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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Doctor of Philosophy

BOUNDARY LAYER FLOW AND HEAT TRANSFER OF CARBON
NANOTUBE OVER MOVING PLATE AND STRETCHING/SHRINKING

SHEET WITH STABILITY ANALYSIS

By

NUR SYAZANA BINTI ANUAR

January 2021

Chairman : Norfifah binti Bachok @ Lati, PhD
Faculty : Science

This study has been undertaken to solve numerically the boundary layer flow
and heat transfer over various geometric surfaces such as horizontal and vertical
moving plate, stretching/shrinking sheet and stretching/shrinking cylinder of carbon
nanotubes subjected to different effects (slip, suction, magnetohydrodynamic,
chemical reaction). These problems took into account two types of carbon
nanotubes, namely single–wall carbon nanotubes (SWCNT) and multi–wall carbon
nanotubes (MWCNT) that were dispersed into base fluids (water and kerosene).
The governing partial differential equations were transformed into a system of
nonlinear ordinary differential equations using a similarity transformation which was
then solved numerically using a bvp4c function in MATLAB software. Numerical
results for the local skin friction and local Nusselt number, which represents the
heat transfer rate at the surface as well as velocity, temperature and concentration
profiles were presented graphically and discussed in detail. The results show that all
of the problems possessed dual solutions for a certain range of parameter, hence
a stability analysis was performed to verify the stability of the solutions. The
local skin friction, the local Nusselt number and concentration are significantly
influenced by all the parameters studied, such as the nanoparticle volume fraction,
moving parameter, slip parameter, suction parameter, mixed convection parameter,
stretching/shrinking parameter, homogeneous parameter, heterogeneous parameter,
nonlinear parameter, magnetic parameter, curvature parameter, Schmidt number and
chemical reaction parameter. It was noticed that the nanoparticle volume fraction can
increase the heat transfer rate and accelerates the cooling process. Furthermore, the
kerosene–SWCNT offers a higher heat transfer efficiency compared to other carbon
nanotubes. From the stability analysis, it was found that the first solution is stable,
while the second solution is unstable.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

ALIRAN LAPISAN SEMPADAN DAN PEMINDAHAN HABA DALAM
NANOTIUB KARBON TERHADAP PLAT BERGERAK DAN

PERMUKAAN MEREGANG/MENGECUT DENGAN ANALISIS
KESTABILAN

Oleh

NUR SYAZANA BINTI ANUAR

Januari 2021

Pengerusi : Norfifah binti Bachok @ Lati, PhD
Fakulti : Sains

Kajian ini telah dilakukan untuk menyelesaikan secara berangka aliran lapisan
sempadan dan pemindahan haba ke atas pelbagai permukaan geometri seperti
plat bergerak secara mendatar dan menegak, permukaan meregang/mengecut
dan silinder meregang/mengecut dalam nanotiub karbon tertakluk kepada kesan
yang berbeza (gelinciran, sedutan, magnet-hidrodinamik, tindak balas kimia).
Masalah ini mengambil kira dua jenis nanotiub karbon, iaitu dinding tunggal
nanotiub karbon (SWCNT) dan dinding pelbagai nanotiub karbon (MWCNT)
yang diserakkan ke dalam cecair asas (air dan kerosin). Persamaan pembezaan
separa menakluk dijelmakan menjadi sistem persamaan pembezaan biasa yang
tidak linear menggunakan penjelmaan keserupaan yang kemudian diselesaikan
secara berangka menggunakan fungsi bvp4c dalam perisian MATLAB. Keputusan
berangka bagi geseran kulit setempat dan nombor Nusselt setempat yang
mewakili kadar pemindahan haba pada permukaan serta profil halaju, suhu dan
kepekatan dipersembahkan dalam bentuk graf dan dibincangkan dengan terperinci.
Keputusan kajian menunjukkan bahawa semua masalah mempunyai penyelesaian
dual bagi sesetengah julat parameter, oleh itu analisis kestabilan dilakukan untuk
mengesahkan kestabilan penyelesaian. Geseran kulit setempat, nombor Nusselt
setempat dan kepekatan dipengaruhi oleh semua parameter yang dikaji seperti
pecahan isipadu nanozarah, parameter bergerak, parameter gelinciran, parameter
sedutan, parameter olakan campuran, parameter meregang/mengecut, parameter
heterogen, parameter homogen, parameter tidak linear, parameter magnet, parameter
kelengkungan, nombor Schmidt dan parameter tindak balas kimia. Didapati
bahawa pecahan isipadu nanozarah dapat meningkatkan kadar pemindahan haba dan
mempercepatkan proses penyejukan. Tambahan lagi, kerosin-SWCNT menawarkan
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kecekapan pemindahan haba yang lebih tinggi berbanding dengan nanotiub karbon
yang lain. Dari analisis kestabilan, didapati bahawa penyelesaian pertama stabil
manakala penyelesaian kedua tidak stabil.
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CHAPTER 1

INTRODUCTION

1.1 Preface

Fluid dynamics involves the study of a fluid in motion (White (2011)).
Understanding fluid dynamics has been one of the major advances of the last
hundred years in physics, engineering and applied mathematics. This is also the
key for researchers to understand some of the most important applications such as
artificial hearts, breathing machines, dialysis systems, design and analysis of aircraft
and biomedical devices (Çengel and Cimbala (2006)). The essential part of the
study of fluid dynamics is to transform the physical problems into mathematical
models so that mathematical techniques/software can be used to solve them.

