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Fossil fuel usage is the primary source of anthropogenic air pollution, where carbon 

dioxide (CO2) is the most prominent agent that contributes to global climate change.  

The iron and steel industries are major contributors to gaseous CO2 emission. These 

industries also produce solid wastes in the form of slags during operations.   

Steelmaking in electric arc furnace (EAF) generates between 10-15% slag wastes per 

ton of steel production, which can be used in mineral carbonation to capture and store 

CO2.  In this study, the EAF slag from an iron and steelmaking factory in Klang, 

Malaysia, was utilized for the CO2 sequestration through both direct aqueous and 

indirect mineral carbonation method in a batch reactor. The direct aqueous 

carbonation investigation was at room temperature, and different solid/liquid ratio, 

pressure, and time. The indirect carbonation was performed, after the extraction of 

essential metallic ions from the EAF slag at a different temperature, solvent 

concentration, and solid/liquid ratio.  

 

 

The direct aqueous mineral sequestration capacity was 58.36±5.84g CO2/kg of slag 

under room temperature after 3 hr, solid/liquid ratio of 1:5, and using < 63 µm particle 

size. The sequestration efficiency was 28.11 %, and the degree of carbonation was 

23.30 % at the pressure of 5 bars. The shrinking core model shows that the direct 

aqueous carbonation was by the ash layer product phase-controlled, with the 

regression coefficient (R2) of 0.97.  

 

 

In the dissolution of essential metallic ions like Ca, Mg, and Fe, the slag from EAF 

was the source. The dissolution efficiency was affected by temperature, solvent 

concentration, solid/liquid ratio, and reaction time. At the temperature of 75 oC, Ca 

ion was extracted from the slag with 86.46 % efficiency and Mg ion of 30.13 % after 

1 hr of using 0.22 M HCl. However, the dissolution in the solid/liquid ratio of 10 g/l 
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was higher than 20 g/l and 30 g/l. The dissolution of Ca ion was 80.27 %, 61.33 %, 

and 50.53 %, and that of Mg ion was 26.63 %, 24.20 %, and 22.16 %, respectively, 

after 1 hr in 0.22 M HCl. The acid concentration of 0.44 M extracts more Ca, Mg and 

Fe ions than 0.33 M and 0.22 M. The efficiency after 1 hr.; at 35℃ from 20 g/l was 

68.84 %, 65.63 %, 61.33 % for Ca, and 27.52 %, 26.40 %, 24.20 % of Mg, while that 

of Fe from 20 g/l was 10.09 %, 8.76 %, and 5.18 % respectively.  

 

 

Meanwhile, in the indirect carbonation, the dissolved Ca ion was used for the 

formation of calcium carbonate through CO2 sequestration. The formed precipitate 

calcium carbonate (PCC) of 98.61 ± 1 % purity, and the sequestration capacity of 

0.4105 ± 0.195 kg of CO2/kg of CaCO3 within 1 hr was achieved. This shows that 

at moderate conditions (0.22 M HCl, 35℃, and 1 hr), both CO2 sequestration 

and calcium carbonate of high purity were realized.  

 

 

In a reaction of a heterogeneous solid-liquid mixture, the modified shrinking core 

model was appropriate. The modified shrinking core model best interpreted the 

kinetics behavior for all the parameters studied in the dissolution of Ca ion from the 

EAF slag. From the regression coefficient (R2), the dissolution was controlled by the 

product layer phase. 

 

 

The order of reaction for acid concentration and S/L ratio was 0.31419 and -1.02459 

respectively. The activation energy of the process over the temperature range was, 

calculated to be 𝐸𝑎 = 3.881𝐾𝐽 𝑚𝑜𝑙⁄ . From the results of the two sequestration 

methods, the indirect route was better with a higher sequestration capacity and calcium 

carbonate of high purity. The EAF slag demonstrated the potential and available 

material for both CO2 sequestration and economic purposes, instead of being 

landfilled. 
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Penggunaan bahan api fosil adalah sumber utama pencemaran udara anthrapogenic, 

di mana karbon dioksida (CO2) merupakan agen yang paling terkenal yang 

menyumbang kepada perubahan iklim global. Industri besi dan keluli adalah 

penyumbang utama kepada pengeluaran gas CO2. Industri-industri ini juga 

menghasilkan sisa pepejal dalam bentuk terak semasa operasi. Penghasilan keluli di 

