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Extreme Learning Machine (ELM) is a single hidden layer feedforward neural 
network which randomly chooses hidden nodes and analytically determines 
the output weights using least square method. Despite its popularity, ELM has 
a number of challenges worth to investigating for improving the usability of 
ELM in a more advanced application. This thesis focusses on challenges 
namely design architecture and learning technique. The first challenge is to 
select the optimal number of hidden nodes for ELM in different application. To
address this problem, a new approach referred to SVM-ELM is proposed, 
which utilizes 1-norm support vector machine (SVM) to the hidden layer matrix 
of ELM in order to automatically discover the optimal number of hidden nodes. 
The method is developed for regression task by using mean/ median of ELM 
training errors which is then used as threshold for separating the training data 
and converting the continuous targets to binary. This will allow projection to 1-
norm SVM dimension in order to find the best number of nodes as support 
vectors. Second problem in ELM, is the restriction in performance of ELM in 
terms of training time and model generalization, due to the complexity of 
singular value decomposition (SVD) for computing the Moore-Penrose 
generalized inverse of the hidden layer matrix, especially on a large matrix. To 
address this issue, a fast adaptive shrinkage/thresholding algorithm ELM 
(FASTA-ELM) which uses an extension of forward-backward splitting (FBS) to 
compute the smallest norm of the output weights in ELM is presented. The 
proposed FASTA-ELM replaces the analytical step usually solved by SVD with 
an approximate solution through proximal gradient method, which dramatically 
speeds up the training time and improves the generalization ability in 
classification task. The performance of FASTA-ELM is evaluated on face 
gender recognition problem and the result is comparable to other state-of-the-
art methods, with significantly reduced training time. For instance, the training 
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time of 1000 nodes ELM is 18.11 s, while FASTA-ELM completed in 1.671 s. 
The proposed modification to the ELM shows significant improvement to the 
conventional ELM in terms of training time and accuracy, and provide good 
generalization performance in regression and classification tasks. 
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MESIN PEMBELAJARAN EKSTRIM DIPERTINGKAT UNTUK TUGASAN 
REGRESI UMUM DAN PENGELASAN 

Oleh 

SAIF F MAHMOOD 

September 2020 

Pengerusi : Profesor Mohammad Hamiruce Marhaban, PhD 
Fakulti : Kejuteraan 

Mesin pembelajaran ekstrim (Extreme Learning Machine: ELM) adalah satu 
rangkaian neural lapisan tersembunyi tunggal suap ke depan, yang memilih 
nod tersembunyi secara rawak dan menentukan pemberat keluaran secara 
analitik dengan menggunakan kaedah kuasa dua terkecil. Walaupun begitu, 
ELM mempunyai cabaran yang perlu dikaji untuk meningkatkan 
kebolehgunaan ELM dalam aplikasi termaju. Thesis ini memberi tumpuan 
kepada dua cabaran utama iaitu reka bentuk seni bina dan teknik 
pembelajaran. Cabaran pertama adalah memilih bilangan nod tersembunyi
yang optimum untuk ELM dalam pelbagai aplikasi. Untuk mengatasi masalah 
ini, pendekatan baru yang dinamakan sebagai SVM-ELM dicadangkan, yang 
menggunakan mesin vektor sokongan (Support Vector Machine: SVM) 1-
norma terhadap lapisan tersembunyi matriks ELM untuk secara automatik 
mendapatkan bilangan nod tersembunyi yang optimum. Kaedah ini 
dibangunkan untuk tugasan regresi dengan menggunakan purata atau 
median ralat latihan ELM yang mana seterusnya ia digunakan sebagai titik 
ambang untuk memisahkan data latihan dan menukar sasaran berterusan ke 
binari. Ini membolehkan unjuran ke dimensi SVM 1-norma untuk mencari 
bilangan nod terbaik sebagai vektor sokongan. Masalah kedua dalam ELM 
adalah prestasi ELM yang terhad dari segi tempoh latihan dan generalisasi 
model, disebabkan kerumitan penguraian nilai tunggal (Singular Value 
Decomposition: SVD) untuk mengira pembalikan umum Moore-Penrose dari 
matriks lapisan tersembunyi, terutama bagi matriks yang besar. Untuk 
mengatasi masalah tersebut, algoritma penyusutan / titik ambang tersuai 
pantas (Fast Adaptive Shrinkage/Tresholding Algorithm: FASTA) ELM 
(FASTA-ELM) yang menggunakan lanjutan pemisahan maju-mundur 
(Forward-Backward Splitting: FBS) untuk mengira norma terkecil dari 
pemberat keluaran ELM dipersembahkan. FASTA-ELM yang dicadangkan 
menggantikan langkah analitik yang biasanya diselesaikan oleh SVD dengan 
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penyelesaian hampiran melalui kaedah kecerunan proksimal, yang terbukti 
mempercepat tempoh latihan dan meningkatkan kemampuan generalisasi 
dalam tugasan pengkelasan. Prestasi FASTA-ELM dinilai berdasarkan 
masalah pengecaman jantina dan hasilnya setanding dengan kaedah terkini, 
dengan tempoh latihan yang lebih pantas. Sebagai contoh tempoh latihan 
untuk 1000 nod ELM adalah 18.11 s, sementara FASTA-ELM selesai dalam 
1.671 s. Pengubahsuaian ELM yang dicadangkan menunjukkan peningkatan 
signifikan ELM konvensional dari segi tempoh latihan dan kejituan, dan 
memberi prestasi generalisasi yang baik dalam tugasan regresi dan 
pengkelasan. 
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CHAPTER 1

