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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of 
the requirement for the degree of Doctor of Philosophy 

ABSTRACT 

OPTICAL MICROFIBER SENSOR COATED WITH NANOMATERIALS FOR 
AMMONIA SENSING APPLICATIONS 

By 

SAAD HAYATU GIREI 

June 2021 

Chairman : Mohd Hanif bin Yaacob, PhD 
Faculty : Engineering 

Ammonia (NH3) is a colorless compound with a distinctive odor composed of nitrogen 
and hydrogen atoms that can be found in water as ammonia nitrogen (NH3-N) and in the 
air as NH3 gas. It is commonly used in several industrial processes, agricultural activity 
and several biological systems. However, at high concentrations, NH3 can be toxic to 
plants, animals as well as human beings. Its detection is important for environmental and 
industrial safety. The previous development of NH3 sensors were mostly concentrated 
on the thick films and electrical based sensors rather than optical.  

In recent years, tapered optical microfibers sensors have been attracting greater attention 
due to their simplicity and immunity to various sources of interferences.  This research 
work presents the development of a tapered optical microfiber sensor coated with 
nanomaterials for the detection of NH3 in liquid and gaseous forms. The working 
principle of the sensor is based on the interaction between the evanescent fields of the 
tapered microfiber and different NH3 concentrations. The interactions alter the properties 
of light propagating through the optical fiber and consequently producing a measurable 
response that allows quantifying the concentration of NH3. To enhance the sensing 
performance of the developed sensor, zinc oxide (ZnO) and graphene oxide (GO) 
nanomaterials were deposited on the fiber surface providing a higher surface area and 
suitable chemical reaction between NH3 and the sensing layer.  

The GO nanostructures and ZnO nanorods were deposited using the optical and 
hydrothermal deposition techniques, respectively. The optical deposition technique was 
successfully implemented to produce uniform GO coating with corrugated and wrinkled 
structures on the cylindrical optical microfiber surface. The GO deposition is due to the 
occurrence of the thermophoresis effect resulting from the interaction of optical radiation 
with the GO solution at the tapered area of the microfiber interferometer (MFI). A unique 
hydrothermal method is designed for uniform coating around the cylindrical optical 
microfibers. This method is a simple and environmentally-friendly deposition technique 

© C
OPYRIG

HT U
PM



ii 

that produced ordered arrays of ZnO nanorods directing outwards from the surface of the 
tapered optical microfiber.  
 

The NH3-N sensing response investigated in a wide wavelength range of 1500 – 1800 
nm by monitoring the wavelength shift shows sensitivities of 0.0894 nm/ppm and 0.1748 
nm/ppm at 1785 nm for bare and GO-coated MFI sensor, respectively. The developed 
NH3-N sensor showed excellent properties of high sensitivity, stability, and fast response 
at room temperature as compared to the conventional sensors. The ZnO nanorods and 
GO-coated optical microfiber sensor for NH3 gas exhibit maximum absorbance response 
with the optimum sensing layer thickness of 750 nm and 692 nm, respectively. Sensing 
performance results reveal the sensitivities of 59.18 AU/% and 61.78 AU/% for sensors 
coated with ZnO nanorods and GO, respectively. The results of this investigation further 
reveal a promising method to improve NH3 gas sensitivity by prolonging the 
hydrothermal growth duration of ZnO nanorod arrays on the optical microfiber. It was 
also discovered that the GO-coated sensor produced negative and positive absorbance 
responses at the visible and near-infrared wavelength regions, respectively. These 
interesting sensing characteristics provide a new understanding of the behavior of 
absorbance response of the GO-coated sensor to the operational bandwidth.   
 