dalam relau pembakaran elektrik (EAF) menjana antara 10-15 % sisa terak setiap tan 

proses pengeluaran keluli yang boleh digunakan dalam karbonisasi mineral untuk 

menangkap dan menyimpan CO2. Dalam kajian ini, terak EAF dari kilang pembuatan 

besi dan keluli di Klang, Malaysia telah digunakan untuk pengasingan CO2 di dalam 

reactor kumpulan melalui karbonisasi mineral akueus secara langsung dan tidak 

langsung. karbonisasi mineral akueus secara langsung telah diperiksa pada suhu bilik 

dan nisbah pepejal/cecair yang berbeza,tekanan dan masa. Manakala karbonisasi 

mineral secara tidak langsung berlaku selepas pengekstrakan ion logam penting dari 

terak EAF pada suhu, kepekatan pelarut, dan nisbah pepejal / cecair yang berbeza. 

 

 

Kapasiti pengasingan cecair mineral secara langsung didapati 58.36 ± 5.84g CO2 / kg 

terak di bawah suhu bilik selepas 3 jam, nisbah pepejal / cecair 1: 5, dan menggunakan 

saiz zarah <63 μm. Kecekapan pengasingan adalah 28.11 % dan tahap karbonisasi 

adalah 23.30 % pada tekanan 5 bar. Model teras penyusutan menunjukkan bahawa 

karbonisasi akueus secara langsung dikawal oleh fasa penghasilan lapisan abu. dengan 

pekali regresi (R2) 0.97 

 

 

Sementara itu, dalam pembubaran terak dari EAF adalah sumber untuk ion logam 

penting seperti Ca, Mg, Fe dan lain-lain. Kecekapan pembubaran dipengaruhi oleh 

suhu dan kepekatan pelarut, nisbah pepejal/cecair dan juga masa tindakbalas. Pada 

suhu 75°C, hampir semua Ca ion telah diekstrak dari terak dengan kecekapan 86.46% 
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dan Mg sebanyak 30.13% selepas menggunakan 0.22M HCl selama 1 jam. Walau 

bagaimanapun, pembubaran oleh nisbah pepejal/cecair 10g/L adalah lebih tinggi 

daripada 20g/L dan 30g/L. Pembubaran Ca ion adalah 80.27 %, 61.33 %, dan 50.53 

%,  manakala Mg ion adalah 26.63 %, 24.20 %, dan  22.16 %,mengikut turutan nisbah 

pepejal/cecair masing-masing selepas menggunakan 0.22M HCl selama 1 jam . 

Kepekatan asid 0.44 M telah mengekstrak lebih banyak Ca, Mg and Fe ion daripada 

kepekatan asid pada 0.33 M dan 0.22 M. Kecekapan selepas 1 jam pada suhu 35℃ 

pada 20g/l adalah 68.84 %, 65.63 %, 61.33 % untuk Ca ion, dan  27.52 %, 26.40 %, 

24.20 % untuk Mg ion, manakala untuk Fe ion pada 20g/L nisbah pepejal/cecair 

adalah sebanyak 10.09 %, 8.76 %, dan 5.18 % mengikut turutan kepekatan asid 

masing-masing.  

 

 

Sementara itu, dalam karbonisasi mineral secara tidak langsung  Ion Ca terlarut 

digunakan untuk pembentukan kalsium karbonat melalui pengasingan CO2. 

Pembentukan mendapan kalsium karbonat (PCC) adalah 98.61±1% tulen dan 

pengasingan berkapasiti 0.4105±0.195 kg CO2/kg kalsium karbonat dalam masa satu 

jam telah dicapai. Ini menunjukkan bahawa pada keadaan yang sederhana  (0.22 M 

HCl, 35℃, and 1 hr) kedua2 pengasingan CO2 dan kalsium karbonat ketulenan yang 

tinggi telah direalisasikan.  

