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ANALYSIS OF UNIVARIATE AND BIVARIATE DATA

By

MOHAMMED MOHAMMED BAPPAH

February 2021

Chairman: Mohd Bakri Adam, PhD
Faculty: Science

One way to make sense of data is to organize it into a more meaningful format called
frequency table. The existing continuous univariate frequency table uses the mid-
point to represent the magnitude of observations in each class, which results in an
error called grouping error. The use of the midpoint is due to the assumption that
each class’s observations are uniformly distributed and concentrated around their
midpoint, which is not always valid. The most significant parameter used when
constructing the continuous frequency table is the number of classes or class width.
Several rules for choosing the number of classes or class width have been reported
in the literature; however, none has been proven to be better in all situations. The
existing discrete frequency tables are simple to construct, easy to understand and
interpret. However, when the number of elements in data is substantial, the table
can be complicated. The existing non-parametric correlation measure, the Kendall
correlation method, becomes laborious when the number of paired continuous ob-
servations is large enough. Generally, continuous data are measured values such as
amount rainfall, length

In this research, to address the issue of grouping error, we proposed three statistics,
median, midrange, and random selection to be used as the magnitude of observa-
tions in each class instead of the midpoint. In choosing the number of classes or
class width, a new class width rule is proposed. We also proposed new discrete fre-
quency tables that can be constructed by grouping the elements in data into classes.
Using the bivariate continuous frequency table, a new correlation measure that is
straightforward and free of normality assumption is developed. On addressing the
issue of missing data in a univariate continuous frequency table, five different impu-
tation methods are compared. Generally, continuous data are measured values such
as amount rainfall, length
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The four methods and the binning rules are simultaneously compared using root
mean-squared-error (RMSE). Whereas the comparison using real data, the absolute
error is used. The proposed discrete frequency tables are described using simulated
and real data. While the new bivariate continuous table’s correlation measure is
illustrated using simulations and real data. Generally, continuous data are measured
values such as amount rainfall, length

The comparison using the continuous frequency table’s measure of location, mean,
showed that the methods that used the median and midrange of observations in each
class performed better relative to other methods. In choosing the number of classes,
the proposed class width rule is the best for data simulated from the normal and ex-
ponential distributions. Meanwhile, for data simulated from the uniform distribution,
the square root rule performed better than the other rules. The methods’ evaluation
using the frequency table’s measures of skewness and kurtosis indicated that still,
the methods that used the median and midrange to represent the magnitude of ob-
servations in each class were the best. The new discrete frequency tables can be a
better choice, since, they can handle datasets with a substantial number of elements,
and vividly reveals the significant features of datasets. Generally, continuous data
are measured values such as amount rainfall, length

The results also showed that the new measure of correlation approximately equals
to the Kendall correlation. Indeed, it can be used when the data is discrete, and the
best alternative when the number of paired observations is large. In handling miss-
ing data, the simulation results showed that the mean imputation method is the best
while the findings using real data indicated the mean imputation, k nearest neighbor
imputation, and the multiple imputations by chained equations were the best meth-
ods. Also, the five imputation methods’ performance is independent of the dataset
and the percentage of missingness. And that the error increases as the percentage of
missing observations increases.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai
memenuhi keperluan untuk ijazah Doktor Falsafah

JADUAL KEKERAPAN YANG DIUBAHSUAI UNTUK VISUALISASI DAN
ANALISIS DATA UNIVARIAT DAN BIVARIAT

Oleh

MOHAMMED MOHAMMED BAPPAH

Februari 2021

Pengerusi: Mohd Bakri Adam, PhD
Fakulti: Sains

Salah satu cara untuk membuat pengertian data adalah untuk menyusunnya ke dalam
format yang lebih bermakna dipanggil Jadual kekerapan. Jadual kekerapan seragam
selanjar sedia ada menggunakan titik tengah untuk mewakili magnitud pemerhatian
dalam setiap kelas, yang mengakibatkan kesilapan yang dipanggil ralat terkumpul.
Penggunaan titik tengah adalah disebabkan oleh andaian bahawa setiap pemerhatian
kelas secara taburan seragam dan tertumpu di sekitar titik tengah mereka, yang tidak
sah selalu. Parameter yang paling ketara yang digunakan apabila membina jadual
kekerapan selanjar adalah bilangan kelas atau lebar kelas. Beberapa peraturan un-
tuk memilih bilangan kelas atau lebar kelas telah dilaporkan dalam literatur walau
bagaimanapun, tiada yang telah terbukti lebih baik dalam semua keadaan. Jadual
kekerapan diskret yang sedia ada adalah mudah untuk dibina, mudah difahami dan
ditafsir. Walau bagaimanapun, apabila bilangan elemen dalam data adalah besar,
Jadual boleh menjadi rumit. Kaedah korelasi bukan berparameter yang sedia ada
iaitu, kaedah korelasi Kendall, menjadi sukar apabila bilangan pemerhatian selanjar
berpasangan adalah cukup besar. Generally, continuous data are measured values
such as amount rainfall, length