Above all, the combination of appropriate sensitive materials and optical fiber devices 
provides a convenient platform to detect the chemical concentrations of liquid and gas. 
As a result, these sensors may find applications in the manufacture of fertilizer, medical 
diagnostics, and in rivers and drinking water monitoring.  
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia Sebagai 
memenuhi keperluan untuk ijazah Doktor Falsafah 

ABSTRAK 

SENSOR MIKROFIBER OPTIK BERSALUT BAHAN NANO UNTUK 
APLIKASI PENDERIAAN AMMONIA 

Oleh 

SAAD HAYATU GIREI 

Jun 2021 

Pengerusi : Mohd Hanif bin Yaacob, PhD 
Fakulti : Kejuruteraan 

Ammonia (NH3), suatu sebatian tidak berwarna, dengan bau tersendiri dan terdiri 
daripada atom nitrogen dan hidrogen, dapat dijumpai di dalam air dalam bentuk 
ammonia nitrogen (NH3-N) dan di udara sebagai gas NH3. Ammonia biasanya 
digunakan dalam beberapa proses industri, kegiatan pertanian, dan beberapa sistem 
biologi. Walau bagaimanapun, pada kepekatan tinggi, NH3 boleh menjadi toksik kepada 
tumbuhan, haiwan dan juga manusia. Oleh itu, pengesanannya penting untuk 
keselamatan persekitaran dan industri. Perkembangan sensor NH3 sebelum ini 
kebanyakannya tertumpu pada filem tebal dan berasaskan sensor elektrik  berbanding 
yang berdasarkan optik. 

Dalam beberapa tahun kebelakangan ini, sensor mikrofiber optik tirus telah menarik 
perhatian yang lebih besar kerana keringkasan dan ketahanannya terhadap pelbagai 
sumber gangguan. Kajian ini membentangkan kerja-kerja pembangunan sensor optik 
mikrofiber tirus disalut dengan bahan nano untuk mengesan NH3 dalam bentuk cecair 
dan gas. Prinsip operasi sensor ini adalah hasil interaksi antara medan singkat daripada 
mikrofiber yang tirus dan NH3 yang berkepekatan berbeza. Interaksi ini mengubah sifat-
sifat penyebaran cahaya melalui gentian optik itu dan seterusnya menghasilkan 
tindakbalas terukur yang membolehkan penentuan kepekatan NH3 . Untuk meningkatkan 
prestasi penderiaan sensor yang diuji ini, bahan nano zink oksida (ZnO) dan graphene 
oksida (GO) telah diselaput di permukaan gentian bagi menyediakan luas permukaan 
yang lebih tinggi dan sesuai untuk tindakbalas kimia antara NH3 dan lapisan penderiaan. 

Bahan struktur nano GO dan rod nano ZnO masing-masing telah terselaput 
menggunakan teknik pemendapan optik dan hidroterma. Teknik pemendapan optik juga 
telah berjaya dilaksanakan untuk menghasilkan lapisan GO yang seragam dengan 
struktur beralun dan berkedut di permukaan mikrofiber optik berbentuk 
silinder. Pemendapan GO berlaku hasil kesan termoforesis yang disebabkan oleh 
interaksi sinaran optik dengan larutan GO di kawasan interferometer mikrofiber terubah 
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(MFI). Kaedah hidroterma unik telah direka untuk lapisan seragam di sekitar mikrofiber 
optik silinder. Kaedah ini adalah teknik pemendapan yang mudah dan mesra alam yang 
menghasilkan susunan teratur rod nano ZnO yang mengarah keluar daripada permukaan 
mikrofiber optik tirus.  
 