1 INTRODUCTION

In general, this chapter introduce background knowledge on the domain of 
machine learning approach. More insight is given into Artificial Neural Network 
(ANN) method, with highlights to the tendency of initial weight by random 
process in a method knowing as Extreme Learning Machine (ELM). In 
addition, this chapter points out the problem statement, objectives that are to 
be achieved at the end of this study, and, the scope of the research.  

1.1 Machine Learning Approach 

In recent years, in line with technological advances, machine learning has 
exhibited several promising algorithms in various real world applications. 
Rather than inference based rules, machine learning makes sense of the data 
through building a predication model from seen data in phase named training 
process, then valid the model in unseen data in second stage called testing 
phase. Whether the output is labelled entirely or semi and neither without 
labeling, data-driven tasks are learned as supervised, semi supervised and 
unsupervised learning respectively. Distinguished machine learning 
approaches lies in two important aspects include learning speed and 
performance. Whereas learning speed is typically depend on computational 
burden in term of execution time, the performance of learning algorithm is 
represented by generalization ability measured by training and testing error. 
And with incorporation of learnable functions to undertake the universality 
capability (universal function approximation). In addition to former two metrics, 
reliability of the model possess a crucial role in data-driven model as explicitly 
studied by Neumann (2013). To build a compact model, model parameter can 
be involve in optimization problem with some objective function. From 
particular point of view, many challenges are arisen in machine learning 
starting with the unpredictable model come out with complex environments 
and not ending up with the enormous growth in amount of data. For these, 
machine learning model that can be sorted include probabilistic model, 
geometric model and logic model (Flach 2012). 

The importance of probabilistic in machine learning lies in alleviating the 
tendency of uncertainty by learning process.  Motivated by geometric concept 
such as line, plane and distance, geometric model has been developed 
especially with high dimension with prefixed “Hyper”. In additional, logic model 
has been used based on logical relation. Features also called attributes are 
contributed in the model assessment based on scale and ordering through 
those with numerical scale called quantitative feature and those without scale 
named ordinal feature as well categorical features that are without scale or 
ordering (Flach 2012). Basically, machine learning scheme can be 

© C
OPYRIG

HT U
PM



 
2 

represented as shown in Figure1.1.  Where the model in task box perform a 
mapping from date defined by features to output. Mapping is obtained using 
training data in learning process. 

