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Immobilization of enzyme is a great modification technique that enhances the 
stability and reusability of an enzyme. Nevertheless, some immobilization 
techniques have low productivity and require the enzyme to undergo 
purification process; a process which is laborious and time consuming. CLEA 
immobilization technique offer better alternative since crude enzyme can be 
used directly during the preparation of CLEA. In this study, CLEA 
immobilization technique was tailored and developed to retain and enhance the 
activity of elastase strain K, while facilitating its recovery after completion of an 
enzymatic reaction. Another area that has been elusive regarding CLEA is the 
structural analysis. Organic solvent tolerant protease, elastase strain K was 
immobilized using CLEA technique and the biochemical as well as the 
biophysical profiles of CLEA-elastase was analyzed. This valuable enzyme 
exhibit remarkable tolerance against wide range of organic solvents including 
methanol, ethanol, 1-propanol and dimethyl sulfoxide (DMSO). Aggregates of 
elastase strain K was prepared by adding 60% (w/v) ammonium sulfate and 
treated for 3 h prior to cross-linking with 0.2% (v/v) glutaraldehyde for 2 h. 
Maximum recovered activity of CLEA-elastase was recorded at 61.4% while 
CLEA-elastase-SB; derivatives of CLEA-elastase with addition of BSA and 
starch as co-aggregants, recorded a recovered activity of 81.6%.  Immobilized 
elastase strain K exhibit enhanced thermostability and exhibit increment of 
optimum temperature at 50°C.  In addition to that, CLEA-elastase exhibit broad 
pH stability between pH 5-10 and high proteolytic activity was recorded at pH 8.  
The organic solvent tolerant characteristic of elastase strain K was retained 
even after immobilization. Enhancement of organic solvent tolerance was also 
detected in CLEA-elastase treated with methanol, acetonitrile, ethanol, 1-
propanol, benzene and xylene with 111.4%, 164.6%, 172.7%, 111.4%, 152.7% 
and 133.2% of recovered activity, respectively. The biophysical analysis 
conducted using scanning electron microscopy (SEM), dynamic light scattering 
(DLS), Brunauer-Emmett-Teller (BET) surface area and Fourier-transform 
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infrared (FTIR) spectra revealed that CLEA-elastase exhibit a type 2 aggregate 
morphology; appearance of aggregates are random and less defined, with an 
average diameter of 1497 nm. In addition, co-aggregation with BSA and starch 
increase the surface area and porosity of CLEA-elastase. Stretching and 
vibration of bonding associated with the presence of successful cross-linkages 
was detected especially within the 1600 – 1700 cm-1 of FTIR spectra. In 
general, organic solvent tolerant elastase strain K has been successfully 
immobilized using CLEA method. The technique has successfully being 
tailored and developed to retain and enhance the proteolytic activity of elastase 
strain K. 
. 
 
 
 
 
 
 

  

© C
OPYRIG

HT U
PM



iii 
 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Master Sains 

 

PENCIRIAN BIOKIMIA DAN STRUKTUR PENYEKAT GERAKAN PAUTAN 
SILANG AGREGAT ENZIM ELASTASE STRAIN K 

 

Oleh 
 

MUHAMMAD SYAFIQ BIN MOHD RAZIB 
 

Jun 2020 
 

Pengerusi : Mohd Shukuri Mohamad Ali, PhD 
Fakulti  : Bioteknologi dan Sains Biomolekul 
 