Tindakbalas penderiaan NH3-N yang disiasat dalam julat panjang gelombang 1500 - 
1800 nm dengan memantau perubahan panjang gelombang menunjukkan kepekaan 
0.0894 nm/ppm dan 0.1748 nm/ppm pada 1785 nm masing-masing untuk sensor MFI 
tidak bersalut dan bersalut. Sensor NH 3-N yang dihasilkan menunjukkan sifat kepekaan 
tinggi, kestabilan, dan tindakbalas yang pantas pada suhu bilik berbanding dengan sensor 
konvensional. Sensor mikrofiber optik rod nano ZnO dan struktur nano GO 
untuk pengesanan gas NH3 menunjukkan tindak balas serapan maksimum dengan 
ketebalan lapisan penderiaan optimum masing-masing 750 nm dan 692 nm. Hasil 
prestasi penderiaan menunjukkan kepekaan 59.18 AU/% dan 61.78 AU/% untuk sensor 
yang masing-masing dilapisi dengan rod nano ZnO dan GO. Hasil siasatan ini dengan 
lebih lanjut menunjukkan kaedah berpotensi untuk meningkatkan kepekaan terhadap gas 
NH3 dengan memanjangkan tempoh pertumbuhan rod nano ZnO secara hidroterma pada 
mikrofiber optik. Ia juga mendapati bahawa sensor bersalut GO menghasilkan 
tindakbalas penyerapan negatif dan positif di kawasan panjang gelombang nampak dan 
infrared dekat. Ciri-ciri penderiaan yang menarik ini memberikan pemahaman baru 
mengenai sifat tindakbalas serapan sensor bersalut GO terhadap lebar jalur gelombang 
operasi.  
  

Secara keseluruhannya, gabungan bahan-bahan sensitif sesuai dan peranti gentian optik 
menyediakan platform yang baru dan mudah untuk pengesanan kepekatan 
bahan kimia cecair dan gas. Oleh yang demikian, sensor ini mungkin dapat 
memenuhi aplikasi di dalam pembuatan baja, diagnosis perubatan, dan pemantauan 
sungai serta air minum. 
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CHAPTER 1 

1 INTRODUCTION 

This chapter discusses the background and motivation of the research, problem 
statement, PhD research objectives as well as the scope of the study. 

1.1 Background and Motivations 

In the past few years, there has been a growing interest in chemical sensing research. 
This is due to the wider use of chemicals in industries and the environment. A chemical 
sensor is a device or a subsystem that can be used to monitor or detect the changes or 
concentrations of some chemical specimen within a sample of interest [1]. Chemical 
sensor measurement plays a significant role in controlling environmental pollution and 
production processes. Chemicals are used in various industries as raw materials for 
production; they can also be harmful to the environment [2]. Ammonia (NH3) is one of 
the widely used chemicals in industries and plays a significant role in environmental 
pollution. 

NH3 occurs naturally and can be found all through the environment in air, soil, and water. 
It has emerged as an important building block in the manufacturing of many products we 
use daily including plastics, textiles, dyes, and household cleaning solutions. It is also a 
nitrogen source for plant growth, which makes it an essential ingredient in fertilizers. 
About 80% of NH3 produced is used for the manufacture of nitrogen-based fertilizer. 
Furthermore, it has been widely used as a preservative in the agriculture industry, 
nitrogen source in the beverage industry, curing agent in the leather industry, and anti-
corrosive in the petroleum industry. It is also used in waste and wastewater treatment 
plants [3]–[5]. These various applications of NH3 are supported by the statistics in Figure 
1.1. 
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Figure 1.1: World NH3  usage [4] 
 

Nonetheless, NH3 is one of the highly toxic chemicals given its implications on human 
health. According to the occupational safety and health administration (OSHA), the 
specified threshold limit value for NH3 gas in the workplace is 25 ppm and 35 ppm for 8 
h and 15 mins work shift, respectively [6], [7]. A high concentration of NH3 constitutes 
a threat to the human body. NH3 concentration of 500 ppm can cause immediate and 
severe irritation to the nose and throat while a higher concentration of 1000 ppm or more 
can cause pulmonary edema, accumulation of fluid in the lungs, and even death [8], [9]. 
NH3 in the form of ammonium nitrate is also an ingredient in certain explosives. 
Recently, a devastating explosion at a port in Beirut, Lebanon, which killed more than 
200 people and injured at least 5,000 was caused by tonnes of ammonium nitrate in a 
storage unit [10]. Additionally, NH3 can directly upset the equilibrium of water bodies. 
Ammonia nitrogen (NH3-N) is a measure of the amount of NH3 found in water bodies. 
Levels of NH3-N in water provide important information about water quality in rivers 
and water supply processing plants as well as in drinking water [11]. A high 
concentration of NH3-N in water can create serious problems such as eutrophication, 
deterioration of water quality which can pose a potential hazard to aquatic life as well as 
human health [12], [13]. Therefore, it has become imperative to monitor NH3 
concentrations for environmental, health, and industrial safety. 
 

