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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

ENVIRONMENTAL CHARACTERIZATION AND METAGENOMICS
ANALYSIS OF BIOTIC AND ABIOTIC FACTORS IN NORTH SELANGOR
PEAT SWAMP FOREST, MALAYSIA

By

SAADU HAMIDU

September 2020

Chairman : Associate Professor Mohammad Noor Amal Azmai, PhD
Faculty : Science

The North Selangor Peat Swamp Forest (NSPSF), like all other peatland ecosystems
are subjected to various of threats such as forest fire, wild animal poaching, expansion
of area for agricultural and industrial activity, canal construction, deforestation, and
air, water and land pollutions. Moreover, limited fundamental studies have been
conducted in this unique ecosystem, especially in the aspect of microbial ecology that
associated with the continuous anthropogenic activities of the protected forest.

In general, this study determines the environmental characterization and
metagenomics analysis of biotic and abiotic factors in North Selangor Peat Swamp
Forest, Selangor, Malaysia. Firstly, this study determines the current environmental
variables of undisturbed and disturbed areas. Secondly, the composition and diversity
of bacterial communities in the fish gut contents, water and soil of undisturbed and
disturbed areas were identified. Thirdly, the taxa and functional genes biomarkers of
bacteria in soil samples of undisturbed and disturbed areas were determined. Lastly,
this study identified the relationships between the environmental variables and
bacterial taxa biomarker from soil of undisturbed and disturbed areas.

In order to understand the impacts of natural and human induced factors on the
bacterial communities in NSPSF, two areas namely NSPSF (undisturbed) and its
nearby (disturbed) areas were selected in this study. In each area, three sites were
selected, namely Sungai Karang Peat Swamp Forest site 1 (SKPSF-1), Raja Musa Peat
Swamp Forest (RMPSF) and Sungai Karang Peat Swamp Forest site 2 (SKPSF-2) for
undisturbed area, while for disturbed area, paddy field (PF), forest fire (FF) and oil
palm plantation (OP) areas were selected. The environmental variables of
anthropogenic activities, forest characteristics and water physico-chemical parameters



in undisturbed and disturbed areas were determined. Following that, the
metagenomics techniques was utilized to assess the composition, diversity,
taxonomical biomarkers and functional genes of bacteria in the undisturbed (U) and
disturbed (D) samples of fish gut contents (UF and DF), water (UW and DW) and soil
(US and DS) in the study areas, as well as to relate these metagenomics findings with
the measured environmental variables.

The findings on anthropogenic activities revealed that the disturbed areas have higher
scores in water (WP), land (LP) and noise (NP) pollutions and agricultural activity
(AA). Other anthropogenic activities that recorded in disturbed areas were distance
from human settlement (DHS), state of accessibility (SA), and deforestation (DL), and
these were the predominant anthropogenic activities in disturbed area. Whereas,
construction activities (CR) cut across all the sites. The higher seedling percentage
(PS) in OP was observed and conversely, the percentage of trees (PT) and number of
falling trees (FT) appeared to be correspondingly higher in SKPSF-1. The PF in the
disturbed area was characterized by high relative light intensity (RLI). Conversely,
RLI was relatively lower in the undisturbed area. The undisturbed area indicates lower
dissolved oxygen (DO) values and notably increases from undisturbed to disturbed
areas, particularly in PF and OP. The FF was an exception, which was observed to
have comparatively lower DO concentration. Some of anthropogenic activities such
as DHS, SA, DL and AA correlated closely with NH3-N and Fe in the disturbed area,
while sign of fire (SF) in the undisturbed area was associated with NOs".