 
Penyekat gerakan enzim merupakan kaedah pengubahsuaian yang mampu 
meningkatkan kestabilan dan guna semula enzim. Walaubagaimanapun, 
beberapa kaedah penyekat gerakan enzim menghadapi masalah produktiviti 
rendah selain memerlukan enzim untuk melalui proses penulenan; satu proses 
yang sukar dan memakan masa. Kaedah penyekat gerakan CLEA 
menawarkan alternatif yang lebih baik memandangkan enzim mentah boleh 
digunakan secara terus semasa proses penyediaan CLEA. Dalam kajian ini, 
kaedah penyekat gerakan CLEA telah dihasilkan dan diubahsuai untuk 
mengekalkan serta meningkatkan activiti elastase strain K, di samping 
memudahkan pemulihan selepas proses tindak balas enzim tamat. Selain itu, 
bidang lain yang masih kurang difahami adalah berkenaan analisis struktur 
CLEA. Profil biokimia and biofizik elastase strain K; sejenis protease yang 
mampu bertahan dalam pelarut organik, disekat gerakan menggunakan 
kaedah CLEA telah dianalisis. Enzim yang berharga ini mempamerkan 
ketahanan yang baik terhadap pelbagai jenis pelarut organik seperti metanol, 
etanol, 1-propanol dan dimetil sulfoksida (DMSO). Agregat elastase strain K 
telah disediakan dengan menambah 60% (w/v) ammonium sulfat dan dirawat 
selama 3 jam sebelum proses pautan silang dijalankan dengan menambah 
0.2% (v/v) glutaraldehyde dan dirawat selama 2 jam. Pengekalan aktiviti 
maksimum CLEA-elastase direkod setinggi 61.4% manakala pengekalan 
aktiviti maksimum CLEA-elastase-SB; terbitan CLEA-elastase yang dirawat 
bersama BSA dan kanji sebagai bahan pengagregatan bersama, direkod 
setinggi 81.6%. Penyekat gerakan elastase strain K telah meningkatkan 
kestabilan suhu dan suhu optimum meningkat kepada 50°C. Selain itu CLEA-
elastase mempamerkan kestabilan pada pH yang luas diantara pH 5-10 dan 
aktiviti tertingi direkod pada pH 8. Ciri ketahanan elastase strain K terhadap 
pelarut organik dikekalkan selepas proses pentakmobilan. Peningkatan 
ketahanan terhadap pelarut organik juga dikesan pada CLEA-elastase yang 
dirawat bersama metanol, asetonitril, etanol, 1-propanol, benzena dan xilena 
dengan aktiviti sebanyak 111.4 %, 164.6 %, 172.7 %, 111.4 %, 152.7 % and 
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133.2 %. Analisis biofizik telah dijalankan mengunakan pengimbasan 
mikroskop electron (SEM), penghamburan cahaya dinamik (DLS), kawasan 
permukaan Brunauer-Emmett-Teller (BET) dan spektra inframerah 
transformasi Fourier (FTIR) mendedahkan bahawa CLEA-elastase 
mempamerkan morfologi agregat jenis 2; penampilan agregat bersifat rawak 
dan kurang ditakrifkan, serta purata diameter direkot sebesar 1497 nm. Selain 
itu, penambahan bahan agregat bersama iaitu BSA dan kanji meningkatkan 
kawasan permukaan dan keporosan CLEA-elastase. Peregangan dan getaran 
pengikat yang dikaitkan dengan keberhasilan pautan silang telah dikesan pada 
spektra FTIR 1600–1700 cm-1. Secara umumnya, elastase strain K; enzim 
mampu tahan pelarut organik telah berjaya disekat gerakan menggunakan 
kaedah CLEA. Kaedah ini telah berjaya dihasilkan dan diubahsuai untuk 
mengekalkan dan menigkatkan aktiviti protease elastase strain K. 
 
 
 
 
 
 
 
 
 

  

© C
OPYRIG

HT U
PM



v 
 

ACKNOWLEDGEMENTS 
 

                                  
 

Alhamdulillah for His blessings and guidance in completing my Master study. 
My sincere gratitude to my supervisory committees Assoc. Prof Dr. Mohd 
Shukuri Mohamad Ali, Prof Raja Noor Zaliha Raja Abd Rahman and Dr. 
Fairolniza Mohd Shariff for their assistance and advices regarding my research. 
Without their helps this thesis and my manuscript would not be completed on 
time. 
 

I would like to thank the members of EMTech for their tremendous helps and 
supports during my study. Their hospitality and kindness are beyond 
compared. Although I barely knew them for just over 2 years, I will cherish 
them forever.  
 