A wide range of approaches has been developed for the detection of chemicals; these 
methods include colorimetry [14], mass spectrometry [15], and liquid chromatography 
[16]. Although these sensors can detect chemicals selectively, they exhibit some 
limitations such as high cost, bulky size, use of numerous samples, and is time-
consuming [17], [18].  At the same time, low-cost electrochemical and conductometric 
sensors attain high sensitivity applications [19]. However, these sensors are also 
constrained by some downsides, such as selectivity and susceptibility to electromagnetic 
interferences which hinder their applications in rugged environments. Among all the 
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sensing platforms, optical fiber sensors have achieved a high impact in the last decades 
because they offer several advantages over other sensors. Particularly, optical fiber 
sensors are highly sensitive, small, lightweight, resistant to high temperature and harsh 
environment, immune to electromagnetic fields and interferences, and have remote 
sensing capabilities [20], [21]. These unique features make them exceptionally suitable 
for some specific applications. 
 

Over the past few years, optical fiber sensor technology has grown considerably and is 
increasingly playing a significant role in environmental and safety monitoring, as well 
as chemical and biological sensing [22]. For instance, optical fiber-based sensors are 
used for temperature [23] and humidity [24] monitoring and to detect and quantify the 
amount of ethanol in water [25] or even to monitor respiratory movement [26]. Figure 
1.2 shows an illustration of the future development of optical fiber sensors. With the 
development of advanced sensing materials and microfabrication techniques, optical 
fiber NH3 sensors can find applications in many areas of environmental monitoring, 
chemical and pharmaceutical industries, diagnosis, food safety, defense, healthcare, and 
so on, and significantly improve the quality of our living. 
 

 

Figure 1.2: Application of optical microfiber sensors for chemical, biological, and 
environmental monitoring [20] 
 

1.2 Problem Statement 
 

Many chemical sensors are based on electrical sensing technology. Electrical-based 
sensors are widely used mainly because of their inexpensiveness and high sensitivity. 
Such sensors, however, suffer from poor selectivity and are not suitable to be deployed 
in a rugged environment. This is because they are prone to areas with a high risk of 
explosion or various sources of interference. In situ monitoring of NH3 requires an 
electrical source close to the sensing platform, which will be a safety concern. Therefore, 
it is highly desirable to develop a safe, simple, and reliable NH3 monitoring sensor, and 
an optical fiber sensor is a suitable candidate. 
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Most of the sensing layers used to detect chemicals in recent decades are based mainly 
on thick films (about 10 μm). However, the development of nanotechnology allows for 
the integration of sensing materials with transduction platforms in nanoscales. The 
nanoscale level is expected to change dramatically in the properties of materials 
including physical, chemical, electrical, and optical [27], [28]. Recent studies have found 
that using a nanostructured substance as an active sensing layer, in comparison to thick 
film sensing layers, will increase the chemical sensing efficiency in terms of operating 
temperatures, sensitivity, selectivity, and response time.   
 

Most of the reported optical fiber sensors for NH3-N sensing in water are based on special 
optical fibers such as fiber Bragg grating (FBG), photonic crystal fiber (PCF), and thin 
core fiber (TCF). These sensing devices involve complicated and expensive fabrication 
techniques. For example, in [29] and [30], thin-core fiber and small core fiber, 
respectively were sandwiched between standard single mode fiber forming and 
interferometric sensing devices for NH3-N. Alternative optical sensing devices with 
simpler and cost-effective fabrication can be an attractive solution.  
 

1.3 Objectives of the Study 
 

The main objective of this research is to develop an optical microfiber sensor coated with 
nanomaterial for NH3 sensing applications.   
The specific objectives are: 
 

1. To design, fabricate and characterize optical microfiber with optimized 
parameters for sensing of NH3 concentration in water and air. 

