UNIVERSITI PUTRA MALAYSIA

BRAIN HEMISPHERICITY, CREATIVE THINKING AND CRITICAL THINKING OF MALAYSIAN SCIENCE AND ARTS STUDENTS

CHUA YAN PIAW

FPP 2002 15
BRAIN HEMISPHERICITY, CREATIVE THINKING AND CRITICAL THINKING
OF MALAYSIAN SCIENCE AND ARTS STUDENTS

By

CHUA YAN PIAW

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

April 2002
This thesis is dedicated

to my beloved wife Bok Kai Wa and my three lovely daughters
Yee Pei, Wan Xin and Jing Xin

&

to the memory of my parents
The purposes of this study were: (1) to explore the nature of brain hemisphericity, creative thinking and critical thinking abilities of Malaysian students, (2) to compare brain hemisphericity, creative thinking and critical thinking abilities of the students in terms of academic major, gender and ethnicity variables, and (3) to ascertain the relationships between brain hemisphericity and creative thinking; and between brain hemisphericity and critical thinking. The subject of this study consisted of 216 form-six students (109 science major and 107 arts major) from twenty-seven secondary schools of the state of Selangor. Three instruments were used to appraise brain hemisphericity, creative thinking and critical thinking. The instruments were Your Styles of Learning and Thinking, Torrance Tests of Creative Thinking and Watson-Glaser Critical Thinking Appraisal.
The results demonstrated that the majority of the students were right hemisphere dominants, and they preferred to use only one of their hemispheres in learning and thinking (right hemisphere 54.6%, left hemisphere 36.6%, and whole brain 8.8%).

Descriptive analysis on creative thinking abilities indicated that the students were relatively fluent in producing ideas, and the ideas they created were likely to be original. However, they have less ability to evaluate and elaborate the ideas creatively, and tend to leap to the conclusions about the ideas they create prematurely.

Significant results of ANOVA analysis included: (1) relatively, science major students were left hemisphere dominants, and they have more critical thinking skills, while arts major students were right hemisphere dominants, and they were more creative in thinking, (2) relatively, females were left hemisphere dominants, and more critical in thinking, while males were right hemisphere dominants and more creative in thinking. No significant difference in brain hemisphericity existed between Malay, Chinese and Indian respondents.

The results demonstrated that in terms of creative thinking, Malay students scored significantly higher than Chinese and Indian students on overall creative thinking and originality. In terms of critical thinking, although Chinese
students scored significantly higher than Malays on inference scale, the results indicated that critical thinking index is independent of ethnicity.

Besides that, the data showed that the levels of creative thinking and critical thinking abilities of the Malaysian science major and arts major students fell below the norms of American students of similar age and education level. These results imply that most of Malaysian form-six students need to improve their creative and critical thinking skills.

The results of correlation analysis indicated a significant positive correlation between left hemisphere scale and critical thinking index. The results also ascertained the speculation of some writers and researchers that there was a positive relationship between right hemisphere scale and creative thinking index.

The findings strongly suggest that educators should enhance their understanding of individual differences in learning and thinking, and their thinking abilities before trying to enhance and improve the learning and thinking process of the students in classroom. It seems imperative for educators to recognise students’ brain hemisphericity and improve current curriculum to include higher order thinking process in teaching and learning, toward a more balanced whole brain learning and thinking.
The findings also suggest answers for current issues why Malaysian male students were doing less well in schools compared to the females. The “left hemisphere, exam-oriented” teaching methods, evaluation and examination systems in schools did not suit and did not encourage the right hemisphere dominant and creative male students.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

