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Lowland paddy rice in Northwest Selangor, particularly in Tanjong Karang Rice 

Irrigation Scheme (TAKRIS), is the main crop grown during July to October 

(wet/main season) and January to April (dry/off-season). Climate change is one of 

the main environmental problems of the current century that directly affects growing 

conditions of most crops, including rice. This study evaluated the impacts of climate 

change on rice production in an area within TAKRIS. FAO-AquaCrop model was 

applied under 18 General Circulation Models (GCMs) with three levels of climate 

sensitivity (RCP4.5, RCP6.0 and RCP8.5) to assess yield potential of rice. 

 

 

Future projections of multi-GCMs in the study region have shown that temperature 

will increase under all emission scenarios, with the largest changes during the dry 

season. Compared to the baseline period (1976 to 2005), the projected increase in 

maximum temperature ranges from 0.6 to 1.5°C during the 2020s, 0.5 to 1.7°C 

during the 2050s and 0.7 to 3.01°C during the 2080s period and that in minimum 

temperature ranges from 0.7 to 1.7°C during the 2020s, 0.6 to 1.8°C during the 2050s 

and 0.8 to 3.2°C during the 2080s under RCP4.5, RCP6.0 and RCP8.5 scenarios, 

respectively. Rainfall projections show average changes of –0.3% during the 2020s, 

–0.22% during 2050s and –3.25% during the 2080s for the dry season, and 7.6% 

during 2020s, 6.8% during 2050s and 11% during the 2080s for the wet season under 

RCP4.5, RCP6.0 and RCP8.5, respectively. 

 

 

In order to calibrate and validate the AquaCrop model, version 1.6, intensive field 

investigation was done in a paddy plot at Sawah Sempadan compartment of the 

TAKRIS during the main and off-seasons of 2017. Data related to developmental 

stages of plants and yield was measured; historical data were collected from 

secondary sources. Water balance components were analyzed from the field 
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observations of a paddy field. Irrigation water accounted for 59.6% of the total water 

input (irrigation and rainfall) during the off season and 76.2% of the total water input 

during the main season. Rainfall contributed 40.4% and 23.8% of total water input 

in the corresponding seasons. The grain yield of rice was 5.5 t/ha for the off-season 

and 5.9 t/ha for the main season. The model was validated with performance 

indicators of normalized root mean square error (2< NRMSE <4), prediction error 

(0.75<Pe<3), mean absolute error (120<MAE<160), and index of agreement 

(0.5<d<0.8). Satisfactory simulation results were obtained for biomass, (grain) yield 

and productivity. The average yield is projected to increase by 7.7%, 10.2% and 

17.3% from baseline period in the off-season, and 8.6%, 11.5% and 18.4% in the 

main season under RCP4.5, RCP6.0 and RCP8.5, respectively. Simulation results 

also reveal that poor weed control measures and water stress conditions will reduce 

rice yields in the future. Under worst weed control, grain yield is expected to drop 

by 67% compared to weed-free condition. 

 

 

Simulation results suggest that crop evapotranspiration (ETc) is likely to decrease 

under all climate scenarios during both seasons, the maximum decrease being up to 

10% under RCP8.5. Annual effective rainfall is predicted to increase marginally. 

Therefore, irrigation water requirement is projected to decrease by 3.5% in off-

season and 5.5% in main season. Water productivity for continuous flooding shows 

an increasing trend in both off and main seasons, with the most significant increase 

under RCP8.5. Water productivity, based on irrigation plus effective rainfall 

(WPIrr+ER), is predicted to increase by 18%, 20% and 21% in off-season and 16%, 

18% and 21% in main season under RCP4.5, RCP6.0 and RCP8.5 scenarios, 

respectively. Water productivity, based on crop evapotranspiration (WPETc), is 

predicted to increase by 22%, 23% and 26% in off-season, and 18%, 19% and 22% 

in main season under RCP4.5, RCP6.0 and RCP8.5 scenarios, respectively. Thus, 

AquaCrop simulation revealed a rising trend of potential rice yields and irrigation 

needs in conjunction with a CO2 fertilization. Suppressing stress on yield under 

rising temperature has been compensated by the ensuing increased CO2 fertilization. 