Dalam kajian ini, untuk menangani isu ralat terkumpul, kami mencadangkan tiga
statistik, median, julat midas, dan pemilihan secara rawak, untuk digunakan seba-
gai magnitud pemerhatian dalam setiap kelas dan bukannya titik tengah. Dalam
memilih bilangan kelas atau lebar kelas, peraturan lebar kelas baru dicadangkan.
Kami juga mencadangkan jadual kekerapan diskret baru yang boleh dibina dengan
mengumpulkan elemen dalam data ke dalam kelas. Penggunaan jadual frekuensi se-
lanjar, satu langkah korelasi baru yang terus-terang dan bebas daripada andaian ini
dibangunkan. Dalam menangani isu data hilang dalam jadual kekerapan yang selan-
jar, lima kaedah imputasi yang berbeza dibandingkan. Generally, continuous data
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are measured values such as amount rainfall, length

Empat kaedah dan peraturan binning pada masa yang sama dibandingkan dengan
menggunakan ralat punca-min-kuasa dua (RMSE). Manakala perbandingan meng-
gunakan data sebenar, ralat mutlak digunakan. Jadual kekerapan diskret yang di-
cadangkan, menggunakan data simulasi dan data sebenar. Manakala (yang baru) ko-
relasi jadual bivariat selanjar digambarkan menggunakan simulasi dan data sebenar.
Generally, continuous data are measured values such as amount rainfall, length

Perbandingan menggunakan taburan kekerapan selanjar mengukur lokasi, min me-
nunjukkan bahawa kaedah yang menggunakan median dan julat midas dalam se-
tiap kelas menunjukkan prestasi yang lebih baik berbanding dengan kaedah-kaedah
lain. Dalam memilih peraturan binning, peraturan yang dicadangkan adalah yang
terbaik untuk simulasi data dari pengagihan biasa dan eksponen. Sementara itu, bagi
simulasi data daripada taburan seragam, peraturan punca kuasa adalah lebih baik
daripada peraturan yang lain. Sementara itu, kaedah penilaian yang menggunakan
taburan kekerapan untuk mengukur kepencongan dan kurtosis menunjukkan bahawa
kaedah yang menggunakan median dan midrange untuk mewakili magnitud pemer-
hatian dalam setiap kelas adalah yang terbaik. Jadual kekerapan diskret yang baru
boleh menjadi pilihan yang lebih baik, kerana, mereka boleh mengendalikan set data
besar, mendedahkan ciri penting set data secara jelas. Generally, continuous data are
measured values such as amount rainfall, length

Keputusan juga menunjukkan bahawa ukuran baru korelasi hampir sama dengan ko-
relasi Kendall. Semangnya, ia boleh digunakan apabila data adalah diskret, dan al-
ternatif yang terbaik apabila bilangan pemerhatian berpasangan adalah besar. Dalam
mengendalikan data yang hilang, keputusan simulasi menunjukkan bahawa kaedah
imputasi min adalah yang terbaik manakala penemuan menggunakan data sebenar
menunjukkan imputasi min, k imputasi jiran terdekat, dan pelbagai imputasi oleh
persamaan yang dirantai adalah kaedah terbaik. Juga, prestasi lima kaedah imputasi
adalah bebas daripada dataset dan peratusan hilang. Dan ralat meningkat apabila
peratusan pemerhatian yang hilang meningkat.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

Exploratory data analysis (EDA) plays a significant role in Statistics. The EDA refers
to the set of statistical tools originally devised by Tukey (1977) displaying data so
that its essential characteristics can be easily seen (Behrens, 1997; Hoaglin, 2003).
The EDA was described as detective work, numerical detective work or counting
detective work or graphical detective work (Tukey, 1977). Exploratory data analy-
sis is a detective in nature, statistical detective, tools are applied to come up with
new knowledge, and in this respect, outliers play a vital role (Mahendran and Turaj,
2011). Exploratory data analysis tools have included a new dimension in statistics to
the way people deal with data (Hoaglin, 2003; Velleman and Hoaglin, 2004). A raw
dataset is more attractive and captures people’s minds if it can be depicted in either
tabular or graphical form. The tabular representations are precise and provide the
reader with apparent features of the data; however, the graphical presentations have
more visual significance and useful in detecting patterns in a dataset (Davies, 1929;
Beniger, 1978; Gelman et al., 2002; Kastellec and Leoni , 2007; Gelman, 2011; Xu
and Wang, 2020). A data point can only be significant if considered along with
other observations in a frequency table (Gardiner and Gardiner, 1979). Also, raw
data do not display any meaningful representation unless being organized in a sys-
tematic form (Myatt and John, 2014). A raw data can be partitioned into classes of
suitable sizes, showing observations with the corresponding frequencies. When a
dataset is systematically organized in this form is called a frequency table (Kenney,
1939). The classes are to be constructed such that each data point falls into only one
class. A univariate continuous frequency table displays data along with the midpoint,
cumulative frequency, and the class boundary (Gravetter and Wallnau, 2000; Brase
and Brase, 2001). Generally, continuous data are measured values such as amount
rainfall, length