HEMISFERISITI OTAK, PEMIKIRAN KREATIF DAN PEMIKIRAN KRITIKAL PELAJAR-PELAJAR ALIRAN SAINS DAN SASTERA MALAYSIA

Oleh

CHUA YAN PIAW

April 2002

Pengerusi: Profesor Sharifah Md. Nor, Ph.D

Fakulti: Pengajian Pendidikan

Tujuan kajian ini ialah: (1) meneroka keadaan semula jadi hemisferisiti otak, kemahiran berfikir kreatif dan kemahiran berfikir kritikal pelajar-pelajar Malaysia, (2) membanding hemisferisiti otak, kemahiran berfikir kreatif dan kemahiran berfikir kritikal pelajar-pelajar berdasarkan aliran akademik, jantina dan etnik, (3) menentukan perhubungan antara hemisferisiti otak dan kemahiran berfikir kreatif; dan antara hemisferisiti otak dan kemahiran berfikir kritikal. Subjek kajian ini terdiri daripada seramai 216 orang pelajar tingkatan enam (109 orang pelajar aliran sains dan 107 orang pelajar aliran sastera) daripada 27 buah sekolah menengah dalam negeri Selangor. Tiga instrumen digunakan untuk menguji hemisferisiti otak, pemikiran kreatif dan pemikiran kritikal. Instrumen-instrumen tersebut ialah “Your Styles of Learning and Thinking”, “Torrance Tests of Creative Thinking”, dan “Watson-Glaser Critical Thinking Appraisal”.

vii
Dapatan kajian menunjukkan bahawa kebanyakan pelajar secara dominan cenderung menggunakan otak kanan, dan kebanyakan mereka suka menggunakan hanya sebelah otak untuk belajar and berfikir (otak kanan 54.6%, otak kiri 36.6%, dan seluruh otak 8.8%).

Analisis deskriptif tentang pemikiran kreatif menunjukkan bahawa pelajar-pelajar tersebut berupaya menghasilkan idea-idea baru yang asli dengan lancar. Walau bagaimanapun, mereka kurang berupaya menghuraikan idea-idea tersebut secara kreatif, dan cenderung membuat keputusan secara pramatang tentang idea-idea tersebut.

Dapatan kajian analisis ANOVA yang signifikan termasuk: (1) pelajar aliran sains secara dominan cenderung menggunakan otak kiri dan mempunyai kemahiran berfikir yang lebih kritikal, manakala pelajar aliran sastera adalah secara dominan cenderung menggunakan otak kanan dan mempunyai kemahiran berfikir yang lebih kreatif, (2) secara relatif, pelajar perempuan secara dominan cenderung menggunakan otak kiri dan mempunyai pemikiran yang lebih kritikal, manakala pelajar lelaki secara dominan cenderung menggunakan otak kanan dan mempunyai pemikiran yang lebih kreatif. Perbezaan hemisferisiti otak yang signifikan tidak wujud antara responden berbangsa Melayu, Cina dan India.
Hasil kajian menunjukkan bahawa dari segi pemikiran kreatif, pelajar Melayu secara signifikan memperoleh skor yang lebih tinggi berbanding dengan pelajar-pelajar berbangsa Cina dan India. Dari segi pemikiran kritikal, didapati pelajar berbangsa Cina secara signifikan memperoleh skor skala inferensi yang lebih tinggi berbanding dengan pelajar berbangsa Melayu, namun, hasil kajian menunjukkan bahawa indeks pemikiran kritikal adalah bebas daripada faktor bangsa.

Di samping itu, data kajian juga menunjukkan bahawa tahap kemahiran pemikiran kreatif dan kritikal pelajar aliran sains dan sastera di Malaysia adalah lebih rendah daripada norma pelajar Amerika yang mempunyai taraf pendidikan dan umur yang sama. Dapatan kajian ini memberi implikasi bahawa pelajar tingkatan enam di Malaysia perlu meningkatkan kemahiran pemikiran kreatif dan kritikal mereka.

Hasil kajian analisis korelasi menunjukkan bahawa terdapat hubungan positif yang signifikan antara skala otak kiri dan indeks pemikiran kritikal. Hasil kajian juga telah mengenalpastikan spekulasi sesetengah penulis dan pengkaji bahawa terdapat hubungan positif yang signifikan di antara skala otak kanan dengan indeks pemikiran kreatif.