The metagenomics analyses in undisturbed and disturbed areas revealed a rich and
diverse bacterial community across the 18 samples of fish gut contents, water and soil.
Moreover, the alpha indexes showed significant difference (p < 0.05) between the
disturbed and undisturbed sites of each sample. The rarefaction among the samples
showed curves, at points where the number individual organisms increase, but the
number of species remain constant in the study area. The Proteobacteria appeared to
be the most dominated phyla, followed by unassigned taxa, Firmicutes and
Actinobacteria, and they were relatively significance in disturbed area of DF and DS
samples. The finding showed significant differences in relative abundance of some
phyla between undisturbed and disturbed areas. The higher relative abundance of
some taxa such as Novosphingobium in UW and Desulfobacter in DS indicates the
presence of pollutants in undisturbed and disturbed areas. Similarly, phylum
Acidobacteria was apparently present throughout the undisturbed samples and was the
most common bacterial group detected in undisturbed area.

Furthermore, among the three samples (soil, water and fish gut content), the soil
samples recorded higher difference between the OTUs in undisturbed and disturbed
areas. Hence, differential features of bacterial community in the soil were predicted.
The metagenomics taxonomic features of soil samples showed ACK M,
Hydrogenophilaceae and Thiobacillus were taxa biomarker that prevalent in
undisturbed samples, whereas, the taxa biomarker identified in disturbed area were
p_WPS 2, Planctomycetaia and Gemmatales. The discriminatory metagenomics
features detected KO biomarkers through LEfSe which were notably higher in DS
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samples, and most of them were associated with chemotaxis and related electron
transfer. Whereas, majority of the KO biomarkers in US samples were linked with
transport, adhesion of proteins and iron. The functional biomarkers detected in DS
samples were connected to synthesis of proteins and amino acid related enzymes such
as DNA  replication, translation  factors, RNA  polymerase and
aminoacyl tRNAbiosynthesis were observed. In contrast, most of the functional
biomarkers depicted in US samples related to metabolism and degradation of
chemicals like ascorbate and alderate metabolism, C5 branched dibasic acid
metabolism, biosynthesis and biodegradation of secondary metabolites, and dioxin
degradation. Metagenome contribution by gene family in soil samples revealed
Enterobacteriaceae and Aeromonadaceae, to be associated with K03088. However,
only Moraxellaceae was predicted in DS sample which was linked to K03406. The
higher number of taxa biomarker and metagenomic contribution by genes family were
predicted in the DS samples. Thus, it suggests the presence of consortium of bacteria
with synergistic or antagonistic actions of bacteria in the disturbed area, and this could
have been the source of ecological difference between disturbed and undisturbed area
of NSPSF.

Redundancy analysis was used to analyse and summarise the relationships between
the anthropogenic activities, forest characteristics and water physico-chemical factors
with bacterial taxa biomarker of soil samples in undisturbed and disturbed areas. The
taxa biomarker connected to five anthropogenic activities of SA, AA, CR, DL and
DHS including ¢ TK17, Legionella, p  WPS 2, Spirochaeta and Acinetobacter in
DS samples. Interestingly, similar taxa biomarker particularly C TK17,
g Legionella, p  WPS 2, g Spirochaeta and g Acinetobacter as obtained in
anthropogenic factors were also were strongly linked to the two forest characteristics
of RLI and PS that found in DS samples. Whereas, the members of
Hydrogenophilaceae, Thiobacillus, Candidatus Rhodoluna and f ACK M1 and
Methylococcales were the biomarkers that more localized in US samples with closer
association to NOs", turbidity and water depth.

