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In this thesis, we report our study on the dynamics of a symmetric double-well

Bose-Einstein condensate (BEC)-reservoir system. The mentioned system is well

described by total Hamiltonian composed of a sub-Hamiltonians representing the

double-well BEC, multi-mode reservoir fields and the interactions of condensate

atoms with the reservoir fields. The dynamical equation obtained is in the form of

generalized Quantum-Heisenberg-Langevin equation (QHLE). Dissipation kernels

of the QHLE determines whether the system operates within Markovian or non-

Markovian basis. We found full analytical solution for the interaction free BEC-

reservoirs for the Markovian operating system but only partial analytical solution

is given for its non-Markovian counterpart. The interacting BEC-reservoirs system

(Markovian and non-Markovian) invokes mean-field and noise-correlated models.

The set of ordinary differential equations (ODE) of the latter models (mMF, MF,

Mark, nonMark) were solved using Matlab ODE-45 solver, an effective tool for solv-

ing non-stiff ODEs. Physical quantities such as population imbalance, tunneling cur-

rent, coherence and entanglement-entropy were computed numerically and analysed.

The system operate on the Markovian and non-Markovian basis show distinctive fea-

tures with respect to applied control parameters. As an overall conclusion, the find-

ing shows the dynamics is more volatile in the Markovian operation in comparison

to the non-Markovian operational basis for the mean-field approach especially on

its driving from macroscopic quantum self trapping to the quantum tunneling state.

For the noise-correlated approach on the other hand, the non-classical behaviour de-

scribed by its entanglement-entropy is more prominent in the Markovian operational

basis in comparison with its non-Markovian counterpart.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai

memenuhi keperluan untuk ijazah Doktor Falsafah

DINAMIK TAK-MARKOVIAN BAGI SISTEM TADAHAN KONDENSASI
BOSE-EINSTEIN DUA PERANGKAP

Oleh

KALAI KUMAR A/L RAJAGOPAL

Jun 2021

Pengerusi : Profesor Madya Gafurjan Ibragimov, PhD
Fakulti : Sains

Tesis ini melaporkan kajian kami terhadap sistem dinamik kondensasi Bose-Einstein

dua-perangkap simetri-tadahan. Dinamik sistem ini ditaksirkan oleh Hamiltonian

yang merangkumi sub-Hamiltonian BEC dua-perangkap, sub-Hamiltonian tada-

han medan multi-modal dan sub-Hamiltonian interaksi atom BEC terhadap medan

tadahan. Persamaan dinamik diperolehi adalah berbentuk persamaan Kuantum

Heisenberg-Langevin (PKHL). Kernel lesapan pada PKHL menentukan sama ada

sistem kita beroperasi berasaskan proses Markovian atau tak-Markovian. Penyele-

saian analitik diperolehi bagi sistem BEC tak-beinteraksi-tadahan berasaskan proses

Markovian tetapi bagi sistem tak-Markovian pula hanya penyelesaian separa diper-

olehi. Sistem BEC berinteraksi-tadahan (berasaskan proses Markovian dan tak-

Markovian) pula membentuk model mean-field dan model berkorelasi kebisingan.

Persaman pembeza biasa (PPB) yang terjana daripada model-model itu (mMF, MF,

Mark dan nonMark) diselesaikan secara numerik mengunakan penyelesai Matlab

ODE-45 yang efektif dalam menyelesaikan sistem persamaan PPB jenis tak-kaku.