Special dedications to my beloved family; my lifelong supporter, Ibu, Ayah, Aunty 
and my siblings for allowing me and encourage me to pursue my studies. Extra 
special dedication to the love of my life, Noor Syamila for always being by my 
side. Last but not least I would like to thank these lads for their supportive and 
encouraging pep talk; Ain Ihsan, Zulhilmi Azmi, Fakhrul Rahman, Ishak 
Shanaynay and Nash Rashid. 
 
 
 
 
 
 

  

© C
OPYRIG

HT U
PM



vii 
 

This thesis was submitted to the Senate of Universiti Putra Malaysia and has 
been accepted as fulfilment of the requirement for the degree of Master of 
Science. The members of the Supervisory Committee were as follows: 
 

Mohd Shukuri Mohamad Ali, PhD 
Associate Professor 
Faculty of Biotechnology and Biomolecular Sciences  
Universiti Putra Malaysia  
(Chairman) 
 

Raja Noor Zaliha Raja Abd. Rahman, PhD 
Professor 
Faculty of Biotechnology and Biomolecular Sciences 
Universiti Putra Malaysia  
(Member) 
 

Fairolniza Mohd Shariff, PhD 
Senior Lecturer 
Faculty of Biotechnology and Biomolecular Sciences 
Universiti Putra Malaysia 
(Member) 
 

 
 
 

 
 

___________________________ 
ZALILAH MOHD SHARIFF, PhD  
Professor and Dean 
School of Graduate Studies 
Universiti Putra Malaysia 
 
Date: 10 September 2020 

 
 
 

  

© C
OPYRIG

HT U
PM



x 
 

TABLE OF CONTENTS 
 

 Page 

ABSTRACT i 
ABSTRAK iii 
ACKNOWLEDGEMENTS v 
APPROVAL vi 
DECLARATION viii 
LIST OF TABLES xiii 
LIST OF FIGURES xiv 
LIST OF ABBREVIATIONS xv 
  
CHAPTER      
   
1 INTRODUCTION 1 
    
2 LITERATURE REVIEW 3 
 2.1 Immobilization of enzymes 3 
  2.1.1 Enzyme cross-linking 3 

 2.2 Cross-linked enzyme aggregates 
(CLEA) 4 

  2.2.1 Precipitation of enzyme 
molecules 5 

  2.2.2 Nature of bifunctional cross-
linking reagent 5 

  2.2.3 Nature of co-aggregants 6 

 2.3 Interaction between glutaraldehyde and 
protein 6 

 2.4 Key parameters for the preparation of 
cross-linked enzyme aggregates (CLEA) 7 

 2.5 Characteristics of cross-linked enzyme 
aggregates (CLEA) 8 

 2.6 Application of cross-linked enzyme 
aggregates (CLEA) 8 

 2.7 Proteases an their classifications 12 
  2.7.1 Metalloprotease 13 
  2.7.2 Elastase strain K 14 
 2.8 Industrial use of protease 15 

 2.9 Techniques for structural 
characterization 16 

  2.9.1 Scanning electron microscopy 
(SEM) 16 

  2.9.2 Dynamic light scattering (DLS) 16 

  2.9.3 Fourier-transform infrared (FTIR) 
spectroscopy 17 

  2.9.4 
Brunauer-Emmett-Teller (BET) 
surface area analysis 
 

17 
© C

OPYRIG
HT U

PM



xi 
 

3 
MATERIALS AND METHODS / 
METHODOLOGY  

18 

 3.1 Materials 18 
 3.2 Source of bacterial stock 18 

 3.3 Qualitative analysis for proteolytic 
activity 18 

 3.4 Expression of elastase strain K 18 
 3.5 Assay of proteolytic activity 19 
 3.6 Determination of protein content 19 
 3.7 Preparation of CLEA-elastase 19 
  3.7.1 Effect of saturation of precipitant 20 

