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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the degree of Doctor Philosophy 

ABSTRACT 

PHENOL FORMALDEHYDE RESOL RESINS WITH PLANT-BASED 
TANNIN FOR COMPOSITE LAMINATE APPLICATIONS 

By 

NURULDIYANAH BINTI KAMARUDIN 

March 2021 

Chair: Dayang Radiah Awang Biak, PhD 
Faculty: Engineering     
 
 
The use of phenol and formaldehyde in preparing resole resins had sparked some 
environmental concerns. This study investigated the feasibility of substituting or 
minimising the use of phenols and formaldehyde in the preparation of phenol 
formaldehyde resins by adding dissolved tannin into the formulations. The objectives 
of the research include assessing the effects of varying the molar ratio of phenol and 
formaldehyde in the preparation of phenol formaldehyde resins, evaluating the 
effects of minimising the use of phenol and formaldehyde and replacing it with 
dissolved tannin in the resins’ formulation, and analysing the curing kinetics of resins 
and profiling the heat transfer behaviour of the composite laminate using a 
computational fluid dynamics software. The analyses performed in this research 
cover the rheological, physical, thermal, chemical and mechanical properties as well 
as the microscopic imaging of the produced resins and the composite laminates. The 
phenol formaldehyde (PF) resin shows a shear thickening behaviour at all 
temperature sets, i.e., 40oC, 60oC, 80oC and 100oC.  Water in formalin reduces the 
flexural and tensile properties of the PF composite laminates by 97.0% and 67.8%, 
respectively. The dissolved tannin reduces the amount of PF used by 20.0 % and 
improves the flexural and tensile properties of the PF composite laminates by 26.0% 
and 8.8%, respectively. Some reduction in the thermal properties of the resins were 
noted whilst the Ea values for both formulations were similar. Autocatalytic model 
can be used to represent the curing kinetics when the degree of cure is lower than 0.4 
and 0.5 whilst the nth order model can be used to represent the curing kinetics when 
the degree of cure is higher than or equal to 0.4 and 0.5 for PF and dissolved tannin 
phenol formaldehyde (DTPF) resin, respectively. During curing the laminate, the 
heat was dissipated from the edges of the composite to the centre, while, during post 
curing, the heat was dispersed from the centre to the edges of the composite 
laminate. This study shows the feasibility of reducing the content of PF in the 
formulation of PF by adding dissolved tannin to the formulations. It is good to note 
that with the addition of dissolved tannin, the mechanical integrity of the composite 
laminate was improved. 
 
 

© C
OPYRIG

HT U
PM



ii 

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

ABSTRAK 

RESIN RESOL FENOL FORMALDEHID DENGAN TANIN BERASASKAN 
TUMBUHAN UNTUK APLIKASI LAMINA KOMPOSIT

Oleh 

NURULDIYANAH BINTI KAMARUDIN 

Mac 2021 

Pengerusi: Dayang Radiah Awang Biak, PhD 
Fakulti: Kejuruteraan 

Penggunaan fenol dan formaldehid dalam penyediaan gam resin resol 
telah menimbulkan beberapa masalah persekitaran. Kajian ini 
mengkaji kemungkinan untuk menggantikan atau meminimumkan 
penggunaan fenol dan formaldehid dalam penyediaan gam resin 
fenol formaldehid dengan menambahkan tanin terlarut ke dalam formulasi. 
Objektif penyelidikan termasuk menilai kesan memvariasikan nisbah molar 
fenol dan formaldehid dalam penyediaan gam resin fenol formaldehid, 
menilai kesan meminimumkan penggunaan fenol dan formaldehid dan 
menggantinya dengan tanin terlarut dalam formulasi gam, dan menganalisis 
kinetik pengeringan gam dan membuat profil tingkah laku pemindahan haba 
laminasi komposit menggunakan perisian komputasi cecair dinamik. Analisis 
yang dilakukan dalam penyelidikan ini merangkumi sifat reologi, fizikal, 
terma, kimia dan mekanikal serta pengimejan mikroskopik dari gam yang 
dihasilkan dan lamina komposit. Gam resin fenol formaldehid (PF) 
menunjukkan tingkah laku penebalan ricih pada semua suhu yang 
ditetapkan, iaitu, 40oC, 60oC, 80oC dan 100oC. Air dalam formalin mengurangkan 
sifat lenturan dan tegangan laminasi komposit PF masing-masing sebanyak 97.0 
% dan 67.8 %. Tanin terlarut mengurangkan jumlah PF yang digunakan 
sebanyak 20.0 % dan meningkatkan sifat lenturan dan tegangan laminasi 
komposit PF masing-masing sebanyak 26.0% dan 8.8%. Beberapa 
pengurangan sifat termal gam diperhatikan sementara nilai Ea untuk 
kedua-dua formulasi serupa. Model autokatalitik dapat digunakan untuk 
mewakili kinetik pengeringan ketika tahap pengeringan lebih rendah daripada 
0.4 dan 0.5 sementara model urutan ke-n dapat digunakan untuk mewakili 
kinetik penyembuhan ketika tahap pengeringan lebih tinggi daripada atau sama 
dengan 0.4 dan 0.5 untuk PF dan tanin fenol formaldehid (DTPF), masing-
masing. Semasa pengeringan laminasi, panas dilenyapkan dari tepi 
komposit ke pusat, sementara, semasa pasca pengeringan, haba 
tersebar dari pusat ke tepi laminasi komposit. Kajian ini menunjukkan 
kemungkinan mengurangkan kandungan PF dalam formulasi PF dengan 
menambahkan tanin terlarut ke dalam formulasi. Adalah baik untuk 
diperhatikan bahawa dengan penambahan tanin terlarut, integriti mekanikal 
lamina komposit bertambah baik. 
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INTRODUCTION 