Ketakseimbangan populasi, penusukan aruhan arus, koheren dan simpulan-entropi

adalah parameter-parameter fizikal yang dikomputasi dan dianalisis. Sistem berop-

erasi berasaskan proses Markovian dan tak-Markovian memberi keputusan berbeza

terhadap parameter kawalan. Secara keseluruhannya, kami dapat menyimpulkan

bahawa sistem beasaskan proses Markovian sangat tak menentu berbanding den-

gan sistem tak-Markovian, khususnya bagaimana ia memandu keadaan perangkap

kuantum kendiri makroskopik ke keadaan penusukan kuantum. Bagi model kore-

lasi kebisingan pula, sifat tak-klasikal yang ditentukan oleh simpulan-entropi lebih

menonjol pada sistem yang mematuhi proses Markovian berbanding dengan proses

tak-Markovian.
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CHAPTER 1

INTRODUCTION

1.1 Bose-Einstein Condensate

Bose-Einstein condensation was first predicted by Einstein (1924), generalizing the

concept of earlier work of Bose (1924) on the quantum statistics of photons to in-

distinguishable atoms with integral spin (coined as ”boson”). In nature, there exist

only two types atoms, classified as bosons or fermions based on their intrinsic spin

properties. Bosons have integral spin described by symmetric wave function. In

contrast, fermions are half-integral spin particles having anti-symmetric wave func-

tion property. Pauli’s exclusion principles prohibit two fermions to occupy the same

quantum state which is the crux of this anti-symmetric property. On the other hand,

the symmetric nature of bosons permits them to macroscopically occupy a given

state.

The most illustrative boson characteristic is the process of Bose-Einstein Condensa-

tion (BEC) where at extremely low temperatures the bosons plunge into occupying

in their lowest single-particle quantum state (ground state). It is indeed a quantum

phase transition where bosons occupying various higher eigenstates macroscopically

crunched into its lowest energy state as temperature swept across a critical tempera-

ture. At this stage, the de Broglie waves of neighbouring atoms coalesce to form a gi-

ant matter-wave. For the three-dimension (3D) geometry, the condition for attaining

BEC is to achieve the criteria ρ̃λ 3
DB ≥ 2.612 where ρ̃ is dimensionless phase space

density and λDB = h/(2πmkBT )1/2 is its de Broglie wavelength. It also means, the

BEC phase occur when the size of de Broglie wavelength matches the inter-particle

distance d = ρ−1/3 of atoms.

Pioneering realization of BEC of alkali atoms in the mid 90’s (Anderson et al. (1995);

Davis et al. (1995); Bradley et al. (1995); Weber et al. (2003); Greiner et al. (2003)),

that led to the 2001 Nobel prize in physics boosted further research interest in the

(theory and experimental) Bose-Einstein condensate field. Unexpected theoretical

features were predicted and experimentally observed thence after. New avenues from

interdisciplinary fields (atomic physics, quantum optics, statistical mechanics, and

condensed-matter physics), emerges making it a more exciting area of research. Due

to the broad scope of the subject, it is quite impossible to give full coverage of the

basic theory of Bose-Einstein condensation and its experimental realizations together

with its many novel applications. A large series of reviews and books have already

emerged elaborating in clear details this novel state of matter. Readers are referred

to the work of (Baym and Pethick (1996); Leggett (2001); Parkins and Walls (1998);

Griffin et al. (1996)) for basic ideas of the BEC subject matter.
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1.2 Basic theory of the Bose-Einstein condensate

Generally speaking, BEC is a phenomena where atoms populate the lowest quan-

tum state with zero momentum at large scale during a phase transition. Momentum

distribution shows a peak at this condensation process. Penrose and Onsager (1956)

suggested a criterion for this condensation process in which the BEC can be recog-

nised with the emergence of long-range off-diagonal order in the one-body density

matrix. In any statistical mechanics literature, one could find at thermal equilibrium,

a uniform gas consist of N atoms obeys the well-known Bose-Einstein distribution

f (εk,T ) =
1

exp((εk −μ)/kBT )−1
, (1.2.1)

where kB is the Boltzmann constant, T is the temperature and μ corresponds to the

chemical potential of the system. The chemical potential is the energy required by

a system to exchange one particle with its environment. The total number of parti-

cles in the un-condensed (excited) states is determined by the sum Nex = ∑k f (εk,T )
which specifies the value of the chemical potential μ . The ground state (εo = 0) pop-

ulation is calculated to be N0 = [exp(−μ/kBT )−1]−1 which becomes macroscopic

even for a small negative μ . Therefore, one can separate out the population of the

ground state and exited state by the relation N = No +Nex.