In this study, some recommendations were proposed such as to regulate indiscriminate
construction of canals, roads, and other buildings in the both undisturbed and disturbed
areas. As such, environmental impact assessment should be carried out and this
recommendation should be adhered prior to any project in and around NSPSF. On the
forest characteristics, the seedlings could be complemented through artificial nurseries
in undisturbed areas which recorded low PS. Despite the differences in environmental
factors between disturbed and undisturbed areas, no significant difference obtained
between the two areas in term of the bacterial diversity and composition. Interestingly,
NOs, turbidity and water depth have strong associations with taxa biomarker in
undisturbed area. Thus, suggesting that change in these three factors could likely affect
the distribution and abundance of species within the bacterial biomarker identified in
NSPSF. Indeed, further study on metagenomics analysis of biotic and abiotic factors
could be carried out to exploit the effects of seasonal variation on environmental
conditions of NSPSF. Additionally, the unclassified taxa of bacterial community in
NSPSF could also be investigated to bring out its taxonomical and functional features.
This study could potentially provide guidelines for effective identification,
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remediation and restoration of degraded peat swamp forest, as well as give the insight
in ecological monitoring and conservation of NSPSF and its environment.
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PENCIRIAN PERSEKITARAN DAN ANALISIS METAGENOMIK FAKTOR
BIOTIK DAN ABIOTIK DI HUTAN PAYA GAMBUT UTARA, MALAYSIA

Oleh

SAADU HAMIDU

September 2020

Pengerusi : Profesor Madya Mohammad Noor Amal Azmai, PhD
Fakulti : Sains

Hutan Paya Gambut Selangor Utara (NSPSF) adalah salah satu ekosistem tanah
gambut yang mengalami pelbagai ancaman seperti kebakaran hutan, pemburuan
haiwan liar, perluasan kawasan untuk kegiatan pertanian dan perindustrian,
pembinaan terusan, penebangan hutan, dan pencemaran udara, air dan tanah.
Tambahan pula, kajian asas yang telah dilakukan di dalam ekosistem unik ini adalah
terhad, terutamanya di dalam aspek ekologi mikrobiologi yang berkaitan dengan
aktiviti antropogenik yang berterusan dalam hutan terlindung ini.

Secara umumnya, kajian ini menentukan pencirian persekitaran dan analisis
metagenomik faktor biotik dan abiotik di Hutan Paya Gambut Utara Selangor,
Selangor, Malaysia. Pertama, kajian ini menentukan pembolehubah persekitaran
semasa kawasan tidak terganggu dan terganggu. Kedua, komposisi, diversiti dan
penanda bio taksa bakteria oleh bakteria komuniti dalam kandungan usus ikan, air dan
tanah di kawasan tidak terganggu dan terganggu dikenalpasti. Ketiga, taksa dan gen
berfungsi bakteria di dalam kandungan tanah di kawasan tidak terganggu dan
terganggu ditentukan. Akhir sekali, kajian ini mengenalpasti perhubungan di antara
pembolehubah persekitaran dan penanda bio taksa bakteria dari tanah, dari kawasan
tidak terganggu dan terganggu.

Untuk memahami kesan faktor semula jadi dan manusia pada komuniti bakteria di
NSPSF, dua kawasan, iaitu NSPSF (tidak terganggu) dan kawasan berdekatannya
(terganggu) telah dipilih dalam kajian ini. Di setiap kawasan, tiga lokasi dipilih, iaitu
kawasan Hutan Paya Gambut Sungai Karang 1 (SKPSF-1), Hutan Paya Gambut Raja
Musa (RMPSF) dan Hutan Paya Gambut Sungai Karang 2 (SKPSF-2) untuk kawasan
yang tidak terganggu, manakala untuk kawasan yang terganggu, kawasan sawah padi
(PF), kebakaran hutan (FF) dan penanaman kelapa sawit (OP) telah dipilih.
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Pembolehubah persekitaran oleh aktiviti antropogenik, pencirian hutan dan parameter
fizikokimia air di kawasan yang tidak terganggu dan terganggu telah ditentukan.
Selepas itu, teknik metagenomik telah digunakan untuk menilai komposisi, diversiti,
taksonomi penanda bio dan gen berfungsi bakteria kawasan tidak terganggu (U) dan
terganggu (D) dari sampel kandungan usus ikan (UF dan DF), air (UW dan DW) dan
tanah (US dan DS) di kawasan kajian, dan juga mengaitkan penemuan metagenomik
ini dengan pembolehubah persekitaran yang telah ditentukan.