 

1.1 Introduction 

 
Tannin is a naturally occurring polyphenolic compound extracted from the bark of 
trees and has been used in numerous industrial applications (Samil et al., 2005; Pizzi, 
2008; Cardona & Sultan, 2015; Elbadawi et al., 2015; Yazaki, 2015; Pizzi, 2019)  
including for wood and leather, aerospace industries, electrical industries etc. 
Tannins are used as adhesives, for laminating, insulating or as coating materials 
(Pizzi, 2008; Tondi et al., 2009; Cardona & Sultan, 2015; Elbadawi et al., 2015; Pizzi 
et al., 2020; Antov et al., 2021). Tannin-based resin can be toughened using synthetic 
resin such as phenol formaldehyde (PF) (Vázquez, et al., 2002; Saleh et al. 2021). PF 
resole resin which is synthesised with a base catalyst is much preferred in practise 
due to the low cost of curing and it has excellent mechanical properties compared to 
the other most common resins e.g. urea formaldehyde, novolak and epoxy (Siddiqui 
et al., 2017; Yu et al., 2018). The curing process of the PF resole resin can be 
initiated by just heating the resole in a mould above its gel point which makes it a 
low cost resin compared to the other resins which require a curing agent or a 
hardener to cure (Mashouf et al., 2014; Tcharkhtchi et al., 2015; Siddiqui et al., 
2017). 

 

According to Grand View Research (2019) and Xu et al. (2019), the market size of 
PF in laminate applications for Asia Pacific increased by 17.25 % for 2007 to 2014 
and is expected to grow over the forecast period until 2025 with a compound annual 
growth rate (CAGR) of 4.4 %. Based on a market data review for tannin, the global 
tannin demand was 1076.3 kilotons in 2015 and is expected to grow at a CAGR of 
5.8 % from 2016 to 2025 (Grand View Research, 2019). Tannins used in the industry 
come from the bark of maritime pine (Pinus pinaster), black wattle or black mimosa 
(Acacia mearnsii), and radiata pine (Pinus radiate) (Yazaki, 2015; Zhou & Du, 
2019). In South-East Asia, logging activities on fast growing trees such as Acacia 
mangium (a species of black wattle), and a large amount of wood waste (mainly 
consisting of the barks) has been produced (Yamato et al., 2006). Southeast Asia has 
the highest rate of deforestation which is 1.2 % of forest loss annually in 2010 
(Miettinen et al., 2011). Therefore, it shows the resources for tannins come from tree 
barks that are abundantly available in Southeast Asia. 
 

Tannins have been used in the tanning leather industry for centuries and is still 
ongoing today (Pizzi, 2019; Alhaji et al., 2020; Singh & Kumar, 2020), followed by 
wood adhesives (Elbadawi et al., 2015; Pizzi, 2019; Zhou & Du, 2019). Other 
applications of tannin are for wine, beer and fruit juice additives, ore flotation agents, 
cement superplasticisers and medical and pharmaceutical applications (Pizzi, 2008; 
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Pizzi, 2019). Based on the total volume tannin global market review of 2016 (Grand 
View Research, 2017), the tanning leather industry accounted for over 62 % of the 
total market revenue of tannin, followed by wood adhesive applications with 
approximately 20 % and then 28 % for the other applications including wine 
production, anti-corrosive primers, medical and pharmaceutical applications. Tannin 
also has the potential for producing laminates due to its high bonding performance 
(Shirmohammadli et al., 2018; Zhou & Du, 2019). 
 