Moreover, proper weed control and water management practices have augmented 

yield under changing climate. This study would provide intuitive knowledge for 

Tanjung Karang Rice Irrigation Scheme for the development of sustainable 

productive rice yield under different management and environmental conditions. 
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Sawah Padi di Barat Laut Selangor, umumnya Skim Pengairan Padi Tanjong Karang 

(TAKRIS), merupakan tanaman utama yang ditanam pada bulan Julai hingga 

Oktober (musim basah/utama) dan Januari hingga April (musim kering/luar). 

Perubahan iklim adalah salah satu masalah persekitaran utama abad ini yang secara 

langsung mempengaruhi tumbesaran kebanyakan tanaman, termasuk padi. Kajian ini 

menilai kesan perubahan iklim terhadap pengeluaran padi di Kawasan TAKRIS. 

Model FAO-AquaCrop telah digunakan di bawah 18 Model Peredaran Am (GCM) 

dengan tiga tahap kepekaan iklim (RCP4.5, RCP6.0 dan RCP8.5) untuk menilai 

potensi hasil padi. 

 

 

Unjuran pelbagai-GCM di dalam kajian ini menunjukkan bahawa suhu akan 

meningkat di bawah semua senario, dengan perubahan terbesar semasa musim luar. 

Dibandingkan dengan tempoh garis dasar (1976 hingga 2005), kenaikan suhu 

maksimum yang diunjurkan berada dalam lingkungan antara 0.6 hingga 1.5°C pada 

tahun 2020-an, 0.5 hingga 1.7°C semasa tahun 2050-an dan 0.7 hingga 3.01°C 

semasa tahun 2080-an dan suhu minimum antara 0.7 hingga 1.7°C semasa tahun 

2020-an, 0.6 hingga 1.8°C semasa tahun 2050-an dan 0.8 hingga 3.2°C semasa tahun 

2080-an di bawah senario RCP4.5, RCP6.0 dan RCP8.5 masing-masing. Unjuran 

hujan menunjukkan purata perubahan –0.3% semasa tahun 2020-an, –0.22% semasa 

2050-an dan –3.25% semasa tahun 2080-an untuk musim kering, dan 7.6% semasa 

tahun 2020-an, 6.8% semasa tahun 2050-an dan 11% semasa tahun 2080-an untuk 

musim basah di bawah RCP4.5, RCP6.0 dan RCP8.5 masing-masing. 
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Bagi menentu-ukur dan pengesahkan model AquaCrop 1.6, penyelidikan secara 

intensif dilakukan dalam plot padi di petak Sawah Sempadan TAKRIS pada musim 

utama dan musim luar pada tahun 2017. Data berkaitan dengan peringkat 

perkembangan tanaman dan hasil diambil kira; data masa lampau dikumpulkan dari 

sumber sekunder. Komponen-komponen keseimbangan air dianalisis dari 

pemerhatian di sawah. Air pengairan menyumbang 59.6% dari jumlah input air 

(pengairan dan hujan) pada musim luar dan 76.2% dari jumlah input air pada musim 

utama. Hujan menyumbang 40.4% dan 23.8% daripada jumlah input air pada musim 

yang sama masing-masing. Hasil bijirin beras adalah 5. t/ha untuk musim luar dan 

5.9 t/ha untuk musim utama. Model ini disahkan dengan penunjuk prestasi ralat 

purata punca kuasa dua yang dinormalkan (2 <NRMSE <4), ralat ramalan (0.75 <Pe 

<3), purata ralat mutlak (120 <MAE <160), dan indeks persetujuan (0.5 <d <0.8). 

Keputusan simulasi yang memuaskan diperolehi untuk biojisim, (bijirin) hasil dan 

produktiviti. Purata hasil diunjurkan meningkat sebanyak 7.7%, 10.2% dan 17.3% 

dari tempoh garis dasar di musim luar, dan 8.6%, 11.5% dan 18.4% pada musim 

utama di bawah RCP4.5, RCP6.0 dan RCP8.5, masing-masing. Hasil simulasi juga 

menunjukkan bahawa kawalan rumpai yang tidak teratur dan keadaan tekanan air 

akan mengurangkan hasil padi pada masa akan hadapan. Di bawah kawalan rumpai 

yang tidak teratur, hasil bijirin dijangka turun 67% berbanding keadaan bebas 

rumpai. 