Bose-Einstein condensate is a phenomena where a phase transition occur at a critical

temperature Tc, reducing temperature below it will cause all particles in the excited

states crunched into its ground (lowest energy) state. The critical temperature Tc is

the highest temperature where a Bose condensate can still exist (or a vice versa). At

this temperature (Tc) the chemical potential is zero. Hence, one can use this condition

N = Nex(T = Tc,μ = 0) to find the critical temperature and show the relation:

N
[

1− (
T
Tc

)α
]
= N0 , (1.2.2)

where Tc is the BEC transition temperature while α depends on the confinement,

for instance, α=3/2 for box potential or α=3 for harmonic trap potential. The value

of critical temperature Tc is shifted for the interacting BEC case. The details of the

calculation can be found in textbooks written by the authors such as Griffin et al.

(1996) and Pethick and Smith (2008).

Having discussed briefly on the ideal Bose gas theory, it is time now to introduced

the real system of Bose-Einstein condensate confined within generic trapping po-

tential V (r) where the bosons interacts repulsively or attractively. The trapping

potential can come in various form like three-dimensional (can also be lower di-

mensional) symmetrical or asymmetrical Harmonic potentials, cigar-shape, pancake-

shape which is obtained by squeezing of particular coordinate and so on. An inter-
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acting BEC in a trapping potential V (r) can be represented in a grand-canonical

Hamiltonian within second quantization language:

Ĥ =
∫

drΨ̂ †(r)

[
− h̄2

2m
∇2 +V (r)−μ

]
Ψ̂(r)+

1

2
g
∫

drΨ̂ †(r)Ψ̂ †(r)Ψ̂(r)Ψ(r)

(1.2.3)

where μ is the chemical potential and g is the inter-particle interaction (or coupling)

strength. For a three-dimensional system, inter-particle coupling strength is given by

g = 4π h̄2 a
m . In this expression, a represent the scattering length (for which a > 0 in-

dicates repulsive interaction while a < 0 indicates attractive interactions between bo-

son), m represents the atomic (boson) mass, whereas h̄ is the Planck’s constant h di-

vide by 2π respectively. For lower dimensional cases, the coupling constant changes

accordingly, for further clarification see in the textbook by Pethick and Smith (2008).

The annihilation Ψ(r′) and creation Ψ †(r) field operators obeys the Bose-Einstein

commutation relation

[Ψ̂(r),Ψ̂ †(r′)] = δ (r− r′) [Ψ̂(r),Ψ̂(r′)] = [Ψ̂ †(r),Ψ̂ †(r′)] = 0 . (1.2.4)

The particle-number operator is defined by N̂ =
∫

drΨ̂ †(r)Ψ̂(r), hence it is quite

natural to interpret Ψ̂ †Ψ̂ as the number density operator. Both Ĥ and N̂ are Her-

mitian and can be diagonalized simultaneously since they commute with each other

[N̂, Ĥ] = 0. Hence any orthogonal basis state |ΨNE〉 are simultaneously eigenstate of

N̂ and Ĥ and having properties N̂ |ΨNE〉 = N |ΨNE〉 and Ĥ |ΨNE〉 = E |ΨNE〉 where

〈ΨNE |ΨNE〉 = 1. Here N and E are the total particle number and energy of the

system respectively. Also it can be shown that [Ψ̂(r), N̂] = Ψ̂(r) and [Ψ̂ †(r), N̂] =
−Ψ̂(r), from which one can deduce that N̂Ψ̂(r) |ΨNE〉 = (N − 1)Ψ̂(r) |ΨNE〉 and