Dengan secara tegas, hasil kajian ini mencadangkan bahawa para pendidik harus meningkatkan pemahaman mereka tentang perbezaan individu dalam
pembelajaran dan pemikiran, dan kemahiran berfikir mereka sebelum berusaha meningkatkan dan memperbaiki proses pembelajaran dan pemikiran pelajar di dalam bilik darjah. Oleh itu, adalah mustahak bagi para pendidik mengenali hemisferisiti otak pelajar, dan memperbaiki kurikulum semasa untuk menerapkan proses pemikiran yang bertaraf tinggi ke dalam proses pengajaran dan pembelajaran, ke arah pembelajaran dan pemikiran seluruh otak yang lebih seimbang.

Hasil kajian juga mencadangkan jawapan kepada isu semasa tentang mengapa pelajar lelaki di Malaysia mencapai keputusan yang kurang baik di sekolah berbanding dengan pelajar perempuan. Kaedah pengajaran yang "berorientasikan peperiksaan dan otak kiri", dan sistem penilaian dan peperiksaan di sekolah didapati kurang menggalakkan dan kurang sesuai kepada pelajar-pelajar lelaki yang kreatif, yang secara dominan cenderung belajar dan berfikir menggunakan otak kanan.
ACKNOWLEDGEMENTS

Many people have played an important role in the development of this thesis. First of all, I wish to express my deepest gratitude and appreciation to my wife, Bok Kai Wa for her encouragement, patience, understanding, and love throughout my graduate education. Similar appreciation is extended to my three daughters, Yee Pei, Wan xin and Jing xin for given me peace of mind while preparing this thesis.

I wish to record here my gratitude and thanks to the members of my thesis Supervisory Committee, in particular, Professor Datin Dr. Sharifah Md. Nor, the chairman of the Supervisory Committee, for gave me freedom to follow my own research interests, and for keep on calling me very early in the morning, to wake me up from sleeping, just to say "Hi, Chua, what is your progress, don't forget to do your thesis...". Her encouragement and willingness to give her time I need, is really beyond work.

Similarly, I am deeply grateful for Professor Dr. Othman Dato’ Hj. Mohamed, my Supervisory Committee member, who discussed with me like an old friend for hours, just because the words “Power Analysis”. He was extremely supportive of this thesis, and offering numerous good suggestions for my consideration. These suggestions have been invaluable.

Special thanks also go to Dr. Rohani, my Supervisory Committee member, for giving suggestions and insightful comments at various stages of this study. Her assistance is gratefully acknowledged. It is a pleasure to work with such a wonderful team of professional.
I would also like to thank Professor Dr. Kamariah Abu Bakar, the Dean of Faculty of Educational Studies, Universiti Putra Malaysia for given me the word “Torrance”, from where I found the research sources and developed the inspiration of my study. Besides that, I would like to take this opportunity to thank Associate Professor Dr. Aida Suraya Hj. Md. Yunus, the chairman of my viva voce meeting, and Dato’ Professor Dr. Zalizan Mohd. Jelas, the Dean of Faculty of Education, Universiti Kebangsaan Malaysia, for the constructive criticisms and suggestions in perfecting the writing and reporting styles of this study. Their guidance is deeply appreciated.

Last but by no means least, I owe thanks to the staffs and officers at the Graduate School Office and the Graduate Studies Office of Faculty of Educational Studies, UPM, for their generosity. Also, I would like to thank all of the participating respondents of this study, who cooperated in making this research study successful.

Finally, I remain solely responsible for any errors and shortcoming contained in this study.
I certify that an Examination Committee on 18th April 2002 to conduct the final examination of Chua Yan Piaw on his Doctor of Philosophy thesis entitled “Brain Hemisphericity, Creative Thinking and Critical Thinking of Malaysian Science and Arts Students” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

AIDA SURAYA HAJI MOHD. YUNUS, Ph.D.
Associate Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Chairman)

DATIN SHARIFAH MOHD. NOR, Ph.D.
Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

OTHMAN DATO’ HAJI MOHAMED, Ph.D.
Professor
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

ROHANI AHMAD TARMIZI, Ph.D.
Faculty of Educational Studies
Universiti Putra Malaysia
(Member)