  3.7.2 Effect of precipitation incubation 
time 20 

  3.7.3 Effect of concentration of 
glutaraldehyde 20 

  3.7.4 Effect of glutaraldehyde 
modification time 21 

  3.7.5 Effect of addition of co-
aggregants 21 

 3.8 Biochemical characterization of CLEA-
elastase 21 

  3.8.1 
Effect of temperature on 
proteolytic activity of CLEA-
elastase 

21 

  3.8.2 Effect of temperature on thermal 
stability of CLEA-elastase 21 

  3.8.3 Effect of pH on proteolytic 
activity of CLEA-elastase 22 

  3.8.4 Effect of pH on stability of CLEA-
elastase 22 

  3.8.5 Effect of organic solvent on 
stability of CLEA-elastase 22 

  3.8.6 Reusability of CLEA-elastase 22 

  3.8.7 Storage stability of CLEA-
elastase 23 

 3.9 Biophysical characterization of CLEA-
elastase 23 

  3.9.1 Morphology of CLEA-elastase 23 

  3.9.2 
Particle size distribution of 
CLEA-elastase in aqueous 
solution 

23 

  3.9.3 Surface area and porosity of 
CLEA-elastase 24 

  3.9.4 
Fourier-transform infrared 
spectroscopy (FTIR) analysis on 
CLEA-elastase 

24 

 3.10 Structural analysis of elastase strain K 24 

  

 
 
 
 

 
© C

OPYRIG
HT U

PM



xii 
 

4 RESULTS AND DISCUSSION 25 

 4.1 Expression of proteolytic E. coli 
KRX/pCon2(3) 25 

 4.2 Preparation of CLEA-elastase 25 

  4.2.1 Effect of (NH4)2SO4 saturation 
and (NH4)2SO4 precipitation time 25 

  4.2.2 Effect of glutaraldehyde 
concentration 27 

  4.2.3 Effect of glutaraldehyde 
modification time 28 

  4.2.4 Effect of co-aggregants to 
enhance CLEA’s activity 29 

 4.3 Biochemical characterization of CLEA-
elastase 31 

  4.3.1 
Effect of temperature on 
proteolytic activity and 
thermostability of CLEA-elastase 

31 

  4.3.2 
Effect of pH on proteolytic 
activity and stability of CLEA-
elastase 

33 

  4.3.3 Effect of organic solvent on 
stability of CLEA-elastase 35 

  4.3.4 Reusability of CLEA-elastase 37 

  4.3.5 Storage stability of CLEA-
elastase 38 

 4.4 Biophysical characterization of CLEA-
elastase 40 

  4.4.1 
Scanning electron microscopy 
(SEM) analysis of CLEA-
elastase 

40 

  4.4.2 
Surface area, porosity and 
diameter analysis of CLEA-
elastase 

41 

  4.4.3 
Fourier-transform infrared (FTIR) 
spectra analysis of CLEA-
elastase 

43 

 4.5 Structural analysis of elastase strain K 44 
   

5 
CONCLUSION AND RECOMMENDATIONS 
FOR FUTURE RESEARCH 

47 

 5.1 Conclusion 47 
 5.2 Recommendations for future research 48 
 
   

REFERENCES 49 
APPENDICES 57 
BIODATA OF STUDENT 66 
LIST OF PUBLICATION 67 
 

© C
OPYRIG

HT U
PM



xiii 
 

LIST OF TABLES 
 

Table     Page 
   

2.1 Conditions for immobilization using CLEA 
technique 6 

2.2 Immobilization parameters and applications 
of previously developed CLEA 10 

3.1 Buffer systems used for pH characterization 25 

4.1 Stability of free elastase and CLEA-elastase 
derivatives in 25% (v/v) organic solvents 42 

4.2 BET surface area and BJH adsorption 
summary 49 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 © C
OPYRIG

HT U
PM



xiv 
 

LIST OF FIGURES 
 

Table  Page 

   

2.1 Immobilization of enzyme by cross-linked 
enzyme aggregates (CLEA) technique 

3 
 

2.2 Molecular structure of glutaraldehyde, C5H8O2 4 

2.3 Schiff base reaction of glutaraldehyde with 
amino group of the enzyme 5 

2.4 
Activation of water molecule by zinc ion which 
serves as the nucleophile that will attack the 
peptide bond of a protein 