N̂Ψ̂ †(r) |ΨNE〉 = (N + 1)Ψ̂ †(r) |ΨNE〉. Obviously Ψ̂(r) |ΨNE〉 is also an eigenstate

of N̂ but with eigenvalue N − 1, similarly Ψ̂†(r) |ΨNE〉 is and eigenstate of N̂ with

eigenvalue N + 1. From here we can deduce that Ψ(r) acting on |ΨNE〉 annihilate

one particle from the field while Ψ †(r) acting on |ΨNE〉 creates one particle from

the field. Detailed background idea on Bose-Einstein condensation calculations can

be referred in the popular statistical mechanic text-books such as Pathria (2001) and

Reichl (2017). With that being clarified, we can now move forward to find dynam-

ical equation of the interacting BEC defined by the Hamiltonian (1.2.3). Using the

Heisenberg equation of motion used in Pethick and Smith (2008):

ih̄
∂Ψ̂(r, t)

∂ t
= [Ψ̂(r, t), Ĥ] , (1.2.5)

employing the commutation relation above and performing some algebra using the

Hamiltonian Eq. (1.2.3), yields the following non-linear Schrödinger equation

ih̄
∂Ψ̂(r, t)

∂ t
=

(
− h̄2

2m
∇2 +V (r)

)
Ψ̂(r, t)+gΨ̂ †(r, t)Ψ̂(r, t)Ψ̂(r, t) . (1.2.6)
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The particle field operator can be written as Ψ̂ =Ψ + ψ̃ which is the sum of classical

wave-function Ψ (please not here we have dropped the hat symbol) describing the

ground state BEC and a fluctuation field operator ψ̃ representing excitations. The

wave function Ψ is also known as the order parameter (a complex function) and it is

defined by the statistical average of particle field operator < Ψ̂ >=Ψ and < Ψ̂† >=
Ψ∗. This method of splitting the field operator into a complex function plus small

perturbation of field operator is known as the Bogoliubov approach (Abrikosov et al.

(2012)). Taking the expectation value of Eq. (1.2.6), one obtains the celebrated

Gross-Pitaevskii (GP) equation, as used in Parkins and Walls (1998) and also by

Leggett (2001):

ih̄
∂Ψ(r, t)

∂ t
=

(
− h̄2

2m
∇2 +V (r)+g|Ψ(r, t)|2

)
Ψ(r, t) (1.2.7)

Here the third-order correlation function has been decorrelated into products of

single-order moments <Ψ̂ †Ψ̂Ψ̂ >≈<Ψ̂ † ><Ψ̂ ><Ψ̂ >= |Ψ |2Ψ , which is known

as the mean-field approximation (see also the detail section (5.1)). The mean-field

approximation is valid for a macroscopic system with large of number of atoms and

extremely weak quantum fluctuation (see also the discussion in section 5.1). The

wave function is normalized to the total atom number N as
∫

dr|Ψ(r, t)|2 = N. By

employing the ansatz Ψ(r, t) =Ψ(r)exp[−iμ t/h̄], stationary solution for the BEC

can be obtained. In the given ansatz, chemical potential μ = ∂E
∂N of the system is

introduced. The chemical potential fixes the normalization condition with the atom

number. Employing the ansatz on Eq. (1.2.7), the GPE reduces to:

(− h̄2

2m
∇2 +V (r)+g|Ψ(r)|2)Ψ(r) = μΨ(r) . (1.2.8)

1.3 Double-well Bose-Einstein condensate

Double-well Bose-Einstein Condensate (BEC) exhibits fascinating quantum phe-

nomena like tunneling, decoherence and entanglement. Javanainen (1986), have

shown that the effect due to the formation of Josephson-junction in a weakly coupled

superconductors is mimicked by the two-mode BEC system. In their system, BEC

atoms are initially assigned to occupy a particular trap or distributed appropriately

among the two traps. Coherence between the two separated traps is preserved by the

tunneling process. BEC population was found to oscillate even if there is no disparity

between the number of atoms in each well.