 

 

Keputusan-kuputusan simulasi mencadangkan bahawa evapotranspirasi tanaman 

(ETc) cenderung menurun di bawah semua senario iklim bagi kedua-dua musim, 

penurunan maksimum adalah hingga 10% di bawah RCP8.5. Hujan efektif tahunan 

diramalkan akan meningkat sedikit. Oleh demikian, keperluan air pengairan 

diunjurkan menurun sebanyak 3.5% pada musim luar dan 5.5% pada musim utama. 

Produktiviti air untuk banjir berterusan menunjukkan corak peningkatan pada musim 

luar dan musim utama, dengan peningkatan yang paling ketara di bawah RCP8.5. 

Produktiviti air, berdasarkan pengairan dan curahan hujan yang efektif (WPIrr + 

ER), dijangka meningkat sebanyak 18%, 20% dan 21% pada musim luar dan 16%, 

18% dan 21% pada musim utama di bawah RCP4.5, RCP6 .0 dan senario RCP8.5, 

masing-masing. Produktiviti air, berdasarkan evapotranspirasi tanaman (WPETc), 

dijangka akan meningkat sebanyak 22%, 23% dan 26% pada musim luar, dan 18%, 

19% dan 22% pada musim utama di bawah RCP4.5, RCP6.0 dan Senario RCP8.5, 

masing-masing. Oleh itu, simulasi AquaCrop mendedahkan corak peningkatan 

terhadap potensi hasil tuaian padi dan keperluan pengairan serentak dengan 

pembajaan CO2. Tekanan melampau terhadap hasil kepada suhu yang tinggi akan 

diredakan melalui pembajaan CO2 yang dipertingkatkan. Selain itu, amalan kawalan 

rumpai dan pengurusan air yang baik akan meningkatkan hasil di bawah perubahan 

iklim. Kajian ini akan memberikan pengetahuan intuitif untuk Skim Pengairan Padi 

Tanjung Karang untuk pembangunan hasil padi produktif yang lestari dalam keadaan 

pengurusan dan persekitaran yang berbeza. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Climate change has emerged as a global concern over the past 2 to 3 decades. One 

particular worry is the potentially disastrous consequence for agriculture, food 

security and water deficit in many parts of the world, particularly developing 

countries (FAO, 2016; IPCC, 2014c; Mertz et al., 2009; Kotir, 2011). Crop farming 

is extremely vulnerable to climate change. It has been predicted that climate change 

will impact negatively on agricultural yield in the 21st century through higher 

temperatures, more variable rainfall and extreme climate events like floods, 

cyclones, droughts and rising sea levels (Isik and Devadoss, 2006; IPCC, 2014c; 

WB, 2010). The susceptibility of agriculture to climate change has led the scientific 

and policy communities questioning the capacity of farmers to adapt (Reid et al., 

2007; Mertz et al., 2009). The United Nations Framework Convention on Climate 

Change also identified the danger to food production as a major concern (Reid et al., 

2007). 

Malaysia is one of the countries that are vulnerable to climate change, and current 

regional climatic trends, with an increase in average surface temperature, are clearly 

evident (NAHRIM, 2006). The past and present records of Malaysian climate data 

show clear evidence of climate change that has been voiced globally, having been 

established in the Intergovernmental Panel on Climate Change (IPCC) assessments 

report (IPCC, 2014c). Information on considerable fluctuations of temperature has 

been published recently, showing a very strong correlation between climate change 

and a significant annual average temperature increase, where record fluctuation is 

simulated for Malaysia up to 2079 (Malaysian Meteorological Department, 2009). 

Shahid et al. (2017) reported that rainfall in Peninsular Malaysia will be more 

variable and river discharge in some basins will increase up to 43% during northeast 

monsoon season by the end of this century. 

The impact of climate change poses serious challenges to the agricultural sector in 

most countries of the world. Agricultural schemes managed by governmental 

officials and small farms managed by small holder farmers, both relying on irrigated 

and rainfed agriculture, are the main sources to achieve self-sufficiency level in food. 