In this introductory chapter, we have included some basic definitions and concepts
of fluid flow and dimensionless number. This chapter also includes the problem
statement, aim, objectives, scopes and outline of the thesis.

1.2 Boundary Layer Theory

In 1904, Ludwig Prandtl established the famous “boundary–layer theory” for
investigating a viscous flow over a solid surface and it revolutionized the concept
of solving Navier Stokes equations. According to Prandtl theory, when a real fluid
flows past a stationary solid boundary, the flow will be divided into two regions as
(see Acheson (1990), Schlichting and Gersten (2000)):

1. A thin region near the surface of the object, where viscous effects cannot be
ignored, and are as important as inertia.

2. Away from the surface of the object, where the viscous force is very small and
can be neglected. The flow behavior is similar to the potential flow.

Although the boundary layer is thin, it plays an essential role in fluid dynamics and
becomes an excellent method for analyzing the complex behavior of real fluids. The
formation of the boundary layer can be seen in Figure 1.1.

Prandtl (1904) deduced that under some circumstances, a simplified form of the
governing equations could be used. The boundary layer equations were then derived
under the following two conditions (see Pletcher et al. (2016)):

1. The viscous layer must be thin compared to the characteristic streamwise
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dimension of the object immersed in the flow, δ/L� 1, where δ is the distance
away from the wall at which velocity attains its free–stream value and L is the
characteristic length of the wall.

2. The largest viscous term must have the same approximate magnitude as any
inertia term.

Figure 1.1: The boundary layer concept, (https://en.wikipedia.org/wiki/Boundary
layer thickness).

In boundary layer flow, there exist two types of flows, namely the laminar flow, which
is defined by smooth streamlines and highly–ordered motion, and the turbulent flow,
where it is defined by velocity fluctuations and highly–disordered motion (Çengel
and Cimbala (2006)). The formation of the boundary layer is initially laminar, but
minor flow disruptions tend to intensify at some critical distance from the leading
edge and a transition phase takes place until the flow becomes turbulent in the
boundary layer, as shown in Figure 1.2.

Figure 1.2: Laminar and turbulent boundary layers on a flat plate, (Kakaç et al.
(2013)).
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1.2.1 Stagnation Point Flow

A stagnation point is a point on an object’s surface where the fluid velocity is
zero, while the flow around a stagnation point is called the stagnation point flow
(White (2011)). The stagnation region has the highest pressure, heat and mass
decomposition. There are two types of stagnation point flows namely orthogonal and
non–orthogonal stagnation point flows. Figure 1.3 shows an example of orthogonal
stagnation point in two–dimensional flow. Initially, the study of two–dimensional
(2D) stagnation point flow was first investigated by Hiemenz (1911). From his
theory, the stagnation point flow illustrates the movement of fluid particles which are
adjacent to the stagnation region of a solid surface for both moving and fixed bodies.
Stagnation–point flow has been encountered in various applications in engineering
and technological processes, including the cooling of nuclear reactors, cooling of
electronic devices by fans and many other hydrodynamics processes (Sadiq (2019)).
This thesis will explores the stagnation point that focuses only on the orthogonal
flow.

Figure 1.3: Orthogonal stagnation point flow, (https://www.transtutors.com/
questions/potential-flow-near-a-stagnation-point-fig-4b-6-a-show-375083.htm).

1.3 Fluid Flow Geometry and Orientation

Geometry and orientation are important factors in the study of fluid flow. When
modeling fluid flow, the geometry of the surface will influence the flow of the fluids
and other properties. In addition, different geometries present different mathematical
expressions. Only the fluid flow on horizontal and vertical moving plate, stretching
and shrinking sheet as well as stretching and shrinking cylinder were considered in
this thesis.

1.3.1 Moving plate

The problem of boundary layer due to a horizontal moving flat plate is a classical
problem that has been examined by Sakiadis (1961). This problem appeared in
many industrial applications such as in material handling conveyors, cooling of an
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infinite metallic plate in a cooling bath, aerodynamic extrusion of plastic sheets and
paper production (Mureithi et al. (2013)). In the case of a moving plate, the flat plate
is assumed to move in the opposite direction or in the same direction to a parallel
free stream with constant velocity (Bachok et al. (2012c)). Figure 1.4 presents the
physical model of a horizontal moving plate.

Figure 1.4: Physical model of horizontal moving plate.

Meanwhile in many physical situations, the moving plate may be moved vertically
rather than horizontally. Under this circumstance, the flow and heat transfer
characteristics are determined by two important mechanisms, namely the motion
of the plate and the buoyant force. This situation of flow rising is due to the gravity.