14 

2.5 Crystal structure of elastase strain K (PDB ID: 
4K89) 16 

4.1 
Effect of (a) saturation of (NH4)2SO4 and (b) 60% 
(w/v) (NH4)2SO4 precipitation time on relative 
activity of elastase strain K aggregates 

30 

4.2 Effect of glutaraldehyde concentration on the 
recovered activity of CLEA-elastase. 33 

4.3 Effect of glutaraldehyde modification time on the 
recovered activity of CLEA-elastase 34 

4.4 Effect of different co-aggregants on the 
recovered activity of CLEA-elastase 35 

4.5 Temperature profile of elastase and its CLEA 
derivatives  37 

4.6 pH profile of free elastase, CLEA-elastase and 
CLEA-elastase-SB 40 

4.7 Reusability of CLEA-elastase and CLEA-
elastase-SB 44 

4.8 Storage stability of free elastase, CLEA-elastase 
and CLEA-elastase-SB 46 

4.9 SEM images of (a) CLEA-elastase, and (b) 
CLEA-elastase-SB 48 

4.10 DLS analysis of free elastase and immobilized 
elastase; CLEA-elastase and CLEA-elastase-SB 50 

4.11 FTIR spectra of free elastase, CLEA-elastase 
and CLEA-elastase-SB 51 

4.12 Lysine residues of elastase strain K 52 

 

© C
OPYRIG

HT U
PM



xv 
 

LIST OF ABBREVIATIONS 

 

α Alpha 

BJH Barrett, Joyner, and Halenda 

bp Base pair 

β Beta 

BET Brunauer-Emmett-Teller 

BSA Bovine serum albumin 

CLE Cross-linked enzyme 

CLEA Cross-linked enzyme aggregates 

CLEC  Cross-linked enzyme crystals 

°C Degree celsius 

DNA  Deoxyribonucleic acid 

DMSO Dimethylsulfoxide  

DLS Dynamic light scattering 

FTIR Fourier-transform infrared 

g Gram 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

kb  Kilobase 

L Litre 

LB Luria bertani 

Lys Lysine 

µL Microliter 

µm Micrometer 

µmoles     Micromoles © C
OPYRIG

HT U
PM



xvi 
 

mg/mL Milligram per mililiter 

M Molar 

nm Nanometer 

Log Po/w Partition coefficient 

rpm Rotation per minute 

SEM Scanning electron microscopy 

NaOH Sodium hydroxide 

TCA Trichloroacetic acid 

v/v Volume per volume 

w/v Weight per volume 

 

 

© C
OPYRIG

HT U
PM



1 
 

CHAPTER 1 
 

INTRODUCTION 
 

Nowadays, the demand of hydrolytic enzymes such as proteases has 
significantly increased since the use of hydrolytic enzymes has been proven to 
be beneficial for industrial purposes. The application of hydrolytic enzymes for 
industrial purposes covers wide industrial areas such as detergent industries, 
leather tanning, food industries and pharmaceutical (Mahmod et. al., 2016). 
Proteases for instance, are incorporated in detergent formula to remove 
protein-based stains and are used in leather industries to aid dehairing 
processes. The use of protease in the industries occupies 60% of the 
hydrolases in the industrial market. Over the years, proteases have been 
extracted from different sources and were tailored for commercial uses. Studies 
on proteases mainly focused on microbial proteases due to its variety and its 
unique characteristics including thermophilic, alkalophilic and organic solvent 
tolerant traits (Asgher et. al., 2018). In addition to that, uses of enzyme in 
general for industrial purposes are inexpensive and sustainable to the 
environment. Although the use of enzyme as a biocatalyst are undeniably 
profitable and beneficial, they are limited to single usage as enzyme undergoes 
denaturation after catalysing a reaction (Sheldon, 2011). Enzymes are also 
susceptible to denaturation under extreme conditions such as high 
temperature, extreme pH and presence of organic solvents in the reaction 
media. These conditions; which are deemed extreme towards enzyme, are 
frequently utilized in industrial applications to shift the reaction equilibrium 
towards completion of synthesis (Li et. al., 2013). 
 