Hasil kajian ke atas aktiviti antropogenik mendapati kawasan yang terganggu
mempunyai skor pencemaran air (WP), tanah (LP) dan kebisingan (NP) dan aktiviti
pertanian (AA) yang lebih tinggi. Aktiviti antropogenik lain yang juga dicatatkan di
kawasan terganggu adalah jarak dari penempatan manusia (DHS), tahap akses (SA)
dan penebangan hutan (DL), dan merupakan aktiviti antropogenik utama di kawasan
terganggu. Manakala aktiviti pembinaan (CR) merangkumi semua kawasan kajian.
Semakin tinggi peratusan anak pokok (PS) dalam OP dan sebaliknya telah dicatatkan,
manakala peratusan pokok (PT) dan jumlah pokok tumbang (FT) adalah lebih tinggi
dalam SKPSF-1. PF di kawasan terganggu dicirikan oleh intensiti cahaya relatif (RLI)
yang tinggi. Sebaliknya, RLI secara relatif adalah lebih rendah di kawasan yang tidak
terganggu. Kawasan yang tidak terganggu menunjukkan nilai oksigen larut yang lebih
rendah (DO) dan ketara meningkat dari kawasan yang tidak terganggu ke kawasan
yang terganggu, terutamanya di PF dan OP. FF adalah pengecualian, yang dilihat
memiliki kepekatan DO yang secara relatif lebih rendah. Beberapa aktiviti
antropogenik seperti DHS, SA, DL dan AA berkorelasi rapat dengan NH3-N dan Fe
di kawasan yang terganggu, manakala pencemaran udara (AP) di kawasan yang tidak
terganggu berkait dengan NOs".

Analisis metagenomik di kawasan tidak terganggu dan terganggu menunjukkan
kekayaan dan kepelbagaian komuniti bakteria pada 18 sampel kandungan usus ikan,
air dan tanah. Tambahan pula, indeks alpha menunjukkan perbezaan yang signifikan
(p < 0.05) di antara kawasan terganggu dan tidak terganggu untuk setiap sampel.
Penipisan di antara sampel menunjukkan lekukan pada titik di mana bilangan
organisma meningkat, tetapi jumlah spesies tetap sama di kawasan kajian.
Proteobacteria merupakan filum yang paling mendominasi, diikuti oleh taksa
unassigned, Firmicutes dan Actinobacteria, di mana mereka menunjukkan relatif
kepentingan di kawasan terganggu pada sampel DF dan DS. Penemuan ini
menunjukkan perbezaan yang signifikan dalam kelimpahan relatif beberapa filum di
antara kawasan yang tidak terganggu dan terganggu. Kelimpahan relatif beberapa
taksa seperti Novosphingobium dalam UW, Desulfobacter dalam DS menunjukkan
kehadiran bahan pencemar di kawasan yang tidak terganggu dan terganggu. Begitu
juga, filum Acidobacteria nampaknya hadir di seluruh sampel kawasan tidak