1.3.2 Stretching and Shrinking Surfaces

Crane (1970) was a pioneering researcher who formulated the boundary layer
flow caused by stretching sheet by extending the work of Sakiadis (1961). The
stretching sheet can be defined as a surface that is stretched in its own plane or
occurs when the velocity at the boundary is drawn away from the fixed point due
to the application of stress. Flow and heat transfer phenomena over a stretching
sheet has various theoretical and technical applications, especially in manufacturing
processes including wire drawing, paper production, glass-fiber production, liquid
metal, polymer sheet synthesis, artificial fibers and continuous stretching of plastic
films (Salleh et al. (2010)). The physical model of stretching sheet is displayed in
Figure 1.5.

Figure 1.5: Physical model of stretching sheet.
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More recently, the boundary layer flow caused by a shrinking sheet has fascinated the
interest of researchers for its interesting characteristics. Miklavčič and Wang (2008)
were the first to consider this unusual type of flow. For this flow configuration,
mass suction is needed to preserve the vorticity generated by the shrinking sheet.
An example of application for the shrinking sheet is the thermal shrinkage of
thermoplastic sheets (Vdorenko et al. (1982)). When a sheet is reheated, the sheet
tends to revert to its original shape when it is cooled. This is typically referred to as
shrinkage. Both the kinematics of stretching/shrinking and simultaneous heating or
cooling during such processes could be manipulated to the desired specifications on
the quality of the final product.

Most researchers restricted their analysis on the flow of stretching or shrinking
sheets, but not much analysis have been done on the flow of stretching or shrinking
cylinders. The physical model of a stretching cylinder is shown in Figure 1.6. The
boundary layer flow over a cylinder have been a field of interest for many theoretical
and experimental researchers due to the broad range of applications such as in the
coating of wires, hot rolling and polymer fiber spinning, which involve cylindrical
geometries. The study of stretching cylinder in the boundary layer flow was first
discussed by Wang (1988).

Figure 1.6: Physical model of stretching cylinder.

1.4 Heat transfer

Heat transfer is the study of energy transfer processes between material bodies
which take place where a temperature gradient is present within a system or
whenever two systems at different temperatures are brought into thermal contact.
However, there appears, to be three rather basic and distinct modes of heat transfer.
These are conduction, convection, and radiation, which are illustrated in Figure 1.7.

A brief overview of each mode is given below (Cengel (2003), Bergman and Lavine
(2017)):

• Conduction: A heat transfer mechanism in which energy exchange takes
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place from a high temperature to a lower temperature region by means of
kinetic motion or direct molecular impact and electron drift.

• Convection: the mechanism of heat transfer between a solid body and a
flowing fluid or gas, and it engages the combined effects of fluid motion
and conduction. The convective heat transfer can further be subdivided into
various forms such as natural convection and forced convection. In natural
convection, or also known as free convection, the flow is caused by natural
means without the aid of an external mechanism. It is initiated by a change
in the density of fluids produced by heating (buoyancy effect). Whereas,
in forced convection, the fluid is forced to flow by an external source such
as a compressor, pump, fan, etc. In addition, the flow mechanism which is
simultaneously contributed by both force and free convection processes and
acting simultaneously are known as mixed convection.

• Thermal radiation: or simply known as radiation is energy emitted by matter
that is at a nonzero temperature. The energy of the radiation field is transferred
through space in the form of electromagnetic waves or photons. In fact,
radiation transfer occurs most efficiently in a vacuum.

However, this thesis only takes into consideration the heat transfer by convection
because the problem only involves heat transfer between a solid and flowing fluid,
which is more related to fluid dynamics.

Figure 1.7: Modes of heat transfer, (https://www.cradle-cfd.com /media/column/
a74).

1.5 Nanofluid

Nanofluid is a new kind of heat transfer medium, containing nanoparticles with sizes
ranging below 100 nm that are uniformly and stably distributed in conventional
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heat transfer fluids such as water, kerosene oil, and ethylene glycol (Choi (1995)).
These distributed nanoparticles, are generally made of metals (Cu, Al), metal
oxides (Al2O3, CuO), carbides (TiC, SiC) and non-metals (e.g., graphite and carbon
nanotubes). The cross section of the nanofluid structure consisting of the base
fluid, nanoparticles and nanolayer in the solid/liquid interface is shown in the
Figure 1.8. A very small amount of nanoparticles that are dispersed in a base fluid
can greatly enhance the thermal conductivity of the nanofluid, hence allowing for
more heat transfer (Eastman et al. (2001)). Nanofluids are used to improve energy
efficiency and heat transfer in many thermal control systems, industrial applications,
biomedicine, electronics and nuclear reactors (Wong and Leon (2010)). The
applications of nanofluids are described in Das et al. (2007). Hence, nanofluid is not
only of academic interest but also has many industrial applications.

Figure 1.8: Schematic cross–section of nanofluid, (Yu and Choi (2003)).