  

Figure 1.1 : Machine learning scheme 
 
 
1.2 Artificial Neural Networks     

The underlying function of human in brain has received considerable attention 
by neurologists, physiologists and psychologists. Brain architecture 
constitutes of immense number of computing units (neurons) that are 
interconnected (synapses) and operating in parallel manner. Inspired by 
theoretical and empirical aspects of human brain, well-known artificial neural 
network has been acquired as artificial brain models to solving specific 
problem. Basically, the main research that interested on artificial neural 
networks are: (i) mathematic at intrinsic of neuron and synapses; and (ii) using 
artificial neural networks to effectively build a machine learning model to 
perform data processing, inferring decisions and interpretable by simulate the 
biological nervous system. Indeed, two important features of neural network 
as a computational method (Daniel Graupe 2013 ): 
 
 

(i) It employs simple computational operations to solve mathematical 
problems with ill-define nonlinear and stochastic approach.  

(ii) It possesses a self-organizing feature with learning ability that implies 
the capability of solving wide range of problems.   

 
 
Furthermore, White (1989) suggested QuickNet algorithm which inserted 
randomness of hidden neurons in the single of hidden layer feedforward 
networks (SLFNs) and the output of hidden layer weights can be calculated of 
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the current hidden neurons after adding new hidden neuron. Randomness 
clearly exploited in hidden neurons by Schmidt and Kraaijveld (1992). 

And they concluded that output weight has significantly contributed in learning 
process rather than hidden layer weights. The main constraint with it is 
required a output neuron bias, and cannot prove the universal capability of the 
method. For same purpose, a new approach named Random Vector 
Functional Link (RVFL) which is depend on randomness that is partial 
technique  in neurons that are hidden (Pao et al 1994) ( Igelnik. B and Pao. Y. 
H, 1995). Although it is remarkable contribution, there is no universal capability 
prove of the single layer feedforward. In addition, RVFL network employed the 
traditional gradient descent mechanism to learn the weights of output layer, in 
summarize, RVFL don’t exploit random features and random hidden layer 
neurons. 

1.3 Extreme Learning Machines 

The advantage of random process approach has involved a lot of 
consideration in many challenging of application fields, incorporation of 
random projections, efficient processing can be obtained for large and high-
dimensional data sets (Miche et al 2009). Inspired by vast literature of these 
methods, researchers explore the usefulness of generate the initial 
parameters randomly and restrict learning phase to be formalized as a linear 
model. A prominent machine learning method with single hidden layer 
feedforward neural network (SLFN) and high-dimensional random process 
named extreme learning machine (ELM) is suggest by Guang Bin Huang 
(2014a).

Compared to conventional backpropagation training methods, ELM is trained 
much faster with capability to be trapped at global optimum. As theoretical 
aspects have reveal that although that random process of hidden nodes 
parameters, ELM can be maintained the universal approximation capability of 
SLFNs. Unlike other learning process involve with random projection for 
/network, the indecency of hidden nodes in ELM are not only for training data 
but also on each other. Moreover, the generation of hidden node parameters 
in ELM can be obtained even before training data has been shown (Ding, Xu, 
& Nie, 2013). In ELM theory the meaning of random hidden nodes imply that 
parameters linked the hidden layer with input layer are selected by random 
process and without depending on the training samples, e.g., input weights 
are randomly generated weight and biases  for additive hidden nodes such 
sigmoid, or both center and impact factor for RBF networks. The main aspect 
of ELM is the hidden nodes do not essential to be tuned (Guang-Bin Huang, 
Hongming Zhou, Xiaojian Ding, & Rui Zhang, 2012a). In summary, the 
randomness of ELM clarify in two folds: 
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(a)  The randomness of hidden nodes parameters.  
(b)  Although the hidden nodes are randomly found, they do no need to be 

explicitly tuned.  
 
