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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment
of the requirement for the degree of Doctor of Philosophy

CLASSICAL ASPECT OF UNCERTAINTY PRINCIPLE FOR SPIN
ANGULAR MOMENTUM IN GEOMETRIC QUANTUM MECHANICS

By

UMAIR BIN ABDUL HALIM

April 2021

Chairman: Associate Professor Hishamuddin Zainuddin, PhD
Faculty: Science

Quantum mechanics is one of two foundational parts of modern physics. Along
with relativity, quantum mechanics plays a central roles in explaining the nature and
behavior of matter on the microscopic level. It is regarded as most successful the-
ory ever developed in history of physics. However it is difficult to make a smooth
connection between classical mechanics and quantum mechanics since classical me-
chanics is based on geometry and some of the systems are non-linear whereas quan-
tum mechanics is intrinsically algebraic and linear. The fact that classical mechan-
ics, general relativity and others are highly geometrical inspired some physicists
to cast quantum mechanics in geometrical language in order to better understand
the quantum-classical transition. Within this framework the states are represented
by points of a symplectic manifold with a compatible Riemannian metric, the ob-
servables are real valued functions on the manifold, and the quantum evolution is
governed by a symplectic flow that is generated by a Hamiltonian function. In this
research, the properties of spin 1

2 , spin 1 and spin 3
2 particles in geometric quantum

mechanics framework have been studied. Generally the Robertson-Schrödinger un-
certainty principle for these systems has been demonstrated varies along any Hamil-
tonian flows. This work was done by calculating the evolution of symplectic area
and component of Riemannian metric under the flows. Besides, the correspondence
between Poisson bracket and commutator for these systems was showed by explic-
itly computed the value of commutator of spin operators and compared it with the
Poisson bracket of the corresponding classical observables. This study was extended
by comparing the Casimir operator and its classical counterpart. The results showed
that there exist correspondence between classical and quantum Casimir operator at
least for the case of spin 1

2 . This research might be a good step toward inserting the
aspect of symplectic topology such as non-squeezing theorem and clearly showed
the limit of classical notion to describe the purely quantum concept.
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ASPEK-ASPEK KLASIK MOMENTUM SUDUT SPIN DI DALAM
GEOMETRI KUANTUM MEKANIK

Oleh

UMAIR BIN ABDUL HALIM

April 2021

Pengerusi: Profesor Madya Hishamuddin Zainuddin, PhD
Fakulti: Sains

Kuantum mekanik merupakan satu daripada dua cabang utama fizik moden bersama
dengan relativiti memainkan peranan penting dalam menerangkan sifat semulajadi
bahan di peringkat atom dan sub-atom. Ia dianggap di antara teori yang paling
berjaya pernah dihasilkan oleh ahli fizik sehingga kini. Namun begitu asas pem-
binaan teori kuantum yang berdasarkan algebra dan bersifat linear menyukarkan
ahli fizik untuk membuat hubungan secara langsung dengan mekanik klasik yang
berorentasikan geometri dan bersifat tidak linear. Oleh itu sebahagian daripada
ahli fizik cuba untuk menghasilkan kuantum mekanik yang berasaskan geometri
untuk lebih memahami hubung kait teori ini dengan klasikal mekanik. Keadaan
sesuatu sistem dalam kerangka ini diwakili oleh titik di dalam manifold simplektik
yang dilengkapi dengan metrik Riemannian. Selain dari itu, kuantiti yang boleh
dicerap adalah merupakan fungsi nyata di dalam manifold ini dan evolusi kuan-
tum sistem adalah ditentukan oleh aliran Hamiltonian yang dihasilkan oleh fungsi
Hamiltonian. Dalam tesis ini, ciri-ciri spin 1

2 , spin 1 dan spin 3
2 telah dikaji menggu-

nakan kerangka geometri kuantum mekanik. Secara umumnya prinsip ketidakpas-
tian Robertson-Schrödinger telah ditunjukkan adalah sentiasa berubah disepanjang
mana-mana aliran Hamiltonian. Hal ini dapat dilakukan dengan mengira luas sim-
plektik dan komponen metrik Riemannian disepanjang aliran tersebut. Selain dari
itu, hubung kait diantara kurungan Poisson dan komutator telah ditunjukkan dengan
mengira nilai komutator bagi operator spin dan bandingkan ia dengan nilai kurungan
Poisson bagi kuantiti klasiknya. Kemudian perbandingan diantara operator Casimir
dan versi klasiknya telah dilakukan. Hasil kajian menunjukkan bahawa sekurang-
kurangnya wujud hubungan diantara kuantum dan klasik operator Casimir untuk kes
spin 1