The addition of tannin to a wood adhesive (PF resin) helps to reduce the cost of resin 
production. The excellent bonding performance helps in reducing the brittleness 
characteristics of the PF resin (Cardona & Sultan, 2015; Zhou & Du, 2019). 
However, resin produced with the addition of tannin has high viscosity due to the 
presence of high molecular weight tannins in the resin and the existence of hydrogen 
bonding and electrostatic interactions between tannin and tannin (Hemmilä et al., 
2017; Zhou & Du, 2019). Resin produced with the addition of tannin for wood 
adhesive has been accepted in many countries (Zhou & Du, 2019). However, 
research into PF resin including tannin for laminate applications is still lacking and 
only a few studies of laminates have been conducted on wood products. Tannin is a 
promising alternative bio-resource that can be used to produce laminate resin because 
it can provide active sites to react with formaldehyde (Jahanshaei et al., 2012) as 
phenol in PF resin. Therefore, this study is focused on the production of dissolved 
tannin phenol formaldehyde resole resin with reduced viscosity for laminating 
applications.  
 

1.2 Problem Statement  

 
Phenol formaldehyde (PF) resole resin is a well-known and versatile synthetic resin 
that has been in use until now. Many studies have been conducted to evaluate and 
improve the performance of PF resin. However, the discrepancies in the production 
of PF resin still exist based on previous studies. These discrepancies are: 
 

i. Phenol formaldehyde resin (PF) is one of the oldest resin and well known as 
low-cost resins. PF resin is needed in industry due to it has excellent mechanical 
properties, thermal stability and weather resistance make it as an excellent resin and 
can be widely used in variety applications (Wei & Wang, 2018; Chen et al., 2019; 
Sandhya et al., 2019). PF resin is usually synthesised using formalin instead of 
paraformaldehyde (Shafizadeh et al., 1999; Poljanšek and Krajnc, 2005; Bajia et al., 
2007; Christjanson et al., 2010; Zhang et al., 2013; Lin & Lee, 2018; Younesi-
Kordkheili & Pizzi, 2018). This is due to the free formaldehyde monomer in formalin 
that leads to the higher chemical reactivity of formaldehyde with phenol to form 
methylol phenols compared to the large polymer molecules of paraformaldehyde that 
need to depolymerise before reacting with phenol as shown in Figure 1(a) and 
Figure 1(b) (Gardziella et al., 2010; Pilato, 2010). 
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n = 8-100 

Formalin 
(a) 

Paraformaldehyde 
(b) 

 
Figure 1.1: Formaldehyde chemical structure: a) in aqueous formaldehyde, 
Formalin and b) in solid powder, Paraformaldehyde with (n=4) (Kiernan, 2000) 
 

ii. However, the synthesis of PF resin using formalin requires a longer synthesis 
period to achieve a desired viscosity compared to resins prepared using 
paraformaldehyde (Shafizadeh et al., 1999; Zhang et al., 2013; Lin & Lee, 2018). 
This is because formalin contains about 70 % by weight of water. During the 
condensation reaction, water will be generated and this condensed water needs to be 
removed to maintain the viscosity that is usually used in laminate resin (400 to 
600 cP) and the total solid content in the PF resin is within the range of 75 to 80 % 
by weight (Taverna et al., 2015; Cui et al., 2017; Fleckenstein et al., 2018). Removal 
of the excess water is needed as the evaporation of the high water content during 
post-curing in an oven will lead to the formation of voids within the cured resin 
structure and therefore reduce the structural integrity and mechanical properties of 
the final product (Bajia et al., 2007; Pilato, 2010; Cardona & Sultan, 2015).  

 

iii. The synthesis of PF resin which is a thermoset resin is an exothermic process 
(Gabilondo et al., 2006; Pilato, 2010; Hu et al., 2015) where heat will be released 
during the condensation reaction. The estimated heat of the reaction in PF resole 
resin production is about 670.90 ± 10.00 J/g (Sizgek, 1990; Bhattacharjee et al., 
2014). Using paraformaldehyde in the formulation causes the mixture of PF liquid 
formed to be concentrated compared to using formalin that has a high-water content 
of about 70 % by weight. Low water content in the paraformaldehyde formulation is 
driven by the reaction process caused by the formation of methylene and ether 
bridges (a crosslinking process) which takes place faster, i.e. a high water content in 
the formulation hinders the formation of methylene and ether bridges (Hu et al., 
2015). The rapid crosslinking in the condensation reaction generates excessive heat 
for which the cooling system arrangement is not adequate to properly remove the 
heat. This will cause the uncontrolled heat released to lead to a runaway reaction and 
explosion (Bhattacharjee et al., 2014; Tsai et al., 2021). In addition, the runaway 
reaction due the uncontrolled heat released leads to the fast polymerisation of PF 
resin during the synthesis period (Bhattacharjee et al., 2014). Therefore, it is 
important to evaluate the ratio of formaldehyde used and the operating temperature 
to prevent the formation of excessive heat that will affect both the viscosity and 
quality of the PF resin produced.  