Interestingly, theoretical research has also been performed to estimate the effective
thermal conductivity of nanofluids by designing a suitable model such as a model
suggested by Khanafer et al. (2003), Buongiorno (2006), Tiwari and Das (2007)
and Kuznetsov and Nield (2013). However, this thesis only implemented the model
proposed by Tiwari and Das (2007), also known as single–phase models. This model
deals with the influence of nanoparticle volume fractions where the nanoparticles
and base fluid are assumed to be in thermal equilibrium, no–slip condition and
the local flow velocity is equal. The Tiwari and Das model was selected because
this model has been successfully implemented in several nanofluid studies and the
scientific consensus is that the effective thermal conductivity of nanofluid increases
with increasing volume fraction of nanoparticles (Sarif et al. (2016)).

1.5.1 Carbon Nanotubes

Carbon is the most significant nanorevolutionary element. Carbon nanotubes
(CNTs) are the smallest cylindrical molecules (10,000 times smaller than a human
hair) that consist of rolled–up sheets of graphene (2–dimensional ultra–thin atomic
layer). Both CNTs and graphene have exceptionally high mechanical resistance,
elastic, thermal and electrical properties, ultra-smooth hydrophobic surface and
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high aspect ratio (Rafii-Tabar (2008)). CNTs may have a single outer carbon wall
(single–wall carbon nanotubes), or they may consist of multiple walls (multi–wall
carbon nanotubes) (see Figure 1.9).

Figure 1.9: Schematics of (a) monolayer graphene (b) single wall carbon
nanotube and (c) multi wall carbon nanotube, (Zhao et al. (2019)).

The multi–wall carbon nanotube (MWCNT) was first discovered by Iijima (1991),
while the single–wall carbon nanotube (SWCNT) was first reported in 1993 by
Iijima and Ichihashi (1993). Most SWCNTs have a diameter of approximately 1
nanometer with a tube length up to a million times longer. In contrast to SWCNTs,
MWCNTs are nanotubes with more than one graphene cylinder and have an inner
diameter ranging from 1 to 3 nanometer, while an outer diameter of approximately
10 nanometer (Kumar and Kumbhat (2016)). Some of the comparison between
SWCNTs and MWCNTs are summarized in Table 1.1.

Table 1.1: Comparison between SWCNT and MWCNT, (Iijima and Ichihashi
(1993), Eatemadi et al. (2014)).

SWCNT MWCNT

• Single layer of graphene
• A chance of defect is more during

functionalization
• Catalyst is required for synthesis
• It can be easily twisted and is

more pliable
• Poor purity
• Less accumulation in the body
• Characterization and evaluation is

easy

• Multiple layers of graphene
• A chance of defect is less but once

occurred it is difficult to improve
• Can be produced without catalyst
• It cannot be easily twisted
• High purity
• More accumulation in the body
• It has very complex structure
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CNTs have drawn a lot of interest due to their potential use as next generation
electrical and structural materials. Thus, CNTs have been suggested for several
nanoelectronics applications in the last decade, such as diodes and transistors,
nano–antennas, nano–interconnects, lumped passives, plastic and transparent
devices (see Hanson (2005), Li et al. (2009) and Valitova et al. (2013)). In addition,
CNTs have been successfully used in pharmaceutical products and medicines due to
their high surface area that can adsorb or combine with a broad range of therapeutic
and diagnostic agents such as drugs, vaccines, genes, biosensors and antibodies
(He et al. (2013)). Zhang et al. (2010) and Singh et al. (2012) showed that these
molecules are delivered more efficiently and safely in cells when bonded to CNTs
than by traditional methods. Hence, this is the main reason behind the choice of
CNTs in the current study.

1.6 Type of effects

1.6.1 Partial slip

When fluid flows on a surface and it sticks to the surface, this is commonly referred
to as the no slip condition. Meanwhile, in the situation where the fluid is not sticking
to the solid boundary, the velocity slip arises. The idea of a slip boundary condition
was first proposed by Navier (1827), which relates the tangential slip velocity, us, to
the shear rate at the interface

us = b
∂u
∂x

∣∣∣∣
s

(1.6.1)

where x is the normal from the surface pointing into the liquid and b refers to the
slip length. The subscript s denotes the value of the variable at the surface.

A schematic illustration of the definition of slip length is presented in Figure 4.2.1.
Under no slip boundary conditions, the relative velocity between the fluid and the
solid wall is zero at the wall. When the slip occurs, the extent of the slip is
characterized by the slip length b.

Figure 1.10: Schematic representation of no slip and partial slip boundary
condition, (Neto et al. (2003)).
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1.6.2 Suction

Suction is one of the boundary layer control methods which aim to reduce the drag
on bodies in an external flow or reduce energy losses in channels. This method
was suggested by Ludwig Prandtl in 1904 as one of the means to prevent or delay
the boundary layer separation. Suction of fluid through the bounding surfaces can
significantly change the flow field and accordingly will affect the rate of heat transfer
from the bounding surfaces. The process of suction is important in many engineering
activities, for instance, thermal oil recovery and design of thrust bearing and radial
diffusers. Suction is also employed in chemical processes to remove reactants
(Mukhopadhyay (2013)).