2. To synthesize and integrate nanomaterials onto tapered optical microfiber 
sensing area.  
 

3. To investigate and evaluate the optical sensing characteristics of the 
nanomaterials towards liquid and gaseous NH3. 

 

To achieve these objectives, the following research questions were outlined. 
 

1. What are the optimized optical microfiber dimensions for NH3 sensing 
application? 

2. What types of nanomaterials are suitable for NH3 sensing applications? 

3. How to integrate the nanomaterials onto tapered optical microfiber for sensing 
application? 

4. How different are the optical sensing performances of tapered optical 
microfiber sensors with and without nanomaterials? © C
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5. How different are the optical sensing performances of tapered optical 
microfiber coated with nanomaterials of different film thicknesses? 

 

Based on these research questions, the research work focused on developing tapered 
optical microfiber as NH3 sensor and investigating suitable nanomaterials that would 
enhance the performance of the optical microfiber sensor toward NH3 in liquid and 
gaseous form. The author developed an optical microfiber interferometric sensor coated 
with graphene oxide (GO) for measurement of low concentration of NH3-N in water. The 
author also developed an absorbance-based optical microfiber sensor coated with 
nanostructured sensing layers of Zinc Oxide (ZnO) nanorods and GO for measurement 
of different concentrations of NH3 gas in the air. The nanomaterials were deposited on 
the proposed optical microfiber sensors by use of dip-casting and drop-casting techniques 
to analyze their sensing performance. 
 

1.4 Scope of the study 
 

This research project covers the development and fabrication of Opto-chemical sensors 
starting from materials leading to optical sensing of NH3 in liquid and gaseous form. NH3 
was chosen due to its applications in the industry and its effect on animal health. The 
scope of the project can be explained with the tree diagram shown in Figure 1.3. The red, 
blue, purple, and green colors represent the direction followed in this thesis to achieve 
the goal and objectives of the work. The red lines represent the initial design 
consideration of the developed sensors. Optical fiber was chosen as the transducing 
platform due its simplicity and high sensitivity. The purples lines represent the sensing 
principles and performances investigated for the NH3-N liquid sensing, while the blue 
lines represent the sensing principles and performances investigated for the NH3 gas 
sensing. In this, GO and ZnO were used due to their excellent optical properties and high 
surface area. These properties make them one of the most appealing materials for optical 
based sensing devices. The sensing parameters under investigation are sensitivity, 
response time, and limit of detection. These parameters were chosen because they are 
crucial in providing reliable sensors. The green represents the micro characterization 
techniques used in investigating the morphology and structures of the developed sensors. 
The black lines refer to other research areas that are beyond the scope of this PhD 
research. 
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Figure 1.3: Scope of the study 
 

This PhD project is limited only to experimental work. 
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1.5 Thesis Organization 
 

This thesis is divided into five chapters and is outlined as follows: 
 
Chapter One is the introductory chapter that describes the motivation, problem 
statement, objectives, as well as scope of work.  
 

Chapter Two presents the literature reviews that describe the rationale behind the 
project. It reviews optical fiber transducing platforms, optical fiber sensors, and their 
sensing principles. Different modification techniques of optical fiber are also presented 
and discussed. This includes a review of functional nanomaterials and their properties 
towards chemical sensing applications. The chapter also summarizes critical reviews of 
the latest works on NH3 sensors in liquid and gaseous form.  
 

Chapter Three covers the methodology and procedures used in implementing this 
project. This chapter gives a full description of the fabrication and design of the tapered 
optical microfiber sensors. The nanomaterials synthesis and deposition are also presented 
and discussed and followed by the measurement setups of the developed sensors.  
 

Chapter Four presents the results and discussion on the outcomes of the research work 
and its findings. This chapter relates the characterization results of the optical microfiber 
structures and the deposited nanomaterials with the optical sensing performances. The 
sensing performance results and the sensing mechanism of the developed sensors 
towards liquid and gaseous NH3 are also discussed in detail.  
 

Chapter Five concludes the research findings with the outlined objectives for this PhD 
work. Future research to improve the developed sensors are also recommended in this 
chapter. 
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