A two-mode BEC (symmetric double-well) system were studied using the SU(2)

symmetric group by Milburn et al. (1997). They have identified a novel phase called

the macroscopic quantum self-trapping (MQST) where atoms tend to localize within

their respective wells as the on-site inter-particle interaction is enhanced. The tun-

neling of atoms between traps were suppressed in this process. Modulated sequence
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of collapse and revival of the population was shown in their work. A similar model

were further researched in the weak and stronger interaction regime by Smerzi et al.

(1997) and Raghavan et al. (1999). They found similarity between the latter quantum

system with classical pendulum dynamics. Here we detail their method and explain

in brief their result. In the literature review and rest of the chapter we focus on the

dissipative BEC which is the main theme of this thesis.

Asymmetric double-well trap as in Figure 1.1 can be obtained by placing a laser

barrier produces a double-well curvatures with N1,2 and εo
1,2 the number of particles

and zero-point energies at each trap respectively, see for example given in Smerzi

et al. (1997). Using the latter trapping potential we can study the dynamics of Bose-

condensate confined within a double-well setting. Considering the GP Eq. (1.2.7)

and taking total wave function in the following ansatz:

Ψ(r, t) = ψ1(t)Φ1(r)+ψ2(t)Φ2(r) (1.3.1)

where Φ j(r) are the orthogonal ground state spatial wave-function of each trap, the

double-well condensate system is well described by the following set of coupled

equations:

ih̄
∂ψ1

∂ t
= (εo

1 +g1N1)ψ1 −Ωψ1 (1.3.2)

ih̄
∂ψ2

∂ t
= (εo

1 +g2N1)ψ2 −Ωψ2 . (1.3.3)

The time-dependent mode (site) wave-functions are defined by ψ j =
√n j exp[iθ j]

for j = 1,2 where n j and θ j are the number of particles and phases of the trap 1

and trap 2. The coupling between the spatial wave-function of the individual traps

is defined by parameter Ω , that will be defined later. The total number of atom is

denoted by N = n1+n2 and for the validity of the model small number of atoms (say

≈ 103) so tht very small phases fluctuation is assume to have well defined phase θ j,

see for instance see pioneering references such as Smerzi et al. (1997) and Milburn

et al. (1997). The value of εo
j , Uj and Ω can be evaluated by:

εo
j =

∫
dr[

h̄2

2m
|∇Φ j|2 + |Φ j|2Vext(r)] , (1.3.4)

Uj = g
∫

dr |Φ j|4 , (1.3.5)

Ω = −
∫

dr [
h̄2

2m
(∇Φ1)(∇Φ2)+Φ1Φ2Vext(r)]. (1.3.6)

For a symmetric double-well trap case, with Δ E = εo
1 − εo

2 = 0, and U1 =U2 =U ,

re-writing the phase difference by θ = θ1 − θ2 and population imbalance in term

of s = n1 − n2/N, Eqs. (1.3.2) and (1.3.3) can be transformed into the following
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phase-space equations:

ds
dt

=
√

1− s2 sinθ , (1.3.7)

dθ
dt

=− s cosθ√
1− s2

+χ s . (1.3.8)

In the above set of equations, time has been rescaled in 2Ω t unit while χ = gN/2Ω is

the rescaled non-linear interaction strengths. The population imbalance s and phase

difference between the modes θ are canonical conjugates with ṡ=−∂H/∂θ and θ̇ =
∂H/∂ s. The system subscribed to the mean-field approximation can be represented

by the classical Hamiltonian reported in (Milburn et al. (1997); Smerzi et al. (1997);

Raghavan et al. (1999)):

Ĥ = Ω
√

1− s2 cosθ +(1/2)χ s2 , (1.3.9)

Figure 1.2 illustrates population imbalance and it’s corresponding phase space di-

agram (s,θ) for two values of χ representing opposite regime of non-linear linear

interaction strength. Many plots we made by varying χ , but we just select these

two plots to show the distinct feature of the non-dissipative two-mode BEC phases.