terganggu dan merupakan kumpulan bakteria yang paling biasa dikesan di kawasan
yang tidak terganggu. Pseudomonadales dan Desulfobacteraceae adalah taksa penanda
bio yang lazim terdapat pada sampel yang tidak terganggu, manakala, penanda bio
taksa yang dikenalpasti di kawasan terganggu adalah Methylobacterium, Ralstonia
dan Bacillus.
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Di samping itu, di antara ketiga sampel iaitu tanah, air dan kandungan usus ikan,
sampel tanah merekodkan perbezaan OTU yang tinggi di antara kawasan tidak
terganggu and terganggu. Demikian, perbezaan ciri komuniti bakteria di dalam sampel
tanah telah diramalkan. Ciri metagenomik taksa di dalam sampel tanah menunjukkan
ACK M1, Hydrogenophilaceae dan Thiobacillus adalah antara taksa penanda bio
yang lazim dijumpai di kawasan tidak terganggu, manakala taksa penanda bio di
kawasan terganggu adalah p WPS 2, Planctomycetaia and Gemmatales. Perbezaan
ciri metagenomik mengesan penanda bio KO melalui LEfSe, dimana ia menunjukkan
ciri yang tinggi di dalam sampel DS, dan kebanyakan daripada KO tersebut adalah
berkaitan dengan kemotaksis dan pemindahan elektron. Kebanyakan penanda bio KO
di sampel US adalah berkaitan dengan pemindahan, lekatan protein dan besi. Penanda
bio fungsi yang hadir di dalam sampel DS menunjukkan hubungkait dengan protein
sintesis dan enzim berkaitan denga asid amino, seperti replikasi DNA, faktor translasi,
polimeras RNA dan aminoacyl tRNAbiosintesis. Sebaliknya, kebanyakan penanda
bio fungsi yang ditunjukkan di dalam sampel US adalah berkaitan dengan
metabolisma dan degradasi kimia seperti metabolisma askorbat dan alderat,
C5 branched dibasic metabolisma asid, biosintesis dan biodegradasi metabolit
sekunder dan degradasi dioxin. Sumbangan metagenom oleh keluarga gene
menunjukkan Enterobacteriaceaec dan Aeromonadaceae adalah berkait rapat dengan
K03088. Namun demikian, hanya Moraxellaceae yang diramal berkait rapat dengan
K03406. Bilangan penanda bio taksa dan sumbangan metagenom oleh keluarga gen
adalah antara yang tertinggi direkodkan di dalam sampel DS. Oleh yang demikian, ia
menunjukkan bahawa bakteria konsortium hadir dengan sinergi atau aksi antagonistik
di kawasan yang terganggu. Ini boleh menjadi salah satu sumber yang mendorong
kepada perbezaan ekologi di antara kawasan terganggu dan kawasan tidak terganggu
di NSPSF.