It is therefore important to adopt strategies to increase crop production. This can be 

achieved by understanding factors affecting crop yields that are related to production, 

management and climate. Understanding these factors and their relative contribution 

to yield increases/decreases is crucial to avoid yield loss and even to ensure 

increasing yields in the future. Generally, crop production is affected by changes in 

meteorological variables, such as rising temperatures, change in precipitation 

amounts and regimes, and increased atmospheric carbon dioxide levels. These 

effects are positive in some regions and negative in others and vary over time (Parry 

et al., 2004). There are several ways in which climate change significantly impacts 
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crop production and yields. Temperature rise for example, may trigger drought stress 

to plants in areas suffering from water stress (Tao and Zhang, 2011). This also may 

change length of crop-growing period resulting in yield reduction. Furthermore, 

variability in rainfall between and within the seasons (Rowhani et al., 2011), changes 

in magnitude and occurrence of extreme rainfall events (Moriondo el al., 2011) and 

irrigation water shortage, prolonged dry spells and drought during growing season 

(Barron et al., 2003; Laux et al., 2010) may have great impacts in crop production 

and yields. However, imperfect agricultural management practices, such as improper 

planting dates, excessive irrigation and low planting density can also hinder crop 

production and yields from reaching their full potential (Kihara et al., 2015; Laux et 

al., 2010). 

Rice is one of the major crops to feed the world’s growing population (Shimono et 

al., 2010). About 3 billion people consume rice daily. As one of the most common 

staple foods for humans, rice feeds more people than any other crop (Maclean et al., 

2002). It is mostly planted in Asian regions, which make up approximately 90% of 

total rice farming areas. In Malaysia, rice production is very important because it is 

the staple diet of people. The total irrigable land in excess of 322,000 hectares is 

confined under eight large granary schemes for sustaining the nation’s self-

sufficiency level. Rice production needs to increase to meet future demand of the 

growing population. Any decline in rice production due to climate change would 

thus critically impair food security in the country. Therefore, quantifying the effects 

of climate change on rice farming and assessing the potential of rice farmers to adapt 

to climate change are urgent research topics. 

General Circulation Models (GCMs) are the major sources of climate change data. 

They provide adequate simulations of the current atmospheric general circulation at 

the continental scale, such as storm tracks, rain belts and most modes of inter-annual 

to inter-decadal variability like the Indian Monsoon and El Niño-Southern 

Oscillation (ENSO) (IPCC. 2013a; Randall et al., 2007). However, they still show 

significant errors at smaller scales required for regional and national assessments; 

that is, there is a spatial and temporal scale mismatch between coarse resolution 

projections of GCM and fine resolution data requirements of impact models. Climate 

downscaling (e.g., empirical-statistical downscaling) (Benestad et al., 2015; Maraun 

et al., 2010) and/or dynamical downscaling (Di Luca et al., 2013; Leung et al., 2003) 

have been used as remedy to provide climate information for many climate impacts 

studies. 

Crop growth models were used as an extensive tool to determine the effect of various 

climate change scenarios on crop yields for individual countries (Rowhani et al., 

2011; Arshad et al., 2017; Pirmoradian and Davatgar, 2019; Lv et al., 2018) and also 

for geographical regions (Parry et al., 2004; Najafi et al., 2018). AquaCrop is a crop 

growth model developed by FAO's Land and Water Division to address food security 

and assess the effect of environment and management on crop production. The model 

was used in this study to understand the effect of climate change on future rice 

productivity under different managements of irrigation and field and explore suitable 

options for achieving the highest possible production capacity per acreage. 
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1.2 Motivation for the Research 

Agriculture plays the most important role in achieving food security as well as for 

farmer’s livelihood in the northwest region of Peninsular Malaysia. Farmers seem 

worried more about dry spells or droughts and future effects of climate change that 

affect rice yield. The Asia and Pacific region is more vulnerable to climate change 

risks compared to other regions of the world because of its dependence on natural 

resources and agriculture sectors, and densely populated coastal areas (Anbumozhi 

et al., 2012). There is a clear evidence of climate change impacts on the agricultural 

sector in this region. In early 2008, China has experienced abnormally cold weather 

that affected rice production and the disastrous flooding in 2010 has caused heavy 

losses in rice production in Indonesian (Firdaus et al., 2012). A massive flood in 

Thailand in October 2011 destroyed approximately 10% of the nation’s rice crop 

(Firdaus et al., 2012). Prior to the projection, the Asia-Pacific region was expected 

to experience the worst effect of climate change on rice and wheat yields that could 

threaten food security of 1.6 billion people in South Asia [International Food Policy 

Research Institute (IFPRI), 2009]. 