2 . Ujikaji ini adalah dianggap penting dalam usaha untuk mengaitkan geometri
kuantum mekanik dengan topologi simplektik dan juga menunjukkan secara jelasnya
had fahaman klasik dalam menghuraikan konsep kuantum yang tulen.
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CHAPTER 1

INTRODUCTION

1.1 The Difference Structures of Classical and Quantum Mechanics

For over 200 years, physicists believe that classical mechanics is a fundamental rule
of explaining most of physical phenomena since all the important laws in thermody-
namic, physical optic and kinetic theory have to be compatible with this theory. It is
used to predict the motion of objects on macroscopic level, from molecular dynamics
to the motion of celestial bodies such as moons, planets, and solar system. In this
domain, this theory provides very accurate results and become one of the important
subject in science, engineering and technology. However, inability to predict certain
behaviour of matter discovered in late 19th century such as Black Body Radiation
shows the incompleteness of classical mechanics. This fact leads to revolution in
physics world that give birth to new era which we now refer as modern physics.
Quantum mechanics is one of two foundational parts of modern physics, along with
relativity play a central roles to explains the nature and behavior of matter at the mi-
croscopic level. It is regarded as the most successful theory ever developed in history
of physics. This theory provides significant contribution in development of modern
technology including lasers, CDs, solar cells and many others. Besides, it act as
theoretical basis for some related field such as nanotechnology, condensed matter
physics, quantum chemistry, structural biology, particle physics, and electronics.

In quantum mechanics, the state of the system corresponds to points in complex pro-
jective Hilbert space P(H ) i.e. the Hilbert space H modulo scalars multiplication
and the observables are represented by self-adjoint linear operators on H . Further-
more, similar to classical description, the space of observables is a real vector space
equipped with two algebraic structures called the Jordan product and Lie product.
From the latter, the space of observables is endowed with the structure of Lie alge-
bra. The measurement theory, on the other hand is clearly different compare with
the classical mechanics. According to Copenhagen interpretation, the measurement
of observable Â in a state |Ψ〉 yield eigenvalue a and the state instantly change into
the corresponding eigenstate. Similar to classical theory, the observable Â also gives
rise to a flow on the state space. Specifically the flow in quantum is generated by
one-parameter group expiÂt that preserves the linearity of H . While classical me-
chanics is regarded as an approximation of quantum mechanics at macroscopic scale,
this theory is formulated based on different physical idea. In classical framework the
states are represented by the points on phase space which is a symplectic manifold
M. The set of real-valued and smooth functions on this manifold are space of observ-
ables. In addition this space is equipped with a commutative and associative algebra
structure. The measurement of an observable f in any state p ∈ M is equal to the
value f (p). The results are completely certain and the state remains unchanged after
measurement. Furthermore, an observable f is closely related with a vector field X f
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which generates flows on the phase space. In term of dynamics, the observables are
said to be Hamiltonian H, where the flows generated by XH describe the evolution
of the state on phase space. Although quantum mechanics and classical mechanics
have several points in common, they are quite different in several aspects. The most
striking one is the classical mechanics is based on geometry and some of the systems
are non-linear whereas quantum mechanics is intrinsically formulated as algebraic
and linear. The linearity seems to be necessary condition since none of standard
quantum mechanics postulate can be stated without referring to it. This distinction
is quite strange since in general, linear structure in physics arises as approximations
to more accurate non-linear ones, but in this case the situation happens in opposite
way. Thus it is difficult to make a smooth connection between classical mechanics
and quantum mechanics.

1.2 The Quantum-Classical Correspondence Problem

The connection between classical and quantum representation is one of the greatest
problems in understanding microscopic systems. While there is no question that
quantum and classical descriptions are doing well in their own implementation
scales, one would consider a smooth transition between these two descriptions to be
feasible, at least at theoretically. It is well-known however, that this is not a trivial
problem. To explain such a transformation a field known as quantization has been
intensively developed.