1.6.3 Magnetohydrodynamics (MHD)

Magnetohydrodynamics (MHD) is the branch of continuum mechanics that
compromises with the movement of an electrically conducting fluid in the existence
of a magnetic field. Examples of those fluids include liquid metals, plasmas, salt
water, and electrolytes. The first work reported on MHD flows was initiated by
Alfvén (1942). The set of equations that describe MHD are a combination of
the Maxwells electromagnetism equations and Navier-Stokes equations of fluid
dynamics. These differential equations must be solved simultaneously, either
numerically or analytically.

When a conducting fluid moves through a magnetic field, an electric field and
current may be induced. This effect polarizes the fluid and as a result the magnetic
field is changed and the action of the magnetic field on these currents escalate the
mechanical forces, consequently changing the fluid motion. Numerous applications
of MHD are significant in the field of meteorology, aeronautics, cosmic fluid
dynamics, solar physics, chemical engineering, geophysics and electronics.

1.6.4 Chemical reaction

In many chemical reactive processes such as combustion, biochemical systems
and catalysis, mass transfer takes place by diffusive operations which involve the
molecular diffusion of species in the presence of two types of chemical reactions,
namely homogeneous and heterogeneous reactions (Chaudhary and Merkin (1994)).
There are certain chemical reactions which have the ability to either progress
gradually or do not progress at all, depending on whether they occur in the bulk
of the fluid (homogeneous) or occur on some catalytic surfaces (heterogeneous). At
several rates, the interaction between the homogeneous and heterogeneous reactions
comprising the production and consumption both within the fluid and catalytic
surfaces is overly complex. Notable applications of such reactions can be found
in industry such as in hydrometallurgical, polymer production and manufacturing of
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ceramics and fog dispersion and formation (Imtiaz et al. (2019)).

1.7 Dimensionless Number

In the field of fluid mechanics, dimensionless numbers represent the ratio of different
forces or the transport phenomenon involved in the fluid flow. These dimensionless
numbers are useful to investigate the effect of different flow properties cumulatively
on the mathematical results. Some of the significant dimensionless numbers utilized
in fluid mechanics are given below:

1. Prandtl Number

The Prandtl number, Pr was named after the German physicist Ludwig Prandtl
and described as the ratio of momentum diffusivity (kinematic viscosity) to
thermal diffusivity. The Prandtl number gives an idea about the sort of liquid
as presented in Table 1.2. Numerically, we can formulate it as (Cengel (2003)):

Pr =
momentum diffusivity

thermal diffusivity
=

µCp

k
=

ν

α
(1.7.1)

where µ denotes the dynamic viscosity, Cp is the specific heat at constant
pressure, k is the thermal conductivity, ν is the kinematic viscosity and α is
the thermal diffusivity.

Table 1.2: Standard ranges of Prandtl numbers for different fluids, (Cengel
(2003)).

Fluid Prandtl number

Glycerin 2000−100000
Oils 50−10000

Light organic fluids 5−50
Water 1.7−13.7
Gases 0.7−1.0

Liquid metals 0.004−0.03

When the Prandtl number is equal to 1, it indicates that both momentum and
heat disperse through the fluid at about the same rate. However, as the value
of Prandtl number becomes smaller (Pr� 1), it means that heat disperses
very quickly in liquid metals compared to the velocity (momentum) and
consequently cause the thermal boundary layer to be thicker relative to the
velocity boundary layer (Bergman and Lavine (2017)). On the contrary,
a larger value of Prandtl number (Pr � 1) indicates that the heat diffuses
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very slow in oils and causes a diminished thermal boundary layer thickness
(Bergman and Lavine (2017)).

2. Reynold number

The Reynolds number, Re is specified as the ratio of inertial forces to viscous
forces and accordingly measures the relative significance of these two types
of forces for given flow conditions. The Reynolds number is defined as
(Schlichting and Gersten (2000)):

Re =
Inertia forces

Viscous
=

UL
ν

=
ρUL

µ
(1.7.2)

where U is the reference velocity, L is the characteristic length and ν = µ/ρ

is the kinematic viscosity. Equation (1.7.2) was introduced by Osborne
Reynolds through his publication on the classic pipe experiment in 1883
and he developed the dimensionless number (Reynold number) named after
him (White (2011)). The Reynolds number is highly significant to solve the
Navier Stokes equations. It indicates whether the fluid flow is turbulent or
laminar. According to Bergman and Lavine (2017), when Re is small (i.e.,
viscous forces are superior) then the flow is likely to be laminar. On the other
hand, when Re is large (i.e., inertial forces are superior) then the flow tends to
be turbulent.

3. Nusselt Number

Nusselt number, Nu was named after the German engineer, Wilhelm Nusselt.
It is the ratio of total heat transfer in a system to the heat transfer by conduction
and denoted as (Cengel (2003)):

Nu =
convection heat transfer
conduction heat transfer

=
h(Tw−T∞)

k (Tw−T∞)/L
=

hL
k

(1.7.3)

where k is the thermal conductivity, L is the characteristic length, Tw and T∞

are the temperature of the surface and far from the surface, respectively, and h
denotes the heat transfer coefficient. For a fluid layer, a Nusselt number that
equals to one describes the heat transfer across the layer by pure conduction.
Therefore, the higher the Nusselt number, the more effective the convection
(Cengel (2003)).
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4. Skin Friction Coefficient

Skin friction coefficient, C f is the ratio between the fluid and the solid surface
which measures the retardation of the fluid due to friction and can be written
as (Kundu and Cohen (2001)),

C f =
τw

ρU2

where ρ is density, τw is the wall shear stress and U is the reference velocity.