Available studies show that an increase in temperature due to climate change can 

reduce rice yield in many parts of the world, such as South East Asia, South Asia 

and Southern Africa (Lobell et al., 2008; Lobell et al., 2011; Lobell and Gourdji, 

2012; Van Oort and Zwart, 2018). These studies also affirm that many crops, such 

as maize, rice and sorghum are susceptible to the negative impact of high temperature 

(Moron et al., 2015), and the impacts of temperature on crop yield are extremely 

important (Klink et al., 2014; Lobell et al., 2008; Lobell et al., 2011; Lobell and 

Gourdji, 2012; Mottaleb et al., 2015; Ramirez et al., 2014). Several studies (e.g., 

Firdaus et al., 2012; Vaghefi et al., 2016) by exploring the impacts of climate 

variability on rice production in Malaysia reported that climate variability (i.e., 

ENSO) can delay the planting seasons and reduce precipitation, leading to lower rice 

production in Malaysia. 

Climate change may affect rice yield in positive or negative ways. Therefore, it is an 

important issue to investigate how rice productivity performs in response to climate 

change, and to develop guiding information for farmer’s adaptation options. The 

potential impacts of climate change and climate variability on crop yields at field 

level can be assessed by crop models. In this study, AquaCrop V1.6 was applied for 

assessing future rice production potentials in Tanjung Karang Rice Irrigation Scheme 

(TKRIS) at Selangor, one of the hosts of rice production in Malaysia under several 

climate change scenarios. 
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1.3 Problem Statements 

Global temperature will continue to increase over coming decades and is expected 

to have a strong impact on water resources, water demands of crops, extreme floods 

and droughts, water quality, salt water intrusion in coastal regions, groundwater 

recharge and other related processes (IPCC 2014b, Payne, 2018). Mujumdar (2013) 

stated that the global climate change results in a local modification of water 

availability, water demands of crops, extreme floods and droughts, water quality, salt 

water intrusion in coastal regions, groundwater recharge and other related processes. 

Tangang et al. (2012) reported decreasing trends of wet events in Malaysia. Erratic 

and spatial variation of rainfall causes uncertainty in water availability for irrigation 

(NAHRIM 2011, 2014). Drought is well known for declining and varying crop yield 

drastically. Increased evaporation due to climate change is thought to augment 

irrigation requirement in Southeast Asia by 15% (Döll et al., 2003). Several recent 

studies highlighted that climate change causes potential changes in global and 

regional agricultural water demand for irrigation (Hanjra and Qureshi, 2010; Chung, 

et al., 2011; Chung and Temba, 2012; Yoo et al., 2012; Tyagi, 2012; NAHRIM, 

2012; Chiang and Liu, 2013; Hugh et al., 2013). Yinhong et al. (2009) reported in a 

comprehensive review that an increase in precipitation will increase crop yield, and 

crop yield is more sensitive to the precipitation than temperature. Regional climate 

dynamic downscaling work using the PRECIS regional climate model by Tangang 

and Juneng (2011) indicated mean surface temperature projections over Peninsular 

Malaysia and Sabah-Sarawak by 2070-2100 as 3-5°C warmer than the average 

temperatures of the 1960-1990 period. Tangang et al. (2012) stated that the physical 

basis and science of climate change at the regional scale are of central importance 

for adaptation. To date, the number of publications in the area is still a few, and 

knowledge gaps remain significant. With the temperature raising and precipitation 

fluctuations, water availability and crop production are likely to decrease in the 

future. If the irrigated areas are expanded, the total crop production will increase; 

however, food and environmental quality may degrade. Therefore, rice production 

systems must be able to respond to challenges posed by the effects of climate change. 

CO2 fertilization has positive effects on crop productivity (Lobell and Field 2008). 

When atmospheric CO2 concentration increases, plants take up CO2 via 

photosynthesis and produce more vegetative matter (Zavala et al. 2008). Doubling 

the atmospheric CO2 concentration increases photosynthesis by 30% – 50% in C3 

plant species and 10% – 25% in C4 species (Ainsworth and Long, 2005). The IPCC 

reports suggested that yields may increase by 10% – 25% for C3 crops and by 0% – 

10% for C4 crops when CO2 levels reach 550 ppm (Pachauri and Reisinger, 2008). 

The CO2 fertilization effect hence could potentially lead to significant increases in 

crop productivity and offset potential productivity declines resulting from climate 

change such as higher temperature and altered precipitation patterns (Wolfe 2010). 

The occurrence of weeds has become a serious problem and they limit the yield and 

quality of crops (De Datta and Haque, 1982). The rivalry of weeds is one of the main 

causes of yield loss of lowland rice, and loss varies with the duration of weed 

infestation of the crop (Azmi et al., 2007). 