Analisis berlebihan telah digunakan untuk menganalisis dan meringkaskan hubungan
di antara aktiviti antropogenik, pencirian hutan dan fizikokimia air dengan taksa
penanda bio bakteria pada sampel tanah di kawasan tidak terganggu dan terganggu.
Penanda bio taksa menghubungkan lima aktiviti antropogenik iaitu SA, AA, CR, DL
dan DHA dengan ¢ TK17, Legionella,p WPS 2, Spirochaeta and Acinetobacter di
dalam sampel DS. Menariknya, penanda bio taksa yang sama seperti C_ TKI17,
g Legionella, p  WPS 2, g Spirochaeta dan g Acinetobacter menunjukkan
hubungan yang kuat denga dua ciri hutan iaitu RLI dan PS yang dijumpai di dalam
sampel DS. Selain itu, Hydrogenophilaceae, Thiobacillus, Candidatus Rhodoluna dan
f ACK M1 merupakan antara penanda bio yang terdapat di dalam sampel US yang
berhubung kait rapat dengan NOs", kekeruhan dan kedalaman air.

Di dalam kajian ini, beberapa cadangan telah dikemukakan, termasuklah untuk
mengatur urus pembinaan terusan, jalan raya dan bangunan lain di kawasan yang tidak
terganggu dan terganggu. Oleh itu, penilaian terhadap kesan persekitaran harus
dilakukan dan cadangan ini perlu dipatuhi sebelum sebarang projek dijalankan di
dalam dan sekitar NSPSF. Di bawah kategori ciri hutan, pembenihan boleh dilakukan
melalui nurseri tiruan di kawasan yang tidak terganggu dimana ia merekodkan PS
yang rendah. Walaupun terdapat perbezaan di antara faktor alam sekitar di antara
kawasan terganggu dan kawasan tidak terganggu, tiada perbezaan yang ketara
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ditunjukkan di kedua-dua kawasan tersbut dari segi diversiti dan komposisi bakteria.
Menariknya, NOs3", kekeruhan dan kedalam air menunjukkan kesatuan yang kuat
dengan penanda bio taksa di kawasan tidak terganggu. Dengan itu, ia menunjukkan
bahawa perbuhan diantara tiga faktor tersebut akan memberi kesan kepada distribusi
dan kebanyakan spesis di dalam penanda bio bakteria yang boleh dikesan di kawasan
NSPSF. Tambahan pula, kajian lebih lanjut mengenai analisis metagenomik ke atas
faktor biotik dan abiotik perlu dilakukan untuk mengeksploitasi pengaruh variasi
musim terhadap keadaan persekitaran NSPSF. Tambahan itu, komuniti bakteria
berstatus unassigned atau taksa yang tidak dapat diklasifikasi di NSPSF juga perlu
disiasat untuk mencari ciri taksonomi dan fungsinya. Informasi dari kajian ini akan
menambah nilai terhadap pengkalan data komuniti bakteria sedia ada di NSPSF.
Tambahan pula, kajian ini berpotensi untuk memberi garis panduan untuk
pengenalpastian, remediasi dan mengembalikan hutan paya gambut yang merosot
dengan lebih efektif, di samping memberikan gambaran mengenai isu kesihatan
umum, pemantauan ekologi dan konservasi NSPSF dan alam sekitarnya.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

North Selangor Peat Swamp Forest (NSPSF), like all other peatland ecosystems is
subjected to various threats such as forest fire, expansion of area for industrial and
agricultural activities, canal construction, deforestation, and air, water and land
pollution (Elliott et al., 2015). Muda et al. (2012) reported that between the periods of
1997-1998, about 630 hectares (ha) of forest reserve was destroyed. Altogether, the
landmass has been estimated to be about 6,500 ha is subjected to repeated forest fires
(Turetsky et al., 2015). Thus, proactive actions should be taken to conserve and protect
the area, in order to maintain the remaining endangered and endemic species of flora
and fauna there (Muda et al., 2012).

Population growth leads to increasing agricultural activities in NSPSF (Adila et al.,
2017). Other human related activity such deforestation and land clearing for
agricultural activity might have been the cause of fire incidence in NSPSF, which lead
to subsequently habitat degradation (Muda, et al, 2012). In this way, peat swamp forest
(PSF), including the NSPSF, that use to be pristine is gradually being loss for good.
In conjunction with canal excavation and other related of drainage, it initiates peat
decomposition which subsequently lead to carbon emissions in PSF of South East Asia
(Lampela et al., 2017). Following drainage and related human activity, an estimated
of 600 tetragrams of carbon is being loss annually, while burning of peat due to fire
incidence had also led to the emission of 640 tetragrams of carbon annually (Hooijer
et al., 2006). As such, ecological and conservational management is important, and
this require monitoring as core activity in biodiversity conservation (Marsh and
Trenham, 2008).

The characterization of anthropogenic factors and microbial communities of polluted
and degraded PSF could potentially provide guidelines for effective identification,
remediation and restoration of such environments. The research findings could form
the basis for library construction and the study of bacterial composition and abundance
and its relationships between anthropogenic, forest and physicochemical factors of
NSPSF.

1.2 Research problems

Peat swamp forest is an important ecosystem which serve many significance purposes,
but it is constantly being disturbed, degraded and sometimes loss completely.
Anthropogenic activities and other environmental related agents such as flooding
(Hugron et al.,, 2013), fire and climate change (Xu et al, 2018) leading to