5. Grashof Number

The Grashof number, Gr is a measure of buoyancy forces relative to viscous
forces acting on a fluid and often occurs in the study of situations involving
natural convection. It was named after Franz Grashof and can be expressed as
(Cengel (2003)):

Gr =
buoyancy force
viscous force

=
gβ (Tw−T∞)L3

ν2 (1.7.4)

where g refers to gravitational acceleration, β is the coefficient of volume
expansion, Tw and T∞ are the temperature of the surface and far from surface,
respectively, and ν is the kinematic viscosity. The Grashof number is the key
parameter for deciding whether the flow of fluid is turbulent or laminar in
natural convection. For example, the critical Grashof number in vertical plate
is known to be about 109. Accordingly, the flow regime on a vertical plate
becomes turbulent as Gr > 109 (Cengel (2003)).

6. Schmidt Number

The Schmidt number is a non–dimensional number, it was named after the
German engineer Ernst Heinrich Wilhelm Schmidt. It is defined as (Bergman
and Lavine (2017)):

Sc =
momentum diffusivity

mass diffusivity
=

ν

D
(1.7.5)

where ν and D are the kinematic viscosity and mass diffusivity, respectively. A
Schmidt number of near unity (Sc≈ 1) implies that mass transfer by diffusion
and momentum is equal, and velocity and concentration boundary layers
almost coincide with each other (Cengel (2003)).
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1.8 Stability Analysis

The study regarding stability analysis in fluid dynamics problems is an important
topic since non–unique solutions exist in the numerical computation. It is worth
mentioning that there might be one, zero, or multiple solutions to a boundary layer
problem. A further question that will arise later is which solutions are physically
acceptable solutions and have physical meanings. In addition, if there happens to
exist non–unique solutions in boundary layer problems but only one solution can be
found by the researchers, that solution could be the unstable solution. Thus, it may
prompt distortions of heat transfer attributes and flow. Hence, the stability analysis
of solutions is a significant analysis to check the consistency of the obtained results.
This analysis was first initiated by Wilks and Bramley (1981) as they observed
the presence of dual solutions when solving the problem of mixed convection in
boundary layer flows.

This thesis implemented the stability analysis that was done by Merkin (1986) by
considering some small perturbation to the solutions. The stability of the flow
solutions is dictated by the smallest eigenvalue γ . If the result obtained is a positive
eigenvalue, it can be concluded that the solution is stable (i.e., there exist an initial
decay that does not interrupt the flow) and has a physical meaning. However, if
the result obtained is a negative eigenvalue, it can be concluded that the solution
is unstable (i.e., there exist an early growth or disruption in the flow) and has no
physical meaning.

1.9 Significance of the Study

Nowadays, mathematical modelling has been increasingly used to solve complex
problems, especially in the field of engineering. Engineering equipment or processes
can be investigated either experimentally (testing and measuring) or analytically (by
calculation or analysis). The experimental method has the benefit that it interacts
with the real physical environment and that the desired quantity is determined
by measurement in the limits of the experimental error. However, this technique
is time–consuming, expensive and sometimes impractical. On the other hand,
analytical and numerical methods have the advantage of being fast and cheap, but
the results produced are subject to the precision of the assumptions, approximations
and idealizations made in the analysis (Çengel and Cimbala (2006)).

For several years now, the use of nanometer–sized solid particles as additives
suspended in the base fluid, which is also known as nanofluids has been well
recognized. Since its first introduction in actual engineering applications, nanofluids
have been effectively used to enhance heat transfer in many engineering applications.
In addition to its very fascinating values in electrical and thermal conductivity,
CNTs have attracted intensive attention and interest over the last few decades due
to their unique mechanical properties compared to other nanoparticles. (Sanginario
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et al. (2017)).

CNTs have many fascinating applications such as electrical conductors,
semiconductors and insulators. They can be used as heat sinks for chipboards, as
LCD panel backlights, and also as electrical protection in Faraday cages because
of the light weight and exceptional electrical conductivity of CNTs (Wu et al.
(2004)). Furthermore, CNTs also have interesting applications in biotechnology and
biomedicine due to its dimensional and chemical compatibility with biomolecules,
such as DNA and proteins. Recent studies have shown the ability of hyperthermia to
destroy selected cancer cells due to the thermal conductivity of CNTs (Zhang et al.
(2015)). This application is very practical because of the invaluable importance of
cancer detection at the early stages.

As decribed earlier, it can be seen that CNT research can grow rapidly in various
engineering and medical applications. Thus, the nanofluid theory is important in the
future because the formulation of nanofluids can be designed to optimize their use in
certain applications. With increasing research by many researchers, nanotechnology
can have a strong impact on a wide range of engineering and biomedical applications
of nanofluids.