Please note that, χ is a ratio between the inter-particle interaction with the tunnelling

coupling strength. At weak χ , system’s population imbalance shows Josephson’s

oscillation indicating a Quantum Tunnelling state (QTS). At strong χ , the system

exhibits macroscopic quantum self-trapping (MQST), as reported in (Smerzi et al.

(1997); Raghavan et al. (1999); Milburn et al. (1997)). The temporal mean pop-

ulation imbalance is non-zero at MQST. These fixed-point are obtained by setting

ṡ = 0 and θ̇ = 0. The eigenvalues of the Jacobian matrix (Perko (2013)), gives the

following basic characteristic to the fixed-point stability:

1. pair of imaginary eigenvalues correspond to an elliptic fixed point,

2. two real eigenvalues denote a hyperbolic fixed point,

3. two real eigenvalues with opposite sign indicates a saddle fixed point,

The Jabocian matrix using Eqs. (1.3.7)-(1.3.8) for the non-dissipative BEC is the

following:

J =

(
∂ ṡ
∂ s

∂ ṡ
∂θ

∂ θ̇
∂ s

∂ θ̇
∂θ

)
=

(
ssinθ/

√
1− s2 −

√
1− s2 cosθ

Λ + cosθ/[1− s2]3/2 −ssinθ/
√

1− s2

)
(1.3.10)

Eigenvalue χ , of the above Jacobian Matrix is calculated for the the trivial fixed

point (so = 0,θo = 0) at weak χ = 0.5 and stronger χ = 2.5. At weak χ = 0.5 we

obtained a pair of complex eigenvalues χ =±√
3 i which indicates elliptic phase tra-

jectory around this fixed point. At stronger χ = 2.5, we obtained a pair of opposite
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real eigenvalues χ =±1 which indicates hyperbolic trajectory around the same fixed

point indicating MQST, see for instance in references (Smerzi et al. (1997); Ragha-

van et al. (1999); Milburn et al. (1997)). Pioneering experimental work to study the

dynamics of weakly coupled Bose-Einstein condensates confined within a symmetric

double-well potential were performed and reported by Albiez et al. (2005). They ob-

served time evolution for the formation of the Josephson oscillations which mimics

tunneling oscillation in superconductor and also the novel macroscopic self-trapping

by sweeping across a measured critical initial population imbalance sC. The mea-

surement qualitatively confirmed theoretical calculation one may yield controlling

parameters such as tunneling coupling and non-linear interaction strength or initial

population imbalance applying on Eqs. (1.3.7)-(1.3.8). Later Zibold et al. (2010),

reported experimental measurement on the Josephson tunneling effect using rubid-

ium spinor Bose-Einstein condensate. Their experimental measurements correctly

identify the locations of different types of fixed points (plasma, π oscillation and

hyperbolic), matching the theoretically predicted result of Eqs. (1.3.7)-(1.3.8). Their

experimental measurements qualitatively confirms the characterization of the theo-

retically predicted two-mode BEC phase and also revealing a classical bifurcation.
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Figure 1.1: The schematic picture of a BEC in a asymmetric double-well trap,
adapted from Smerzi et al. (1997).