 

 

Dalam tindak balas campuran pepejal/cecair heterogen, model teras penyusutan yang 

diubah suai adalah sesuai. Model teras penyusutan adalah terbaik untuk menaksirkan 

tingkah laku kinetik untuk semua parameter yang dikaji dalam pembubaran ion Ca 

dari terak EAF. Dari pekali regresi (R2), pembubaran ion logam dikawal oleh fasa 

lapisan produk. Turutan tindak balas untuk kepekatan asid dan nisbah pepejal/cecair 

masing-masing adalah 0.31419 and -1.02459. Pengaktifan tenaga untuk proses ini 

dalam julat suhu dikira sebanyak Ea= 3.881 KJ/mol. Daripada hasil kedua-dua kaedah 

pengasingan kaedah tidak langsung lebih baik dengan kapasiti pengasingan yang lebih 

tinggi dan kalsium karbonat dengan ketulenan yang tinggi, Terak  EAF telah 

menunjukkan ianya bahan yang berpotensi dan senang digunakan untuk kedua-dua 

pengasingan  CO2 dan untuk tujuan ekonomi bukannya untuk pelupusan. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Research Background 

Carbon is essential to a living organism, but the ability to control the large release of 

carbon dioxide is a major challenge that needs urgent attention (Styring et al., 2011). 

A large amount of flue gas, containing a substantial amount of carbon dioxide, comes 

out of the smokestacks of industrial plants in power, iron and steel industries, cement 

production, oil refineries, biogas sweetening, and chemical sectors (Gassnova, 2013).  

The CO2 released from these industrial plants is a significant contributor to global 

warming and climate change (Styring et al., 2011; Mun and Cho, 2013). The carbon 

dioxide (CO2) concentration in the atmosphere had increased from about 277 ppm in 

1750 when the industrial era began, to more than 400 ppm (Quéré et al., 2013; 

Ukwattage et al., 2017).  It was, projected that the emission of CO2 needs to be reduced 

from its present concentration to maintain the worldwide temperature to less than 2oC 

in years ahead (Rosa et al., 2015).   

The possible means for CO2 reduction are as follows: (i) decreasing carbon usage; (ii) 

reducing the amount of CO2 produced; (iii) switching to less carbon-intensive fuels 

(iv) increasing the use of renewable energy; and (v) capturing and storing CO2 

(Mikkelsen et al., 2010; Yang et al., 2008). In light of this, the fifth approach, which 

includes developing a new and less costly method of carbon capture and storage (CCS) 

techniques, will be of interest. The burning of fossil fuels will continue until the use 

of new carbonless sources of energy is developed (Voutsinos, 2018). However, in 

recent times, CCS technology with “utilization” has become an attractive choice for 

reducing CO2 emissions globally (Pan et al., 2012).   

Some of the steps taken to help toward getting to this target for mitigating CO2 are the 

introduction of carbon capturing and storage (CCS), using alkaline wastes from the 

industries instead of the geological, oceanic, and natural methods. Therefore, the need 

to use solid wastes that have CaO and MgO chemical composition from these 

industries that also produce the greenhouse gas (CO2) has become attractive to used 

solid wastes to mitigate the excess gaseous waste. 

The carbon dioxide utilization to form carbonates is part of the accelerated carbonation 

technology. The primary objective of carbon accelerated technique is to imitate the 

natural weathering process, in which metal oxide reacts with CO2 to form stable and 

insoluble carbonates. Calcium or magnesium oxide is the most favorable metal oxide 

material for this reaction (Revathy et al., 2016). 
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The mineral carbonation from the metallic oxide of calcium and magnesium is as 

follows in Equation (1.1) and (1.2) 

(𝐶𝑎, 𝑀𝑔)𝑂 + 𝐶𝑂2 → (𝐶𝑎, 𝑀𝑔)𝐶𝑂3 (1.1) 

 

The aqueous carbonation can be shown as in equation (1.2) 

                      CO2 + H2O → H2CO3 → H+ + HCO3
− → (Ca, Mg)2+ + HCO3

− →

(Ca, Mg)CO3 + H+   (1.2) 

 

Industrial residues like combustion residues, steelmaking slags, waste concrete, fly 

ashes, etc. are alkaline and appear to be raw materials possibly for CO2 sequestration, 

because these materials are generally rich in metal oxides (Pan et al., 2012). The 

possible advantages of accelerated carbonation of applied industrial alkaline solid 

wastes comprise: (a) its inherent properties may reduce energy consumption and cost 

because its carbonation is exothermic in reaction; (b) high availability of deposits 

offers its great sequestration capacity; (c) in the absence of acidification, carbonation 

products like calcium or magnesium carbonates are thermodynamically stable under 

ambient conditions; (d) since transportation is not, required at sites within steel-works, 

it makes it cost-effective; (e) products may be reused as materials in a variety of 

application, like in Construction, and (f) it could neutralize the pH of the solution as 

carbonate precipitations are, formed if alkaline wastewater is, used as the liquid agents 

(Huijgen et al., 2005; Lim et al., 2010; Pan et al., 2012). 