DATO’ ZALIZAN MOHD. JELAS, Ph.D.
Professor
Faculty of Education
Universiti Kebangsaan Malaysia
(Independent Examiner)

SHAMSHER MOHAMAD RAMADI, Ph.D.
Professor / Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia
Date: 29 APR 2002
This thesis submitted to the Senate of Universiti Putra Malaysia has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

AINI IDERIS, Ph. D.
Professor / Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Chua Yan Piaw

Date: April 18, 2002
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>xi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>xiii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xxiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxxii</td>
</tr>
<tr>
<td>CHAPTER I</td>
<td></td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Overview</td>
<td>1</td>
</tr>
<tr>
<td>Background of the Study</td>
<td>1</td>
</tr>
<tr>
<td>Statement of the Problems</td>
<td>5</td>
</tr>
<tr>
<td>Objective of the Study</td>
<td>10</td>
</tr>
<tr>
<td>Research Questions</td>
<td>11</td>
</tr>
<tr>
<td>Significance of the Study</td>
<td>12</td>
</tr>
<tr>
<td>Assumptions and Limitations</td>
<td>15</td>
</tr>
<tr>
<td>Definition of Terms</td>
<td>16</td>
</tr>
<tr>
<td>Hemisphericity</td>
<td>17</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>18</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>19</td>
</tr>
<tr>
<td>Academic Major</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER II</td>
<td></td>
</tr>
<tr>
<td>REVIEW OF RELATED LITERATURE</td>
<td>22</td>
</tr>
<tr>
<td>Overview</td>
<td>22</td>
</tr>
<tr>
<td>Brain Hemisphericity</td>
<td>22</td>
</tr>
<tr>
<td>Brain Hemisphericity Measures</td>
<td>31</td>
</tr>
<tr>
<td>Creative Thinking</td>
<td>40</td>
</tr>
<tr>
<td>Creative Person</td>
<td>43</td>
</tr>
<tr>
<td>Creative Product</td>
<td>43</td>
</tr>
<tr>
<td>Creative Process</td>
<td>44</td>
</tr>
<tr>
<td>Creative Thinking Measures</td>
<td>48</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td>57</td>
</tr>
<tr>
<td>Critical Thinking Measures</td>
<td>63</td>
</tr>
<tr>
<td>Brain Hemisphericity and Creative Thinking</td>
<td>67</td>
</tr>
<tr>
<td>Brain Hemisphericity and Critical Thinking</td>
<td>92</td>
</tr>
<tr>
<td>Brain Hemisphericity and Academic Major</td>
<td></td>
</tr>
<tr>
<td>(Science and Arts)</td>
<td>94</td>
</tr>
<tr>
<td>Brain Hemisphericity and Gender</td>
<td>98</td>
</tr>
<tr>
<td>Brain Hemisphericity and Ethnicity</td>
<td>114</td>
</tr>
<tr>
<td>Science and Arts Differences in Creative</td>
<td></td>
</tr>
<tr>
<td>Thinking and Critical Thinking</td>
<td>122</td>
</tr>
</tbody>
</table>
Science and Critical Thinking 129
Creative Thinking, Critical Thinking and Gender Differences 138
Creative Thinking and Gender 138
 Females Are More Creative Compared to Males 138
 Males Are More Creative Compared to Females 152
 No Differences in Creative Thinking between Male and Female 163
Creative Thinking and Ethnicity 170
Critical Thinking and Gender 176
 No Differences in Critical Thinking between Male and Female 176
 Males Have More Critical Thinking Skills Compared to Females 182
Critical Thinking and Ethnicity 186
 Model of Split Brain Theory 190
 Model of Parallel Ways of Knowing 192
 Model of Insight Thinking 194
 Model of Selectivity in Cognitive Functioning 195
 Model of Block's Gender Specialization 197
 Model of Different Modes of Knowing 199
Conceptual Framework 200
Summary 202