 

iv. PF resins are known to be brittle and have a relatively low tensile strength 
(Wang et al., 1997; Joseph, 2002; Sandhya et al., 2019). This property limits its 
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applications in fibre-reinforced laminate and composite applications. Many studies 
have been undertaken to investigate the addition of tannins in PF resin in the 
production of tannin phenol formaldehyde adhesives (Moubarik et al., 2009; Hoong 
et al., 2010; Lee et al., 2011; Ping et al., 2011; Bertaud et al., 2012; Tahir et al., 
2019; Hafiz et al., 2020). However, studies of the application and use of tannins in 
the synthesis of laminating resin such as tannin phenol formaldehyde type are still 
lacking. To illustrate, Barbosa et al. (2010) used tannin phenol formaldehyde resin in 
the preparation of composites reinforced with coir fibres. They found the flexural 
properties of the composites showed an improvement, i.e. to produce laminate 
composites, it requires good mechanical properties with desired values for a specific 
application in order to prevent cracking (Meier et al., 1977; Taverna et al., 2015; 
Georgia Pacific Chemicals, 2020). However, to date, as far as is known to the 
authors, no study has been reported concerning tannin phenol formaldehyde resin 
incorporated with fibreglass. Fibreglass is compatible with various type of resins and 
is well known to have properties of enhancing the flexural and impact strength of 
laminates (Parida et al., 2013). Therefore, the characteristics of laminates produced 
from tannin phenol formaldehyde resins combined with fibreglass were screened in 
this study. The characteristics of laminate resins which have a higher viscosity and 
solid content compared to adhesives required further evaluation in order to produce a 
PF resin with the addition of tannin. This is because the addition of excessive tannin 
to a PF resin drastically increased the viscosity of the product. Therefore, further 
monitoring and evaluation of the final product of laminate resins is required to 
maintain the good quality of the cured laminate resin. 
 

Liquid tannin is preferred to be used to produce tannin phenol formaldehyde resin 
due to the increase in the reactivity of tannin and formaldehyde and the improvement 
of the flexural properties of the resin (Samil et al., 2005; Cardona & Sultan, 2015). 
However, tannins are easily found in a powder form rather than liquid form in the 
market to facilitate the handling process. Even though a few researchers have come 
up with several attempts to dissolve tannin powder (Samil et al., 2005; Hussein et al., 
2011; Cardona and Sultan, 2015), however, using phenol to dissolve tannin powder 
in the work of Samil et al. (2005) is inappropriate due to the toxic and carcinogenic 
characteristics of phenol. Hussein et al. (2011) tried to dissolve tannin powder in 
water but only obtained coagulated tannin powder. Cardona and Sultan (2015) were 
able to dissolve tannin powder in a glycerol-acid solution with some dispersions of 
tannin powder, although the tannin solution produced was highly viscous. The highly 
viscous tannin leads to a highly viscous laminate resin produced, which possibly 
leads to difficulty in handling and spreading during the lamination process. It is 
known that glycerol is water soluble due to the existence of the three hydroxyl (-OH) 
groups (Wolfson et al., 2007). Therefore, the addition of water to glycerol can 
reduced the viscosity of the glycerol. In addition, water and glycerol are solvents that 
have the ability to bind with the tannin (Cardona & Sultan, 2015; Shrivastava et al., 
2017). A water-glycerol solution with an acid catalyst (sulphuric acid) is an 
interesting solution that can be used to dissolve condensed tannin powder.  
 

v. During the curing of PF resin, heat is generated from the crosslinking process 
i.e. extension crosslinking from the synthesis process to form the three dimensional 
networks of the cured PF resin (Hu et al., 2015). The excess heat generated will lead 
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to air bubbles formed and trapped within the cured resin structure i.e. a low quality of 
resin is produced (Pilato, 2010). Therefore, the curing behaviour of dissolved tannin 
phenol formaldehyde resin needs to be monitored. The heat transfer profile during 
pre- and post-curing processes can be developed to access any sudden temperature 
increase that might affect the quality of the cured resin. The heat transfer profile also 
provides information concerning the temperature distribution within the cured 
composite to ensure that the curing temperature reaches the core composite and is 
able to access a suitable post-curing time with respect to the post-curing temperature 
of the composite laminate. The mechanical properties of the cured resin are affected 
by the duration of the post-curing process i.e. a sufficient post-curing period is 
important to ensure the resin is fully cured (Yahaya et al., 2014). 