Mineral sequestration, which is also called mineral carbonation, is used for the option 

of storage into permanency (Bobicki, 2012). 

Through careful control of greenhouse gas (GHG) emissions, the industry is moving 

toward environmental sustainability and the proper management of steel 

manufacturing residues products. With this background, a combined method aimed at 

capturing carbon dioxide (CO2) with improving the environmental and mechanical 

properties of steelmaking slags will be highly needful (Pan et al., 2016). Hence, carbon 

dioxide (CO2) capture by carbonating the steelmaking slags may perhaps be an 

interesting alternative for reducing CO2 emissions from the steel plant. Assessing the 

CO2 capture potential of these materials by accelerated carbonation of steelmaking 

slags have been progressively tested in recent times (Bonenfant et al., 2009; Chang et 

al., 2015; Cho et al., 2011; Shao et al., 2010) © C
OPYRIG
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1.2 Hypothesis  

The huge emission of anthropogenic greenhouse gas (GHG)s, especially CO2, has an 

impact on global climate change. And it is a major challenge to human health and the 

ecosystems. Therefore, the need to reduce this gas is a serious concern and a pledge 

by world leaders to effect   (Bobicki et al., 2012). 

The use of fossil fuels as the main energy source in the world will be there for a longer 

time because of its dominance  (Pan et al., 2014). 

It is therefore agreed by many that a meaningful reduction in GHG by especially 

capturing and storing the CO2 gas will help. However, the sequestration of carbon 

dioxide in solid form at a low cost for either commercial quantity for economic 

purpose or be disposed of is appealing. The whole target is to reduce the volume of 

CO2 emission to between 50 – 85 %, thereby minimizing the increase in global 

temperature to 2℃    (Olajire, 2013). 

Mineral carbonation of CO2 is an attractive method of capturing carbon dioxide to 

mitigate climate change (Chang et al., 2011; Eloneva et al., 2012). The presence of 

calcium/magnesium in raw material can store CO2 as Ca/MgCO3 (Teir et al., 2007). 

Waste materials from industries, such as iron and steelmaking slags, are by-product 

for CO2 reduction through mineral carbonation  (Eloneva et al., 2008). 

Both direct aqueous carbonation and indirect carbonation are methods of CO2 

sequestration (Jo et al., 2017; Revathy et al., 2016). 

1.3 Problem Statement 

Reducing industrial wastes disposal is a concern to environmental regulators across 

countries of the world (Meyer, 2009). Therefore, encouraging and mandating the reuse 

of these wastes is important (Meyer, 2009; Pan et al., 2016) because these nations are 

facing a big challenge from some of these waste materials or by-products. 

Enhancing the quality and encouraging citizens to live in a healthy environment, 

which thus improved the economic and social life of the people. It is sustainable 

development for both the present and generations to come (Meyer, 2009). 

In this case, the raw materials transportation, extraction, processing, and 

transformation with the maintenance and use of the product to either finally eliminate 

or recycle it must be, giving consideration (Meyer, 2009). For steelmaking, among the 
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objective of sustaining steelmaking is to minimize both hazardous waste and materials 

used to landfill (Meyer, 2009; Pan et al., 2016). 

Steel slag utilization in another industry as a raw material has a prospect in the 

environmental feature, because the recovery or reuse of the slag offers related benefits 

to the environment (Pan et al., 2016; Yuksel, 2016) 

 Worldwide production of steelmaking slag is about 50 million tons annually. It also 

depends on the steel composition and the process involved (I. Altuna & Yılmazb, 

2002; Pan et al., 2016). About 120–150 kg of slag is produced per ton of steel from 

the processes of basic oxygen furnace (BOF) and electric arc furnace (EAF). Slags 

comprise of recoverable and reusable essential metals and are generally rich in Ca 

compound (Chang et al., 2011; Yuksel, 2016) 

Some advanced countries are recycling some percentages of the steelmaking slag 

while high portions are being discarded directly in many countries. 