1.10 Problem Statement

Interest in studying CNT flow has grown considerably over the past decades due
to its existence in many technological and industrial applications (see Section
1.9). In addition, the boundary layer characteristics on moving surface and
stretching/shrinking surface are important in the field of fluid dynamics and have a
great practical importance to engineers and scientists as it occurs in many industrial
and technological processes (see Section 1.3). Hence, this research has been
conducted to investigate the boundary layer flow of CNT due to a moving plate as
well as stretching or shrinking surface with various effects.

This study therefore addresses the following research questions:

1. What are the parameters that contribute to the existence of the dual solutions?

2. Which parameters contribute to the widening/narrowing of the range of
solutions?

3. How does the presence of nanoparticles volume fraction (carbon nanotube)
give impact on the flow and heat transfer characteristics at the surface?

4. What are the effects of different types of carbon nanotube on the local skin
friction and Nusselt number?
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5. How would the skin friction and local Nusselt number be influenced due to the
changes in physical parameters (slip, suction and magnetic parameters)?

6. How does the presence of chemical reaction affect the concentration?

7. Which of the solutions obtained is a stable solution?

1.11 Aim and Objectives

The aim of this thesis is to investigate the fluid flow and heat transfer characteristics
of CNT in different areas configurations and subjected to various source terms and
boundary conditions together with the stability analysis. The following five problems
are:

1. Boundary layer flow over a moving plate in the presence of slip effect.

2. Boundary layer flow over a vertical moving plate in the presence of suction.

3. Stagnation point flow over an exponentially stretching or shrinking sheet in
the presence of homogeneous and heterogeneous reaction.

4. Stagnation point flow over a nonlinear stretching or shrinking sheet in the
presence of magnetohydrodynamics.

5. Stagnation point flow over a stretching or shrinking cylinder in the presence
of chemical reaction effect.

While, the objectives of this present study are to:

1. formulate and derive the mathematical model for the various non-linear
problems of carbon nanotube flows,

2. develop an algorithm, solve the mathematical model numerically using
bvp4c solver in MATLAB software and conduct the validation tests for the
current research in comparison with the numerical results in the literature,

3. provide the formulation and perform the stability analysis on dual solutions
obtained, and

4. study the effect of various parameters on the flow and heat transfer
characteristics of carbon nanotubes.

1.12 Scope of the Thesis

This study is limited to the problem of steady, incompressible and two–dimensional
convective heat transfer boundary layer flow and stagnation point flow towards a
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moving plate and stretching or shrinking surface of CNTs. Two types of CNTs
are used as nanoparticles, namely the single–wall carbon nanotube (SWCNT) and
multi–wall carbon nanotube (MWCNT), whilst water and kerosene are used as the
base fluid. In addition, the model used for the nanofluid is a model that incorporates
the effect of solid volume fraction proposed by Tiwari and Das (2007).

1.13 Thesis Outline

This thesis is divided into nine chapters and organized as follows:

Chapter 1 of this thesis provides some basic definitions, problem statement, aim,
objective and scope of the present research.

Chapter 2 elaborate on the previously published work and highlights the areas that
relevant to the thesis.

Chapter 3 contains the detailed methodologies that were used to solve the nonlinear
system of equations as well as the derivation for the stability analysis. By utilizing
similarity transformation, the set of governing nonlinear partial differential equations
(PDEs) were transformed into the nonlinear ordinary differential equations (ODEs).
In the later part of the chapter, the MATLAB’s bvp4c solver method is described in
detail for solving the boundary value problem.

Chapter 4 to 8 discusses the five main problems mentioned in Section 1.11. These
chapters will be divided into five main sections. All the chapters begin with an
introduction, followed by mathematical formulation and stability analysis. Next, an
analysis of the obtained results is reported with the graphical illustrations. Lastly,
the conclusion obtained from the present study is discussed in each chapter.

Chapter 9 summarizes the research work and gives the main conclusion arising from
the whole research and recommendations for the future work.
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Kakaç, S., Yener, Y., and Pramuanjaroenkij, A. (2013). Convective Heat Transfer,
Third Edition. CRC press, United States.

Kamal, F., Zaimi, K., Ishak, A., and Pop, I. (2019). Stability analysis of
MHD stagnation-point flow towards a permeable stretching/shrinking sheet in a
nanofluid with chemical reactions effect. Sains Malaysiana, 48:243–250.

161

© C
OPYRIG

HT U
PM



Kameswaran, P. K., Shaw, S., Sibanda, P., and Murthy, P. V. S. N. (2013).
Homogeneous–heterogeneous reactions in a nanofluid flow due to a porous
stretching sheet. International Journal of Heat and Mass Transfer, 57:465–472.

Khan, W. A., Khan, Z. H., and Rahi, M. (2014). Fluid flow and heat transfer
of carbon nanotubes along a flat plate with navier slip boundary. Applied
Nanoscience, 4:633–641.

Khanafer, K., Vafai, K., and Lightstone, M. (2003). Buoyancy–driven heat transfer
enhancement in a two-dimensional enclosure utilizing nanofluids. International
Journal of Heat and Mass Transfer, 46:3639–3653.