In physics, quantization has been regarded as a process of transition from the
classical system which is generally speaking, something that involves macroscopic
objects and which one is familiar with from daily life to the corresponding quantum
system, which involves microscopic objects where things are subject to more
complex laws. The latter can be reduced to the previous, as the scale of the objects
becomes greater, that is, as the Planck constant which mathematically refers to the
magnitude where the quantum effects are important, appears to be zero. This process
is not only become the basic tool used to establish important theories of physics
including quantum optics, particle and nuclear physics but is also of central interest
in the philosophy of physics. Besides that the quantization method has contributed
into mathematical knowledge influencing the fields of group representation theory
and symplectic geometry.

However throughout history, it is clear that mathematically and also physically, such
a concept is not entirely adequate. From a physical perspective, it is more relevant
to consider quantization just as a correspondence of classical and quantum systems
since there might be quantum systems that have no classical analog as well as vari-
ous quantum systems that belong to the same classical system. Moreover from the
mathematical perspective, one may face a different type of difficulties, that is the
quantization procedure could not be extended to the full algebra of observable, for
example it can only be applied in position observable q and momentum observable

2
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p up to second order polynomials. This problem has brought us to the well-known
Groenewold-van Hove (no-go) theorem. The theorem states that there is no quan-
tization map Q acting on polynomial of degree not exceeding four that follows the
bracket condition

Q{ f ,g} =
1
ih̄
[Q f ,Qg] (1.1)

for all functions f and g of degree not exceeding three. As a consequence, the pres-
ence of several types of quantization that have been faced ranging from geometric
quantization, deformation quantization and numerous associated operator-theoretic
quantizations to Feynman path integrals and many others.

Besides, according to the Kochen-Specker Theorem, given a premise of noncontex-
tuality certain sets of quantum observables cannot consistently be assigned values
at all. The theorem shows that there is a contradiction between two basic assump-
tions of the hidden-variable theories intended to reproduce the results of quantum
mechanics: that all hidden variables corresponding to quantum-mechanical observ-
ables have definite values at any given time, and that the values of those variables
are intrinsic and independent of the device used to measure them. Originally, a set of
117 different projection operators on Hilbert space with dimension 3 has been found
that there was impossible to consistently assign values to these projection operators
without reaching the contradiction. It turns out that it is not possible to simultane-
ously combine all the commuting subalgebras of the algebra of such observables into
one commutative algebra, believed to reflect the classical form of the hidden-variable
theory, by considering the dimension of Hilbert space is at least three.

1.3 Geometric Quantum Mechanics

The fact that classical mechanics, general relativity and others are highly geometri-
cal inspired some physicists to cast quantum mechanics in geometrical language in
order to better understand the quantum-classical transition. The deeper investigation
shows that the Hilbert space H is not the true space of states, since any two state
vectors Ψ ,Φ ∈H such that Ψ = αΦ are physically equivalent (Ψ v Φ). Thus
the proper quantum space of pure states is the set of rays through the origin in H ,
i.e. P(H ) := H /v which is known as the complex projective Hilbert space or the
quantum phase space for both finite and infinite dimensional H . Furthermore, the
existence of Hermitian inner product in H endows P(H ) with the structure of a
Kähler manifold (ω,g, j) where ω is non-degenerate, closed symplectic two-form, g
is Riemannian metric and j is the compatible complex structure satisfying j2 =−1.
Thus, similar to classical mechanics, the correct quantum state space is also can be
regarded as a symplectic manifold. In term of self-adjoint operator on H , via its
expectation value, one can obtain a real valued function on H which has well de-
fined projection h to P(H ). Note that every phase space function induced a flow
along its Hamiltonian vector field Xh. Hence on Hilbert space, the flow is certainly
defined by Schrödinger equation of the quantum theory. In other words, Schrödinger
evolution is exactly the Hamiltonian flow on quantum phase space P(H ). Here one

3
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can directly see that classical mechanics and quantum mechanics have many simi-
larities. However, the fact that Riemannian metric in quantum phase space is closely
related to the notion of probability comes up with several main futures that are miss-
ing in classical mechanics such as uncertainty principle and state vector reduction in
quantum measurement processes.