In 2012, the European Slag Association (EUROSLAG) members steel slag (S.S) 

product was almost 24.7 million tons. With BOF slag production of 46 %, while EAF 

slag was 38% and secondary (S.S) 17%. Meanwhile, 24.7 million tons of steel slag 

was reused by EUROSLAG members, out of which 43% was in 2012 for road 

construction. At the end of 2009, nearly 5 million tons of slag are produced annually. 

Still, 87 % of steel slag is being stored by the iron and steel industry within the plants 

(Yuksel, 2016). 

Now, in Europe, this slag is being reused in road construction, interim storage, internal 

recycling, fertilizer, hydraulic engineering, and cement production 45%, 17%, 14%, 

3%, 3%, and 3% respectively. With these whole recycling methods in place, still, more 

of the slag is dumped to landfills otherwise stockpiled at steel plant for a long time. 

There are heavy metals present in the slag, and this could be hazardous. So, using it 

for landfilling or recycling will need the slag metal content to be reduced by further 

retreatment. (Hucheng et al., 2014) 

Based on slag to steel output ratios, the worldwide yearly steel slag output was about 

170–250 million tons in 2014 (Yuksel, 2016). It makes it a major environmental 

challenge for countries and the world at large (Yuksel, 2016). The harmful effects on 

the environment from the steelmaking industry can be minimized by developing 

technology that is environmentally friendly (Yuksel, 2016). 

Bankole et al. (2011) reported that Malaysia, with five major steelmaking industries, 

would be producing a lot of slag wastes as a by-product. As a result of these enormous 

slags product and their environmental impact, it has become necessary to find more 

ways of utilization of the slag to minimize its negative effect on the environment and 

to salvage the natural resources. Malaysia has more than 100 steel manufacturing 
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industries, with five major processing and producing factories, i.e., Megasteel, 

Amsteel, Ann Joo Steel, Southern Steel, and Antara Steel (Monitor, 2018). Most of 

the produced slag as a by-product is landfilled (Bankole et al., 2011).  

It necessitates the calls for further studies to see other additional and effective ways to 

use these slag wastes.  Mineral carbonation for the mitigation of CO2 is an interesting 

option (Styring et al., 2011).  Both direct aqueous and indirect carbonation have yet to 

be studied for steel slags produced in Malaysia.  Therefore, there is a need to 

investigate factors that affect the performance of mineral carbonation.  It is also 

important to identify the rate-controlling step in the mineral carbonation, involving 

the fluid-solid reaction of a heterogeneous phase (Ajemba, Regina O and Onukwuli, 

2012; Jo et al., 2017; Teir et al., 2007). 

1.4 Research Objectives 

The objective of this work, is the sequestration of carbon dioxide through mineral 

carbonation, using the EAF slag from iron and steel industry in Klang, Malaysia. 

The sequestration is through direct aqueous carbonation and indirect mineral 

carbonation. 

The specific objectives are: -. 

1. To examine the physio-chemical properties of the EAF slag particles sizes of 

<63µm, before and after carbonation. Also, the characterization of the slag 

residue will be performed. 

 

2. To evaluate the performance of the slag in CO2 sequestration through  

(i) Direct aqueous mineral carbonation and  

(ii) To examine the physio-chemical properties such as BET, FTIR, EDX, 

SEM, XRD, and TGA of the carbonated slag. 

(iii) To evaluate the effects of solid/liquid ratio, pressure, and time on direct 

aqueous carbonation to ascertain the extent of sequestrated CO2. 

(iv)  To investigate the kinetics of the reaction rate mechanism on the direct 

aqueous mineral carbonation using the (SCM). 

 

3. To evaluate: 

(i) The influences of temperature, solvent (HCl) acid concentration, 

solid/liquid ratio, and time on Ca, Mg, and Fe extraction from the slag 

through ICP-OES analysis. 

(ii) And examine the physio-chemical properties such as BET, FTIR, EDX, 

SEM, XRD of the slag residue. 

 

4. To evaluate the performance of the CO2 sequestration through  

(i) Indirect mineral carbonation techniques  
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