were 
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characterized using proximate analysis, CHNS, EDX, XRD, FTIR, TPD, TGA, 

SEM, NMR, XPS, N2 adsorption isotherm, and acid-base titration. The synthesized 

catalysts were evaluated for their activity in glycerol acetylation with acetic acid in 

a batch liquid phase reaction under atmospheric pressure. The catalyst identified with 

the best potential in each case was used for modelling and optimization, reusability 

and stability studies. The performance of the synthesized catalysts was also 

compared with the activities of commercial amberlyst-15 catalyst and homogeneous 

catalyst (concentrated sulfuric acid).  

1.6 Thesis outline 

The thesis has been divided into 9 chapters with the following content: 

Chapter 1 gives a general overview of the status and trend of renewable energy 

production with emphasis on biofuel (biodiesel) and its by-product, glycerol. The 

chapter also gives a brief introduction on the field of catalysis and catalysts. Finally, 

the problem statement, objectives and scope of the research are also stated in the 

chapter. 

Chapter 2 gives a detailed background on glycerol including its properties, synthesis 

route and applications. It also gives a detailed review of glycerol transformation into 

acetin via the acetylation reaction and the parameters that influences it. The chapter 

also provides a review of the synthesis of carbon-based catalysts derived from 

biomass materials. The basics of optimization are also discussed in the chapter.  

Chapter 3 is the methodology section where all the materials, chemicals and 

equipment used in the research are outlined. It also described all the catalysts 

preparation methods, the theory and experimental procedures of the characterization 

techniques and the optimization method used. The procedure of the glycerol 

acetylation, product identification and quantification are also reported in this chapter. 

Chapters 4 contains the characterization and activity test results of catalysts obtained 

via direct, chemical and template carbonization methods and their subsequent 

sulfonation with concentrated sulfuric acid. Chapter 5 presents the results and 

discussion on optimization of mesoporous carbon catalyst and their deployment in 

modelling and optimization of glycerol acetylation using RSM to improve triacetin 

selectivity. The results of reusability and stability of the catalyst are also discussed 

in this chapter. Chapter 6 deals with results and discussions arising from the synthesis 

and characterization of carbon catalysts obtained using organosulfonic acid 

functionalization. It also contains the results and discussion of the catalytic test, 

optimization of glycerol acetylation using RSM. The chapter also contains the results 

of reusability and stability of the catalyst. Chapter 7 contains the results and 

discussion of characterization and activity test of carbon catalysts obtained using 

organic-inorganic sulfonic acid hybrid functionalization. The results of the 

optimization of glycerol acetylation using RSM to improve triacetin selectivity, as 

well as, the reusability and stability of the catalyst are also reported in the chapter. 
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Chapter 8 is made up of the proposed structure of the synthesized catalyst, the 

plausible reaction mechanism of glycerol acetylation with acetic acid, and the 

spectroscopic analysis of the synthesized products. Chapter 9 summarizes the 

findings of this research, and the general conclusion of the research work. 

Recommendation for future studies is also contained in this chapter. 
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