Notwithstanding with the limitations, enzymes with high durability and tolerance 
against the extreme conditions are constantly being discovered and studied. 
Enzymes that are thermophilic; able to endure high temperature, alkalophiles; 
able to tolerate alkaline conditions, and solvent tolerant enzymes has a 
promising feature which are applicable for industrial purposes. Enzymes with 
these features are abundant in nature and can be isolated from microorganism 
living in appropriate niches. In this study, elastase strain K is a solvent tolerant 
metalloprotease isolated from Pseudomonas aeruginosa strain K. This valuable 
enzyme exhibit remarkable tolerance against wide range of polar and non-polar 
organic solvents such as methanol, ethanol, 1-propanol and dimethyl sulfoxide 
(DMSO). Natural enzymes with organic solvent-tolerance are useful for 
applications employing organic solvents as reaction media because they can 
be used for these applications without any modifications to stabilize the 
enzymes. In order to expand the practicality of this enzyme for industrial 
applications, some modifications should be made to enhance the durability of 
the enzyme. One enzyme modification that can be applied is by immobilization 
techniques. Whilst individual enzyme molecules are susceptible to 
denaturation, physical carrier or chemical cross-linker can be incorporated to 
form a stable immobilized enzyme structure. Example of enzyme 
immobilization techniques are adsorption, encapsulation and cross-linking.  
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While each of the enzyme immobilization techniques offers great solution in 
improving the operational stability of enzyme, there are some limitations of 
using certain immobilization techniques. Enzyme immobilization by adsorption 
often experience loss of enzyme activity due to enzyme leaching during 
recovery processes (Sheldon, 2011). In addition to that, the use of non-catalytic 
carrier in adsorption reduces the volumetric yield and cause enzyme dilution. 
Likewise, enzyme immobilization by encapsulation also experience loss of 
activity due to enzyme leaching and low productivity since most of the volume 
are taken up by the non-catalytic matrices (Velasco-Lozano et. al., 2015). 
Above all one major drawback of these immobilization techniques is the need 
to use a highly purified enzyme. In view of the drawbacks seen in the enzyme 
immobilization techniques by adsorption, encapsulation and cross-linking, this 
study therefore proposed the preparation of cross-linked enzyme aggregates 
(CLEA) of elastase strain K. Cross-linked enzyme aggregates (CLEA) is a 
versatile, carrier-free enzyme immobilization technique which has a notable 
reputation due to the advantages it provides. In contrast with adsorption and 
encapsulation, CLEA immobilization does not require a purified enzyme to 
begin with. In addition to that, the use of small sized cross-linker ensure that 
the immobilized enzyme to be comprised of the enzyme mostly (Talekar et. al., 
2013). The processes of forming CLEA are also relatively simple; by 
incorporation of aggregants to precipitate the enzyme thus increasing the 
selectivity and addition of bifunctional reagent such as glutaraldehyde to cross-
link the enzyme. Processes of forming CLEA also varied in term of duration of 
the treatment and concentration of cross-linking reagent used, depending on 
the enzyme being immobilized.  
 

To date, only few studies were conducted on immobilization of organic solvent 
tolerant protease using CLEA immobilization technique. It is noteworthy to 
study the extent of immobilizing elastase strain K using CLEA method in 
improving the activity and maintaining the pre-existing organic solvent tolerant 
characteristic of the enzyme. Apart from that, studies regarding the structural 
conformation of CLEA remain elusive.  
It is hypothesized that understanding of its structural conformational would 
facilitate the construction of CLEA. This research was conducted to achieve the 
following objectives: 
 

1. To optimize the preparation of CLEA of the organic solvent tolerant 
elastase strain K. 
 

2. To characterize the biochemical features of CLEA of organic solvent 
tolerant elastase strain K. 

 
3. To determine the biophysical profile of CLEA of organic solvent tolerant 

elastase strain K. 
 
. 

 
. 
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