III METHODOLOGY 205
Overview 205
Research Design 205
The Population 209
The Sample 211
Sample Size 212
 Sample Size for Chi-square Tests 213
 Sample Size for Pearson Correlation Tests 214
 Sample Size for One-way ANOVA Tests 215
 Sample Size for Stepwise Multiple Regression Tests 215
 Reconciliation of the Sample Sizes 216
Instrumentation 219
Your Style of Learning and Thinking 221
 Validity of SOLAT 223
 Pilot Test of SOLAT (Bahasa Malaysia Version) 225
 Reliability of SOLAT 226
Torrance Tests of Creative Thinking 227
 TTCT Testing Procedures 229
 Adaptation of the Instruction Manual 231
 Scoring of the Tests 232
 Validity of the TTCT 233
 Pilot Test of the TTCT (Bahasa Malaysia Version) 236
 Reliability of TTCT 237
Watson-Glaser Critical Thinking Appraisal 238
 WGCTA Testing Procedures 241

xvii
Scoring the Test 243
Validity of WGCTA 243
Reliability 247
Pilot Test of the WGCTA (Bahasa Malaysia Version) 249
Testing Procedures and Data Collection 251
Data Analyses 253
Data Analysis of the First Question 254
Data Analysis of the Second Question 255
Data Analysis of the Third and Fifth Questions 257
Data Analysis of the Fourth and Sixth Questions 258
Data Analysis of the Seventh and Eighth Questions 263

IV ANALYSIS OF DATA AND FINDINGS 265
Overview 265
Characteristics of the Respondents 265
Frequency Distribution and Percentage of the Respondents According to Brain Hemisphericity 266
Research Question 1a 267
Brain Hemisphericity of Science Major and Arts Major 267
Brain Hemisphericity Patterns of Science Major and Arts Major 268
Research Question 2a 273
One-way ANOVA Analysis of the Differences between Science and Arts Majors in Brain Hemisphericity 273
Differences among Three Brain Hemisphericity Scales 278
Differences between Science Major and Arts Major in Brain Hemisphericity within Gender and Ethnic Groups 281
Item Analysis—Chi-square Analysis of Differences between Science and Arts Majors 283
Research Question 1b 288
Brain Hemisphericities of Male and Female Students 289
Brain Hemisphericity Patterns of the Male and Female Students 290
Research Question 2b 294
ANOVA Analysis for Gender Differences in Brain Hemisphericity 295
Differences among Left, Right and Whole Brain Scales within Gender 299
Differences between Males And Females in Brain Hemisphericity within Academic Major and Ethnic Groups 301
Item Analyses for Differences between Genders in Brain Hemisphericity 302
Research Question 1c 308
Brain Hemisphericity of the Three Ethnic Groups 308
Research Question 4b
 ANOVA Analysis of Gender Differences in Creative Thinking
 ANOVA Analysis of Gender Differences in Creative Thinking Index
 ANOVA Analysis of Gender Differences in Creative Thinking Scales
 Differences between Males And Females in Creative Thinking within Academic Major and Ethnic Groups

Research Question 3c
 Creative Thinking of the Three Ethnic Groups
 Creative Thinking Abilities of the Students in Terms of Ethnicity
 Pattern of Performance of Components of Creative Thinking of the Malay Students
 Pattern of Performance of Components of Creative Thinking of the Chinese Students
 Pattern of Performance of the Components of Creative Thinking of the Indian Students
 Relationships among the Components of Creative Thinking
 Inter-Correlation of Components of Creative Thinking of the Malay Students
 Inter-Correlation of Components of Creative Thinking of the Chinese Students
 Inter-Correlation of Components of Creative Thinking of the Indian Students

Research Question 4c
 Creative Thinking Differences among Ethnic Groups
 ANOVA Analysis of Differences among Ethnic Groups on Creative Thinking Index
 ANOVA Analysis of Differences among Ethnic Groups on Creative Thinking Scales
 Differences among Ethnic Groups in Creative Thinking within Academic Major and Gender Groups
 Stepwise Multiple Regression Analyses for Creative Thinking Index

Research Question 5a
 Critical Thinking of the Science Major, Arts Major and Total Samples
 Pattern of Performance of Components of Critical Thinking of the Total Sample
 Pattern of Performance of Components of Critical Thinking of the Science Major Students
 Pattern of Performance of Components of Critical Thinking of the Arts Major Students
Relationships among the Components of Critical Thinking