Khashi’ie, N. S., Hafidzuddin, E. H., Arifin, N. M., and Wahi, N. (2020). Stagnation
point flow of hybrid nanofluid over a permeable vertical stretching/shrinking
cylinder with thermal stratification effect. CFD Letters, 12:80–94.

Kumar, N. and Kumbhat, S. (2016). Essentials in Nanoscience and Nanotechnology.
Wiley Online Library.

Kumar, R., Kumar, R., Sheikholeslami, M., and Chamkha, A. J. (2019).
Irreversibility analysis of the three dimensional flow of carbon nanotubes due to
nonlinear thermal radiation and quartic chemical reactions. Journal of Molecular
Liquids, 274:379–392.

Kumar, T. S., Dinesh, P. A., and Makinde, O. D. (2020). Impact of lorentz
force and viscous dissipation on unsteady nanofluid convection flow over an
exponentially moving vertical plate. Mathematical Models and Computer
Simulations, 12:631–646.

Kundu, P. K. and Cohen, I. M. (2001). Fluid Mechanics: Second Edition. Elsevier,
United States.

Kuznetsov, A. V. and Nield, D. A. (2013). The cheng–minkowycz problem for
natural convective boundary layer flow in a porous medium saturated by a
nanofluid: a revised model. International Journal of Heat and Mass Transfer,
65:682–685.

Laughlin, D. R. (1989). A magnetohydrodynamic angular motion sensor for
anthropomorphic test device instrumentation. SAE Transactions, 98:1648–1682.

Li, H., Xu, C., Srivastava, N., and Banerjee, K. (2009). Carbon nanomaterials for
next-generation interconnects and passives: Physics, status, and prospects. IEEE
Transactions on Electron Devices, 56:1799–1821.

Lok, Y. Y. and Pop, I. (2011). Wang’s shrinking cylinder problem with suction near
a stagnation point. Physics of Fluids, 23:083102.

Louis, J. F., Lothrop, J., and Brogan, T. R. (1964). Fluid dynamic studies with a
magnetohydrodynamic generator. The Physics of Fluids, 7:362–374.

Lund, L. A., Omar, Z., Dero, S., Khan, I., Baleanu, D., and Nisar, K. S. (2020a).
Magnetized flow of Cu + Al2O3+ H2O hybrid nanofluid in porous medium:
Analysis of duality and stability. Symmetry, 12:1513.

162

© C
OPYRIG

HT U
PM



Lund, L. A., Omar, Z., and Khan, I. (2019). Quadruple solutions of mixed convection
flow of magnetohydrodynamic nanofluid over exponentially vertical shrinking
and stretching surfaces: Stability analysis. Computer Methods and Programs in
Biomedicine, 182:105044.

Lund, L. A., Omar, Z., Khan, I., Baleanu, D., and Nisar, K. S. (2020b). Convective
effect on magnetohydrodynamic (MHD) stagnation point flow of casson fluid over
a vertical exponentially stretching/shrinking surface: Triple solutions. Symmetry,
12:1238.

Lund, L. A., Omar, Z., Raza, J., Khan, I., and Sherif, E.-S. M. (2020c). Effects of
stefan blowing and slip conditions on unsteady mhd casson nanofluid flow over an
unsteady shrinking sheet: Dual solutions. Symmetry, 12:487.

Magyari, E. and Keller, B. (1999). Heat and mass transfer in the boundary layers
on an exponentially stretching continuous surface. Journal of Physics D: Applied
Physics, 32:577–585.

Mahanthesh, B., Gireesha, B. J., and Gorla, R. S. R. (2016). Heat and mass transfer
effects on the mixed convective flow of chemically reacting nanofluid past a
moving/stationary vertical plate. Alexandria Engineering Journal, 55:569–581.

Mahapatra, T. R. and Gupta, A. S. (2001). Magnetohydrodynamic stagnation-point
flow towards a stretching sheet. Acta Mechanica, 152:191–196.

Malvandi, A., Hedayati, F., and Domairry, G. (2013). Stagnation point flow
of a nanofluid toward an exponentially stretching sheet with nonuniform heat
generation/absorption. Journal of Thermodynamics, 2013:764827.

Malvandi, A., Hedayati, F., and Ganji, D. D. (2018). Nanofluid flow on
the stagnation point of a permeable non-linearly stretching/shrinking sheet.
Alexandria Engineering Journal, 57:2199–2208.

Mat, N. A. A., Arifin, N. M., Nazar, R. M., and Ismail, F. (2012). Similarity solutions
for the flow and heat transfer over a nonlinear stretching/shrinking sheet in a
nanofluid. In AIP Conference Proceedings, volume 1450, pages 165–172.

Merkin, J. H. (1986). On dual solutions occurring in mixed convection in a porous
medium. Journal of Engineering Mathematics, 20:171–179.
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Pohlhausen, K. (1921). Zur näherungsweisen integration der differentialgleichung
der iaminaren grenzschicht. Journal of Applied Mathematics and Mechanics
(ZAMM), 1:115–121.
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