 
For instance, a hidden node in the follow layer can be basically linear sum or 
nonlinear transform of some random nodes in the earlier layer. In this example, 
some neuron are selected randomly and some are not, but no one of them 
have being tuned. Different from Schmidt et al (1992) and Pao et al (1994) that 
each neuron is either sigmoid or RBF node only, each hidden node in ELM 
can be any bounded nonconstant piecewise continuous functions. As shown 
in Figure 1.2 ELM can be a subnetwork of other nodes in which feature 
learning allow to be used considerably. As well, ELM can cooperate with 
compression, feature learning, clustering, regression or classification. thus, 
homogeneous ordered blocks of ELM can be constructed. For instance, one 
ELM as feature learning process, the following ELM mechanism is as a 
classifier. In this instance, there are two hidden layers of ELM, in general it is 
not randomly generated and it is ordered, but hidden nodes in each layer do 
not need to be tuned (e.g., randomly chosen or obviously given/calculate) 
(Guang-bin Huang, 2015) Based on ELM theory, ELM SLFNs, activation 
function contains but are not restricted to: 

1.  Sigmoid activation function networks 
2.  RBF activation function networks 
3.  Threshold function networks  
4.  Trigonometric function networks 
5.  Inference Fuzzy systems 
6.  Fully complex neural networks  
7.  High-order networks 
8.  Ridge function polynomial networks 
9.  Wavelet function networks 
10.  Fourier series  
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Figure 1.2 : ELM Structure 

Furthermore, there are distinction and similarity among ELM and other well-
known algorithms, such as Deep Learning and support vector machine (SVM) 
least square support vector machine (LS-SVM). Unlike deep Learning, ELM in 
its logic that hidden layer node of the whole ELM need not to be tuned. 
Because of ELM’s altered roles of feature learning and clustering, ELM can be 
executed as the earlier layers in multilayer networks in which the late layers 
are trained by other learning algorithms such as deep learning. 

Compared with SVM and LS-SVM, SVM was firstly found to interact with 
multilayer feedforward networks by Cortes and Vapnik (1995) which shows 
that there is no method to train a multilayer network. Different from ELM and 
deep learning which investigate feature representations in each layer, SVM 
and LS-SVM do not consider the feature representation and functioning roles 
of each inner hidden layer. Moreover, SVM and LS-SVM can be able as single 
hidden- layer networks associated with hidden layer output function. For this 
regard, while ELM and SVM/LSSVM possess a single hidden layers, but ELM 
explicitly possess hidden layer mapping (suitable for feature representations) 
and SVM/LS-SVM has unknown hidden layer mapping (inconvenient for 
feature representations). In different machine learning tasks, ELM represents 
feature mapping, clustering based regression and pattern classification with 
ridge regression optimization criteria, whereas SVM/LS-SVM basically 
perform for binary pattern classification based on Vapnik–Chervonenkis 
dimension (VC dimension) through maximal margin. However, it is hard for 

1

1

d

L

Problem   based 
optimization   constraint 

(ai ,bi)

d Input Nodes

L Random Hidden node (that 
need not be algebraic sum 
based) or other ELM feature 
mappings. Different sort of 
output functions
could be used in different 
neurons: h (x)= G(a ,b , x)

Feature learning
Clustering
Regression
Classification

xj
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SVM/LSSVM to have feature mapping because anonymous mapping as SVM 
and LS-SVM generally offer suboptimal results. 

Moreover, the universal approximation capability of ELM can be contributed in 
a varied sort of functions that are nonlinear piecewise continuous, and it 
obvious that not need to bias existing in the output layer. For that, ELM is 
employed wide range of activation functions in both real and complex domains 
(Huang et al 2006)  

Following the Bartlett's concept (Bartlett 1998), smallest training error can be 
associated with improving of generalization performance for the network, the 
proposed solution of ELM in this thesis is to solve the linear equation and reach 
solution of norm to be smallest. Three vital aspects making it stimulating 
solution ( Huang et al 2006): 
 
 

1. The minimum training error can be obtained as it is basically linear 
equation that use least-squares method as a solution. 

2.  Among the least-squares solutions, ELM can reach the smallest norm. 
3.  The smallest norm solution is unique among the least-squares 

solutions. 
 