Climate change is among the most critical problems that mankind faces today. It 

results a serious impact on agriculture and water resources, which affect food 
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security. The gap between the current water productivity of irrigated agriculture and 

future water demand to produce food for growing population by 2050 is ever 

growing and the impact of climate becomes more evident. There are novel models, 

tools and approaches to characterize and even recommend potential improvements 

in irrigation water management at farm scale, but as yet insights on farm level 

irrigation practices have not considered to translate improvement in water 

productivity at the irrigation system and basin scale. Modeling studies offer various 

global projections of the future climate. Projected climate data from Global Climate 

Models (GCMs) integrated with crop growth models can predict future impacts on 

agricultural productivity. There is no study yet reported in literature for modeling 

climate change impacts on rice production in Malaysia. Therefore, this study 

establishes the assessment of climate change impacts on rice production integrated 

with the ensemble GCMs climate data from ten/eighteen and AquaCrop model in the 

Northwest Selangor Rice Irrigation Scheme. 

1.4 Aims and Objectives  

The primary objective of this study is to assess the impacts of climate change and 

variability on crop agriculture in Tanjung Karang Irrigation Scheme, TAKRIS. In 

addition, the determinants of crop productivity and crop water supply were 

investigated by using appropriate techniques. To achieve the goal, the study was 

undertaken with the following specific objectives: 

1. To evaluate AquaCrop model for paddy rice production under climate 

change impacts in IADA Northwest Selangor. 

 

2. To model seasonal water use due to impacts of climate change under 

different RCP scenarios. 

 

3. To predict rice yield under climate change using AquaCrop 6.1 model 

ensemble with GCMs. 

 

4. To develop climate-smart water productivity model for predicting climate 

change impacts on water productivity of rice.  
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1.5 Scopes of the Study 

The study focused on estimating climate change impacts on crop production and 

water productivity using the historical and future weather data and crop growth 

models. The field work was limited to field experiments for both plant and soil in 

the TAKRIS at Selangor in Malaysia.  

The scope of work includes the following tasks: 

 Collection of relevant information on planting and production of rice “MR 

290” over eight years (2009-2016) for the off-season (January-April) and 

main season (July-October) in the paddy schemes. 

 

 Collection of recorded meteorological data from different stations within 

the study area over three decades (1976-2005) for calibration and validation 

of the crop growth model. 

 

 Downloading and extraction of GCMs data during the future period (2010-

2099) from .nc file format to .mat file format using MATLAB (R2016a) 

Programme. 

 

 Detailed study of/and selection of climate change downscaling techniques 

and predictor variable suitable for the study purpose. 

 

 Downscaling the climate variables through a specified downscaling domain 

with coordinates. 

 

 Finding data related to crops, soil and planting management by executing 

field experiments for both off-season and main season during the year 2017 

to calibrate the crop growth model. 

 

 It was also within the scope of the study to utilize AquaCrop model, 

calibrate and validate it with the aim of using the model to evaluate impacts 

of climate change on crop production. 

 

 Simulation of future crop production and water productivity for the 

TAKRIS. 
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1.6 Limitations on the Scope of Study 

Although the study has achieved its objectives as set out, some limitations on the 

scope of the study are mentioned. The major limitation of the study is that the field 

investigation was carried out in a specific paddy plot for two seasons in a year only. 

Therefore, the findings of this study are not generalized to the whole scheme. 

However, they seek to contribute to the discourse of climate change adaptation and 

the level of understanding of the impact of climate change on the rice farmers in the 

scheme. Secondly, soil profiles in the fields were assumed to be uniform. A field soil 

profile is generally considered one of the main factors affecting the crop-water 

relationship. Thirdly, the study was conducted using only the simulation outputs 

from climate models (GCMs) data based on the driving carbon emission scenarios. 

Finally, the potential effects of other yield-limiting factors, such as pests and 

diseases, were not considered. 

1.7 Outline of the Thesis   

The thesis is organized into five chapters. The first chapter gives a general 

introduction on climate change scenarios and their impacts on agriculture and water 

resources. The problem statement, objectives and scope of the study are included in 

the first chapter. All relevant literature was reviewed and presented in chapter two. 

Chapter three discusses the materials and methods of the study. The results and 

discussion are provided in chapter four. Chapter five provides the conclusion and 

recommendation for future research work. References and appendices are presented 

in the last part of the thesis. 
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