1.4 The Classical Uncertainty Principle

Despite the success of quantum mechanics in term of application, the true nature of
this theory is still far from being understood. In other words, some of its principles
and concepts are clearly counter-intuitive and very difficult to explain in simple
language since most of them do not have classical analogue. One of the famous
examples that describe the weirdness of quantum mechanics is the uncertainty prin-
ciple. This principle introduced by German physicist Werner Heisenberg in 1927
states that certain pairs of physical properties of a particle known as complementary
variables, such as position and momentum, cannot be simultaneously measured with
arbitrarily high precision. In other words the more precisely the position is known
the more uncertain the momentum is and vice versa.

It is generally accepted that uncertainty principle is a purely quantum concept and
cannot be described using classical mechanics. However this statement has shown
not to be entirely true when recently one has successfully shows the uncertainty prin-
ciple can naturally arise from the structure of classical mechanics (de Gosson, 2004).
This is achieved using a topological tool known as symplectic capacity together with
notion of quantum blob. As it is known, Heisenberg uncertainty principle is a mini-
mum for the product of the uncertainties of position and momentum measurements.
This is consistent with the property of symplectic camel which asserts that it is not
possible to shrink a cross-section defined by conjugate coordinates like x and px to
zero showing that a minimum cross-sectional area within a given volume that cannot
shrink further. The minimum area is referring to the notion of quantum blob which
is a symplectically invariant replacement of cubic quantum cell frequently used in
statistical quantum mechanics. In other words, it is regarded as a smallest unit in
phase space which is invariant under symplectic transformation. Technically, this
notion is the image of a phase space ball, B with radius

√
h by linear symplectic

transformation. Both symplectic capacity and quantum blob are consequence of the
Gromovs non-squeezing theorem means that they are invariant under Hamiltonian
flow. In particular, the area of quantum blob is preserved under this flow.

1.5 Problem Statements and Objectives

As mention above, de Gosson shows that the uncertainty principle can be con-
structed in classical framework by utilizing a topological notion known as quantum
blob. This notion which based on famous non-squeezing theorem proof that

4
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the minimum of Heisenberg uncertainty principle in this framework is invariant
under Hamiltonian flows. Therefore, motivated from this work, the possibility of
the uncertainty principle in geometric quantum mechanics is invariant under the
Hamiltonian flows has been demonstrated.

Besides, the examination on the correspondence between quantum and classical
aspects of geometric quantum mechanics has been focused and the classical
properties of the observables has been studied as the literature was identified did not
discussed in deeper level. This study is important in order to identify the limitation
of classical notion of geometric quantum mechanics to describes the purely quantum
concept such as commutator of two spin operators and Casimir operator.

The objectives of this research are:

1. to compute the evolution of geometric uncertainty principle for the case of
spin 1

2 and spin 1 particles.

2. to examine the correspondence between Poisson bracket and commutator for
the case of spin 1

2 , spin 1 and spin 3
2 particles.

3. to study the difference between classical analogue of Casimir operator and it
quantum counterpart.

1.6 Organization

In Chapter 2, some literature that discuss about geometrical idea in quantum
mechanics have been reviewed in general followed by focusing on geometric
quantum mechanics pursued by Kibble.

The discussions based on the theory and methodology used in this research have been
presented in Chapter 3. The discussion have been introduced the preliminaries of the
mathematical ingredients used in geometric quantum mechanics such as Hamiltonian
dynamics and fibre bundle theory. Hence the fundamental idea of geometric quantum
mechanics consist of the notion of quantum phase space as a Kähler manifold, the
role of symplectic form in dynamical quantum system and the role of Riemannian
metric in quantum kinematics for both finite and infinite dimensional cases have been
reviewed.

5
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In Chapter 4 is the authors contribution where the discussion and comparison of the
results of the geometric formulation of uncertainty principle for the case of spin
1
2 . spin 1 and spin 3

2 particles. Besides that, examination on the correspondence
between quantum and classical aspects of geometric quantum mechanics has been
focused and the classical properties of the observables has been studied.

All the author’s research findings and the proposed possible generalizations for fu-
ture work have been summarized in the final chapter. In term of uncertainty principle,
one may possibly extend this works by considering aspects of symplectic topology
specifically by rephrasing the uncertainty principle in geometric quantum mechanics
based on the famous non-squeezing theorem.

6
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