 

1.4 Problems and Motivations  

Artificial Neural Networks of (ANNs) are common approaches for pattern 
recognition tasks. They have the ability to handle the problems in practical 
applications such as non-linear and noisy data. Nevertheless, it suffer from 
slowing of the learning in feedforward neural networks and generally far slower 
than necessary. Thus, it has been a main restriction for their implementations. 
Two important reasons could be (Zhang et al., 2008): 

(i) The slowing of the training in error back-propagation (BP) process and 
other gradient descent learning methods has been extensively used. 

(ii) Iteratively tune the synaptic parameters of the neural networks by using 
gradient descent learning algorithms. 

 
 
To cope with the shortcomings mentioned above, in 2006 Huang et al (2006) 
suggest a novel learning algorithm called ELM for single hidden layer 
feedforward neural network (SLFN). ELM mitigates the iterative procedures of 
adjusting weights by randomly select hidden layer neurons and determine the 
output weights analytically. From theory point of view, ELM incline to include 
perfect generalization performance associated with extremely fast learning 
speed. Despite of many aspects on ELM, there are some basic matters that 
need to be studied to understand the feasibility of ELM in real-world 
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implementations. One of these issues is how to find the optimal and the 
compact network architecture, which can finally result in a robust model and 
applicable to many learning tasks (X. Wang & Cao, 2018). It is obvious that 
the choosing of an optimal number of nodes is thoroughly related to the 
problem of curve fitting using polynomials (Kwok & Yeung, 1997)(Rocha & 
Ananda, 2017). Such as too many coefficients will encounter overfitting the 
model and therefore poor performance would be occurred, while few 
coefficients cannot learn well the underlying function ( MLD Dias et al. 2018).
Practically, a certain number of the hidden nodes in such networks may have 
a minor effect on the output of the network and theoretically increase the 
network complexity (Guang Bin Huang et al 2004).

Moreover, ELM may meet the singularity problem in case of the number of 
nodes are greater than the training samples which eventually  lead to instability 
of the system  (Alcin et al.,  2015).  For that reason, empirical method such  as  
trial-and-error is used to find a compact network structure for a  specific task 
without any prior knowledge (Guang-Bin Huang et al., 2012a). ELM methods 
generally need a lot of hidden nodes as mentioned in (Guang-Bin Huang et al 
(2012a) in order to find an optimal number of neurons, publications  are 
suggested using optimization algorithms (Sheela & Deepa, 2013).

These works also imply that identification of hidden nodes can be considered 
as a kind of optimization process (Rong et al., 2008). If some optimal neurons 
are selected in the learning process, the learning effectiveness will be 
improved dramatically. While reducing the number of hidden nodes can be 
further occur without disturbing learning performance for large-size or high 
dimension data sets. Guang-Bin Huang et al (2012b) has stated that good 
performance can be obtained as long as number of node is large enough.  

Another shortcoming of ELM is the computational time during training phase 
due to singular value decomposition (SVD) for calculating the Moore-Penrose 
generalized inverse of the hidden layer matrix that has high complexity burden. 
Especially with large dimension on hidden layer matrix and the effect of the ill 
conditioned of the hidden layer matrix that make ELM suffer from quite weak 
numerical stability that lead to waning of the generalization performance (Tang 
& Han, 2009).

According to previous explanation, the problem statement can be summarized 
as follow:

1. The existing methods to determine the optimal number of hidden neurons
in ELM is trial-and-error approach that it is time consuming and there is
no guarantee of fixing the hidden neuron.
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2. The output weight of ELM is found out by using SVD which has high 
burden of computational complexity ), when number 
hidden neurons became large the computational complexity of SVD will 
significantly rise. 

 

1.5 Objectives(s) of the study  

The main objective of this research work is to design, develop, and enhance 
ELM based neural network models that capitalize the advantage of ELM, and 
at the same time, avoid their limitation. To attain the main objectives, sub-
objectives are defined as below: 

1.  To develop novel architectures of ELM based SVM to select the 
optimal number of nodes 

2.  To test and evaluate the  procedure  of  an  SVM-ELM  algorithm  by  
mitigating  the  influence  of large number of node in regression task.  