 
 

1.3 Objectives of the Research  

 
This research is conducted in order to produce Phenol formaldehyde (PF) resin for 
bio-composite applications with the addition of tannin on woven roving fibre. The 
specific objectives of this research are:  
 

1. To prepare suitable formulations that use paraformaldehyde and formalin in 
the preparation of phenol formaldehyde (PF) resole resin for laminate 
applications.  

2. To analyse the dissolution behaviour of tannin and the properties of dissolved 
tannin phenol formaldehyde resins (DTPF) for laminate applications. 

3. To evaluate suitable kinetic models and a heat transfer profile that defines the 
curing behaviour of the phenol formaldehyde (PF) resin produced. 

 
 

1.4 Scope of Study 

 
1. To accomplish objective (1), phenol formaldehyde (PF) resins were produced 

using industrial paraformaldehyde with and without the addition of formalin 
followed by a study of the rheological behaviour of the resins during 
production. The PF resins produced were laminated on to woven glass fibre 
and the mechanical properties of the laminated composites were compared. 

 

2. To achieve objective (2), the dissolution of tannin powder using glycerol-
water-acid solution was undertaken and the parameters involved in the 
dissolution process were optimised. The optimised dissolved tannin was mixed 
with the PF resin synthesised in objective (1) and the physical and mechanical 
properties of the dissolved tannin phenol formaldehyde resin and dissolved 
tannin phenol formaldehyde (DTPF) laminates composites were evaluated. 

 
 

3. To achieve objective (3), the formulation of the screened PF and DTPF resin 
from objective (1) and objective (2) were used to study the cure kinetics of the 
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resins. The experimental data from differential scanning calorimetry (DSC) 
was fitted into a kinetic model to find the best fit theoretical model that was 
able to describe the curing behaviour of the composite laminate. The heat 
transfer during curing and post curing of the DTPF resin was evaluated. The 
surface temperature, core temperature and bottom temperature of the resin 
were measured. The heat transfer model of the DTPF resin during curing and 
post curing simulation was constructed using ANSYS simulation software. 
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1.5 Significance of the Study 

 
The present research work will help to understand the fluid behaviour of phenol 
formaldehyde (PF) resin during synthesis which is highly affected by the molar ratios 
of the phenol and the formaldehyde used, the synthesis temperature, the synthesis 
time as well as the pH of the mixture. In addition, this research work will aid in 
controlling and maintaining the safety of the operation of PF resin production. This is 
because the synthesis temperature was monitored in order to prevent the 
accumulation of excessive heat in the reactor which cannot be properly removed by 
the cooling arrangement and may lead to a runaway reaction and possibly an 
explosion. In addition, this research is important to ensure the introduction of defects 
into the cured resin structure is minimised. 
 

1.6 Overview of the Thesis 

 
This thesis is arranged in such a way that describes the preparation of 
environmentally sustainable phenolic bio-resins for bio-composite applications. This 
work is divided into six chapters. Chapter 1 introduces the subject matter combined 
with the objectives of the research. Chapter 2 discusses the literature review related 
to phenol formaldehyde (PF) resin and tannin addition in laminate resin. The 
literature review also presents general information about the background of 
laminates, the use and effect of tannin in PF resin production and brief information 
concerning the curing kinetics and heat transfer of curing resins. Chapter 3 consists 
of a description of the experimental approach as well as the findings with respect to 
the synthesis PF resin with paraformaldehyde and formalin. Chapter 4 illustrates the 
experimental procedure of the production of dissolved tannin phenol formaldehyde 
(DTPF) resins for laminate applications together with the optimisation of tannin 
dissolution. The effects of tannin in PF resin on the mechanical and chemical 
properties are discussed in detail. Chapter 5 presents the curing kinetics and heat 
transfer profile of curing composite laminates. The kinetic parameters are analysed 
and the temperature profile during curing and post curing of the composite laminate 
is evaluated using the ANSYS workbench. Chapter 6 refers to the overall 
conclusions based on the findings obtained in this study, and recommendations for 
future work are also given.  
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