8

© C
OPYRIG

HT U
PM



Figure 1.2: The population imbalance and its corresponding phase-space di-
agram at weak χ = 0.5 (top panels) and strong χ = 2.5 (lower panels) non-
linear interaction strength, solving Eqs. (1.3.7) and (1.3.8). Coloured lines
corresponds to initial conditions: blue for (s(0) = 0.4,θ(0) = 0), green for
(s(0) = −0.4,θ(0) = 0) and red for s(0) = 0,θ(0) = 0). The top panel (a) in-
dicates Rabi oscillation while panel (b) shows elliptic trajectory around point
fixed-point (0,0) is known as plasma oscillation. Lower panel (c) exhibit partial
oscillations with time average < s >�= 0 where the fixed-point at (0,0) has been
bifurcated into hyperbolic fixed-points, indicating MQST.
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Figure 1.3: Constant energy lines in phase-space (s,θ) using Eq. (1.3.9). Top
panel is for weak interaction χ = 0.5, elliptic trajectories around fixed points
(0,0), (0,±π) exhibiting QTS. Lower panel is the contour plot of Eq. (1.3.9) for
stronger non-linear interaction χ = 2.5, elliptic fixed point at (0,0) and hyper-
bolic fixed points at (0,±π) corresponding to MQST.
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Figure 1.4: Figure reported by Albiez et al. (2005) showing dynamics on a
weakly connected Bose-Einstein condensates confined by a symmetric double-
well potential as observed from absorption images. Josephson oscillation is
shown in the left panel (a). MQST is exhibited on the right panel (b).
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Figure 1.5: Figure reported by Zibold et al. (2010). Experimentally observed
phase portraits data showing the dynamics by increasing the non-linear inter-
action strength parameter Λ . Comparison is made with theoretical result pro-
duced by Eqs. (1.3.7)-(1.3.8) [solid line] for the corresponding parameters. The
theoretical trajectories are replicated on the Bloch spheres model for clarity.
Results on phase diagram are (a) QTS in the Rabi regime observed at Λ = 0.78,
(b) Josephson regime seen at Λ = 1.55 while stable macroscopic quantum self-
trapping obtained for average π phase. The result are verified by the experi-
mental data indicated by green squares and green crosses.
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1.4 Motivation

There is a resurgent trend in understanding quantum dissipative systems with the de-

velopment of nano-technology and atom manipulation engineering. However, scien-

tists and engineers are still struggling with matters related to the quantum measure-

ment paradox when the system under consideration is with quantum nature while

observable has to be classical. Worst still when the system involves quantum matter

like Bose-Einstein condensate that exists for ultra-low temperature. In experimental

set-up, the double-well condensate will interact with the reservoir of thermal atoms

making the study more complex. Dissipation, atom losses, and decoherence are un-

avoidable phenomenon that needs to be addressed in order to fully understand the

dynamics of such a complex system. Hence there exist still vast room to explore the

open or closed quantum system like the double-well Bose-Einstein-reservoir system.

Most of these works treat Born-Markov approximation within the weak-coupling

limit. In general, for Markovian dynamics, the kinetics of particles are indepen-

dent of its past events. When the system is perturbed from equilibrium, it recu-

perate abruptly. However, rather fast processes involving non-local dissipation hav-

ing problem using this approach. Due to this limitation, new approaches involving

non-Markovian quantum dissipative beyond the weak-coupling approximations were

considered. In a Non-Markovian system, the past events of the particles interacting

with the environment influences the future motion of the particles and the system

recovers slowly to equilibrium when it is perturbed unlike the Markovian case. The

working mechanism of the non-Markovian system has not been fully explored. The

emergence of new issues and the inadequate knowledge to address them lead to new

avenues for research exposition. The resurgent of interest in the field like quantum

thermometry and quantum thermal machine as reported by Kosloff (2013) and Hofer

et al. (2017), also motivates us to explore similar research field.

1.5 Problem Statement of the Present Research

We are interested to study the dynamics of the Bose-Einstein condensate out-coupled

to thermal reservoirs which can be represented by bosonic harmonic oscillators. To

be precise, we study the dynamics of two Bose-Einstein condensates confined within

a double-well where a bosonic Josephson junction is established between the traps.

The atoms of each BEC are interacting repulsively. The presence of atom tunneling

between the traps and on-site inter-particle interaction mould a small Bose-Hubbard

model (BHM). The double-well BEC sub-system is then exposed to two separate

heat baths making the system lossy and drives the system out of equilibrium state.