contamination and destruction of such habitat are the major issues especially in
countries of southeast Asia such as Vietnam, Thailand, Indonesia and Malaysia
(Fitzherbert et al., 2008; Simpson, 2014; Lampela et al., 2017; Xu et al., 2018).
Mining, logging, construction of buildings, roads, canals, agriculture and other related
activities that could alter or lead to addition of substances consider to be harmful to
the peat swamp ecosystem. As water pollution was observed along Tengi River of
NSPSF following mining of tin, sand and clay (Irvine et al., 2013; GEC 2014a),
pollution from manure and waste application in paddy field and oil palm plantation
were also reported in NSPSF (Sule et al., 2019). Appropriate technologies and
strategies are being devised toward remediation, rehabilitation and restoration of these
polluted and degraded environments. The fact that the majority of the technologies
developed and in use for the correction of the environmental abnormality in question
exploit the potential of biological systems, in particular microbial systems (Mukherjee
etal., 2017). Microbes is often grown on pollutants produced by anthropogenic related
agents and much of the research conducted on bioremediation has concentrated on the
capabilities of a single or couple of microbes exhibiting robust and effective growth
on such pollutants (Mukherjee et al., 2017). Peat accumulates following inhibition of
the microbial activities due to waterlogged anaerobic conditions and the recalcitrant
plant detritus, resulting in an acidic, toxic and phenol-rich peat substrate (Too et al.,
2018). However, anthropogenic activity may likely lead to change in bacterial
community, thereby affecting the accumulated peat of NSPSF. For instance,
construction and excavation are processes which requires both removal of the primary
vegetation and soil drainage, the latter resulting in peat shrinkage through a
combination of water loss, enhanced aerobic decomposition as the diversity and
composition of bacterial community in PSF is altered. As at 2010, 233 million tonnes
of COz have been produced and loss through decomposition (CO; production) of
organic matter losses resulting from subsidence of drained and cultivated peat in
Malaysia (Page and Rieley, 2006). This imply that maintaining the status quo of the
bacterial community in NSPSF means protecting it against degradation and
destruction.

The forest vegetation is an important component of the PSF as it covers and protect
the forest floor against excessive temperature (GEC, 2014b). This could adversely
affect the functioning of bacteria. And bearing in mind the ecological roles of bacteria
as an agent of disintegration, decomposition of dead organisms and subsequently
recycling organic nutrients (De Boer, 2017). Notably, the nutrient deficient condition
of PSF is evident by the low elemental content of the peat, while forest growth is
dependent upon the supply of nutrients (Page and Rieley, 2006). Thus, it’s prompted
the need for better understanding of bacterial community which recycle the existing
nutrient pool within the NSPSF ecosystem.

Additionally, bioremediation could be employed as alternative solution in converting
degraded and polluted environment (Mukherjee et al., 2017). Environmental
bioremediation is usually a complex process involving co-metabolism, cross-
induction, inhibition and non-interaction among microbes. The synergistic and
sometimes antagonistic actions of microbes is possibly due to nature of the pollutants,
which come from a mixture of different substances and therefore are used differently



by different microbes. Thus, bioremediation is necessary. Bioremediation is a
conversation of pollutants to less harmful substances through a process mediated by
living organisms including consortium of microbes rather than a few, and hence,
characterization of microbial communities of NSPSF could potentially provide
guidelines for effective remediation and restoration of such environments (Mukherjee
et al., 2017). Furthermore, available research and knowledge of the bacteria in NSPSF
is often confined to traditional culture methods (Yooseph et al., 2013). Moreover, there
is limited literature on the metagenomic study of bacterial community particularly in
relation to environmental characteristics of NSPSF.

Until recently, microbes were studied traditionally by using a few numbers of
microorganisms of interest, where it will be isolated from source materials (such as
blood, soil, water or air), given the restrictions of the composition of culture media
which cannot reflect and mimic the dynamic nutrient fluxes of the source environment.
Indeed, only 1% of microorganisms were found to be cultivable using a set of media
from the highly characterized soil rhizosphere (Mukherjee et al., 2017). Therefore,
using traditional culture methods will only capture minute representation of those
microbes in their habitats (Vieira and Nahas, 2005).