Inter-Correlation of Components of Critical Thinking for the Total Sample

Inter-Correlation of Components of Critical Thinking for the Science Major Sample

Inter-Correlation of Components of Critical Thinking for the Arts Major Sample

Research Question 6a

ANOVA Analysis of Critical Thinking Differences between Academic Majors

ANOVA Analysis of Differences between Academic Majors on Critical Thinking Index

ANOVA Analysis of Differences between Academic Majors on Critical Thinking Scales

Differences between Science Major and Arts Major in Critical Thinking within Gender and Ethnic Groups

Research Question 5b

Critical Thinking of the Male and Female Samples

Pattern Performance of the components of Critical Thinking of the Male Sample

Pattern Performance of the components of Critical Thinking the Female Sample

Relationships among the Components of Critical Thinking

Inter-correlation among the Components of Critical Thinking for the Male Sample

Inter-correlation among the Components of Critical Thinking for the Female Sample

Research Question 6b

ANOVA Analysis of Gender Differences in Critical Thinking

ANOVA Analysis of Differences between Genders in Critical Thinking Index

ANOVA Analysis of Differences between Genders in Critical Thinking Scales

Differences between Males And Females in Critical Thinking within Academic Major and Ethnic Groups

Research Question 5c

Critical Thinking of Malay, Chinese and Indian Students

Pattern Performance of Components of Critical Thinking of the Malay Sample

Pattern Performance of Critical Thinking Abilities of Chinese Sample

Pattern Performance of Critical Thinking Abilities of Indian Sample
REFERENCES

APPENDICES
A Tables of Normality Analysis and Test of Homogeneity of Variances 523
B Schools and Frequency Distribution of the Students in the Population 532
C Research Packet 534
D Letters and Documents Concerning Approval for the Usage and Translation of the Instruments of the Study 545
E Letter of Approval from the State Department of Education 550
F Sample Answers of the Torrance Tests of Creative Thinking from the Respondents 552

BIODATA OF THE AUTHOR 565
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Model of Split Brain</td>
</tr>
<tr>
<td>2.2</td>
<td>Model of Parallel Ways of Knowing</td>
</tr>
<tr>
<td>3.1</td>
<td>Population’s Profile</td>
</tr>
<tr>
<td>3.2</td>
<td>Two-way Table of Chi-square Test-of-Independence</td>
</tr>
<tr>
<td>3.3</td>
<td>Sample Profiles</td>
</tr>
<tr>
<td>3.4</td>
<td>Left and Right Hemisphericity Profiles</td>
</tr>
<tr>
<td>3.5</td>
<td>Pearson Product-Moment Coefficients Correlation between SOLAT and Creativity Tests</td>
</tr>
<tr>
<td>3.6</td>
<td>Test-retest Reliabilities for SOLAT</td>
</tr>
<tr>
<td>3.7</td>
<td>Test-Retest Reliabilities for TTCT</td>
</tr>
<tr>
<td>3.8</td>
<td>Correlation between the WGCTA and Selected Variables</td>
</tr>
<tr>
<td>3.9</td>
<td>Correlation between Sub-tests and Total Score on Form A and B of the WGCTA</td>
</tr>
<tr>
<td>3.10</td>
<td>Split Half Reliability Coefficients of WGCTA</td>
</tr>
<tr>
<td>3.11</td>
<td>Test-Retest Reliabilities for WGCTA (BM)</td>
</tr>
<tr>
<td>3.12</td>
<td>Summary Table of Data Analysis</td>
</tr>
<tr>
<td>4.1</td>
<td>Frequency Distribution and Percentage of the Respondents According to Academic Major, Gender and Ethnicity</td>
</tr>
<tr>
<td>4.2</td>
<td>Students’ Profile Concerning Brain Hemisphericity</td>
</tr>
<tr>
<td>4.3</td>
<td>Frequency Distribution and Percentage of Brain Hemisphericity According to Academic Major</td>
</tr>
</tbody>
</table>