The appropriate equation to describe the system is the generalized quantum Langevin

equation where the operational dynamics can be easily characterized. For example in

our case, we wanted to study the system subjecting to Markovian or non-Markovian

noise and dissipation. For our system to operate within non-Markovian dynamics we

employ a memory dissipation kernel (produces coloured noise) whereas the Marko-
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vian operational dynamic is obtained by using memory-less dissipation kernel (in-

ducing white noise). The details are given in Chapter 3 and the Appendix A.

1.6 Objective of the work

The work in this thesis focuses on the following objectives:

1. To obtain analytical solution of the interaction free BEC-reservoir system for

Markovian and non-Markovian dynamics.

2. To compute and analyse the interacting BEC-reservoir system that operates

within Markovian and non-Markovian basis.

3. To compute and analyse the interacting BEC-reservoir system operates within

Markovian and non-Markovian basis by employing the noise-dissipation cor-

related models obeying Fluctuation-dissipation theorem (FDT).

1.7 Structure of the thesis

The thesis covering seven chapters and they are organized in the following manner:

Chapter 1: Basic idea of the Bose-Einstein condensation (BEC) is introduced in

this chapter. Theoretical details of a single mode BEC is provided and later extended

to cover the double-well BEC (two-mode BEC) system. The theory for two-mode

BEC system is illustrated with figures and also supported with experimental results

available in the literature. The motivation, statement of the problem and the objective

for doing this research are stated. Outline of the thesis is given at the last section.

Chapter 2: Background works leading towards this research is detailed in this chap-

ter. The idea behind open quantum system is mentioned. The two-level atom sub-

jected to environment is given as an example but the approach used is relevant to

method used in this thesis. Single-mode dissipative BEC is explained mathemat-

ical formalism supported with available experimental result. The master equation

within Bloch formalism which is a popular method to study dissipative two-mode

BEC system is expounded in this chapter.

Chapter 3: Our system of interest, which is the double-well BEC out-coupled to

reservoirs is illustrated with schematic picture. Mathematical formalism is detailed

in lucid. The basic assumptions, type and characteristics of the reservoirs, Hamilto-

nian describing the system and the derivation of the dynamical equation are presented

here. Operational dynamics (Markovian or non-Markovian basis) of the system is

explained in this chapter.
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Chapter 4: We attempted to find exact solution (no approximation) for the inter-

action free BEC-reservoir system. Rigorous analytical calculation for the system

operating within Markovian and non-Markovian basis is derived and reported in this

chapter. The results are illustrated with figures.

Chapter 5: The interacting double-well BEC-reservoir system is described within

the semi-classical mean-field approach. Physical quantities such as population im-

balance, tunnelling current were computed and comparison is made between dynam-

ics generated by memory-less dissipation (Markovian) and by memory dissipation

(non-Markovian) on the system. Phase-space analysis were also performed for the

Markovian and non-Markovian cases. Characteristic of fixed points and the cor-

respondence with the two-mode BEC phases (Quantum tunneling state [QTS] and

Macroscopic quantum self-trapping [MQST]) and how they are effect by dissipation

is detail in this chapter.

Chapter 6: The limitation of Chapter 5 is addressed in this chapter by consider-

ing the noise-correlation effects on the system. The models obeying Fluctuation-

dissipation theorem (FDT) is introduced in this chapter. Physical quantities such

as population imbalance, coherence were computed and illustrated in this chapter.

The change of state from its initial condition as the system evolved in temporal time

is measured by the entanglement-entropy and the results are also depicted in this

chapter.

Chapter 7: Finally, we summarize and provide brief analysis on our research find-

ings. A flowchart diagram is given to capture the works covering Chapters 4-6 in

the thesis. The summary and result analysis for the main work covered in the the-

sis are given in separate sequential sections. As a final remark, we noted down the

limitation of our models and for possible remedy.
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