3.  To develop a novel method named Fast Adaptive Shrinkage       
     /Thresholding Algorithm (FASTA) to calculate the output weights of  

ELM with the smallest norm using a forward backward splitting. 
4.  To investigate the feasibility and efficiency of FASTA-ELM algorithm by 

applying it in face gender recognition task. 
 
 

1.6 Research Scopes  

With a single hidden layer feedforward, ELM consider the mainstay of this 
thesis that establish by developing a novel pruning network architectures 
method named ELM-SVM. As well, new learning algorithms called fast 
adaptive shrinkage/thresholding algorithm (FASTA-ELM) that attempt to 
disregards the need of employ SVD to compute the hidden layer of matrix of 
ELM. The scope of this research is motived on two areas: 

1.  Development of  effective  novel pruning strategy of network 
architectures systems of ELM based 1-norm SVM that  are  capable  of 
acquiring  the active nodes with as little supervision as possible to data 
regression tasks. 

2.  Development a new method that calculating the output weights of ELM 
with the smallest norm using a forward backward splitting method 
named (FASTA) for pattern classification tasks. 

3.  To demonstrate the performance of the proposed method, the dataset 
is used in this thesis is as follow: 

 
 

For regression task, the proposed SVM–ELM is evaluated on 10 real-world 
regression problems from an UCI ML ( C. Blake & C. Merz 1998). For 
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classification task, the experiments in this thesis are conducted on 5
benchmarked face gender recognition datasets as follow: 

2 unconstrained datasets: Cropped Labeled Faces in the Wild (G.
B. Huang et al., 2008) and Image of Groups(Gallagher & Chen,
2009)
3 constrained datasets: PAL (Minear & Park, 2004), FERET
(Phillips et al., 1999), and CAS-PEAL R1 (Gao et al., 2008)

4. All the simulations for ELM and the new ELM algorithms are both carried
out in the Matlab 2016 environment running in Intel Core i5 6200u
CPU.With the speed 2.40GHz.

It is very clear that the hidden node choosing is a stimulating problem and is 
still a very much open problem of research. Our study in this thesis is 
motivated by the model suggested by Han and Yin (2008), where a 1-norm 
support vector machine (SVM) is used to pre-select the hidden neurons, 
followed by a stepwise selection method based on ridge regression for 
selecting the optimal hidden nodes of wavelet networks. The key objective of 
the proposed method is to remove the issue of including a great number of 
inactive neurons in wavelet networks. 

Another problem in ELM that handle by this thesis that has been formulated 
as objective function of ELM to minimizing compound optimization problem 
solved with the forward backward splitting (gradient descent method) in 
instead of computing the hidden layer matrix analytically using SVD. However, 
adaptive stepsize selection method and non-monotonic line search are used 
in the suggested FASTA-ELM method to speed up the convergence rate. 
Thus, if we have a large ill-conditioned matrix, rather than searching through 
all possible steps of the objective, the step-size adaptively choose such as that 
the dimension of the gradient descent problem becomes very small, which in 
turn makes the algorithm converge very fast. As well, FASTA-ELM further 
employ a backward descent step to check objective in each step in order to 
select the sub-gradient which ensures convergence. 

1.7 Thesis Outline 

The thesis is structured with 5 main chapters. Chapter 1 introduces the 
concept of machine learning, which is divided into neural network and extreme 
learning machine. The chapter also states the problem statement, objectives, 
and scope of the study. In Chapter 2, in order to point out the advantages and 
disadvantages of previous techniques. Also, to highlight the techniques that 
are adopted in this study and the areas the thesis contributes to knowledge, 
literature review on extreme learning machine by several approaches is 
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introduced. In chapter 3 the proposed framework on FATSA-ELM and SVM-
ELM is presented, and the methodologies utilized are clarified in detail. 
Chapter 4 presents comprehensive experiment results and discuss on the 
analysis of findings attained. To conclude, chapter 5 provides the conclusion 
and recommendation for future studies. 
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