Another vital role play by peat swamp forest is housing of rare, threaten and
endangered fish species (Ismail, 2015). There are many distinctive fish species
collected and use as food, and ornamental and other recreational purposes (Song et al.,
2013). The bacteria may be a cheap source of pathogens causing infectious diseases
to fish living in the wild (Sudheesh, et al., 2012). The disease outbreaks against aquatic
animal have increased in an alarming rate (Chen et al., 2018). The bacterial related
infections from such outbreak could result in massive fish deaths. Since ecosystem is
an interconnected process, which linked biotic elements among themselves and
connects them with abiotic components hence, the degradation which affects one or
more organisms could invariably affect all the dwelling organisms in the ecotone.
Notably, increasing residential and agricultural activities could directly affect the
flowing water thereby increase in potential water pollutant which most likely ends in
NSPSF (Adila et al., 2017). Moreover, some bacteria in the fish gut help maintain
metabolic homeostasis in the fish (Li et al., 2020). While some bacteria are source of
fish feeds as they may provide vital nutritional sources of diet to fish. Thus, many
bacteria activate beneficial biological activities and promote healthy growth of the
host (Banerjee et al., 2000; Wang et al., 2019). Having said that, then it’s vital to study
the environmental factors, the bacterial community in the soil, water as well as host
organism in the NSPSF. Study of bacterial community in the host organism such as
fish gut contents could give information and better picture of beneficial and harmful
bacteria. The intruding and threatening bacteria which could subsequently endangered
fish host. Therefore, this research will enhance knowledge of fish gut microbiota in
the study area.

The next-generation sequencing methods (NGS) include a variety of procedures to
study any biological system such as amplicon sequencing (for various identification
and phylogenetic surveys), whole genome shotgun sequencing (for single organism
genome and metagenomes) and DNA-Seq. This technique allowed us to investigate



the entire complement of organisms inhabiting a certain environment. The availability
of bioinformatics tools for prediction of functions i.e. metagenomes, from 16S DNA
gene sequences is particularly attractive to microbial ecologists, as it allows them to
study the metabolomes of complex microbial communities with reasonable precision
and confidence at a high taxonomic resolution, while being able to construct robust
hypotheses for further works. It has been reported that soil microbial communities
respond to environmental change by changing their taxonomic and functional
composition, and any functional shift means alteration in the physiological responses
of the bacteria which can be detected using metagenomics signatures of the study area
(Pold, 2019). The identification of the environmental parameters influencing the
composition and functions of bacteria in NSPSF will give insight toward a better
understanding of bacterially mediated processes.

Unfortunately, despite the large amount of work done on microbial community
composition, no attempt has been made to find differential metagenomics signatures
through DNA sequencing in soil, water and fishes of NSPSF. The aim of the present
study is to assess the profile of bacterial community using metagenomic analysis and
characterize environmental factors in and nearby NSPSF, as well as to evaluate the
relationship between the significant environmental factors and functional genes of the
bacterial community.

1.3 Objectives of the study

The specific objectives include:

1. To identify the environmental characteristics of undisturbed NSPSF and its
adjacent disturbed area.

2. To determine the composition and diversity of bacterial communities in fish
gut contents, water and soil of undisturbed NSPSF and its adjacent disturbed
area, Selangor, Malaysia.

3. To determine the differential features and core bacterial communities in soil
samples from undisturbed NSPSF and its adjacent disturbed area.

4. To evaluate the relationships between the environmental variables with
bacterial taxa biomarker in soil samples from undisturbed NSPSF and its
adjacent disturbed area.

1.4 Limitation of the study

Metagenomics sequencing used to be expensive, which can be a limiting factor for
microbial ecology research in limited funded projects. Analysis of metagenomics
sequencing datasets is manifold computationally intensive and gene analyses will
require many advanced software. It thereby escalates further the operational costs.
Moreover, pooling the fish gut content of all fish’s species for determination of
bacterial diversity and composition may alter the fish gut metagenomic data as
different fish species could have different microbiome diversity.
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