Brase and Brase (2001) emphasized that irrespective of the type of data, sample or
population is available, the data are organized and communicated to other people,
that is why tables and graphs are unavoidable. Organizing the raw data into a struc-
tured format like a frequency table makes it easier for a big audience to grasp and
interpret the data within a short period (Lohaka, 2007). Generally, continuous data
are measured values such as amount rainfall, length

An EDA tool, frequency table, is very significant in statistics. The frequency ta-
ble transforms raw data from meaningless details into a more easily presentable
or interpretable, easy-to-comprehend organized format (Levin and Fox, 2004). A
well-organized frequency table makes a possible detailed analysis of the popula-
tion’s structure concerning a given feature. Also, various statistical measures can be
computed, such as the range, the mean, the measure of deviations from the average
value, the coefficient of skewness of the frequency table, and the measure of kurtosis.
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Another significant function of the univariate continuous frequency table is, it serves
as a bridge between raw data and a histogram (Freedman et al., 1998; Frequency
Distribution, 2003; Fisher and Marshall, 2009). The frequency table also facilitates
the construction of a cumulative frequency curve, ogive, and frequency polygon. An
important to mention is the table aids careful comparison of datasets (Lohaka, 2007).
Generally, continuous data are measured values such as amount rainfall, length

The existing frequency tables can be classified based on the data types as well as the
number of variables in the data into univariate and bivariate discrete frequency tables
and univariate and bivariate continuous frequency tables. The univariate frequency
table summerizes raw data of a single variable in an organised form. On the other
hand, the bivariate frequency table is a table that organises raw paired observations
into a meaning format. The construction of the discrete frequency tables is straight-
forward, the elements in discrete data are the natural classes (Kenney, 1939). In the
same vein, the elements in paired discrete data determine the number of classes of
the variables for the existing bivariate discrete frequency table. The first step in con-
structing the continuous frequency table is determining the number of classes or the
class width. The important points to note when dividing continuous data into classes
are the classes should be big enough, mutually exclusive, and exhaustive, and prefer-
ably the classes should be of equal width, though sometimes unequal width must
be used (Dogan and Dogan, 2010). Generally, continuous data are measured values
such as amount rainfall, length

The univariate discrete frequency table mostly contains only two columns. The first
column displays the elements and the second column presents the number of oc-
currences of each element. On the other hand, the components of the univariate
continuous frequency table are the class limits, class boundaries, the midpoint, fre-
quency, and cumulative frequency. The class limits are the pairs of numbers written
in the column of class intervals. Meanwhile, the class boundaries are the values
halfway between the upper limit of one class and the lower limit of the next class.
The midpoint is the average of the upper and lower class limits. The midpoint is
also the center of bars on a histogram. Another component representing the number
of observations in each of the classes is the frequency ( f ). In a frequency table, the
frequencies usually written as f1, f2, . . . , fk are the number of occurrences in the k
class intervals. In a situation where the statistical investigation is concerned with
the number or percentage of less or greater observations than a component, cumula-
tive frequency (c f ) is included. At a particular class, the cumulative frequency is the
total frequency up to the upper-class boundary of that class. The cumulative frequen-
cies of the classes are f1, f1 + f2, . . . , f1 + f2 + . . .+ fk (Kenney, 1939). Generally,
continuous data are measured values such as amount rainfall, length

Moreover, to construct the frequency table, the initial step is to determine the range
of the data, then choosing a suitable number of classes, calculating the class width,
obtaining the lower limit of the first class, and lastly, determining the class intervals
(Kenney, 1939; Manikandan, 2011). The class width is the distance between the
lower and the upper-class interval of a given class. The choice of class width is
directly related to the number of classes. The knowledge of either of the two suffice.

2
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Mathematically, the class width can be defined as

w =
R
k
,

where k is the number of classes, and R is the range of the dataset. Generally, con-
tinuous data are measured values such as amount rainfall, length

A data organised in a frequency table is skewed if the mean and median from the
table are not equal, or more general if the data is not symmetric. The kurtosis of a
frequency table measures the rare extreme values which appear as outliers in a his-
togram. A leptokurtic distribution is a distribution that is more outlier-prone than the
normal distribution. Meanwhile, a distribution that is less prone to outlier is said to
be platykurtic. Tables 1.1, 1.2, 1.3, and 1.4 respectively present the existing univari-
ate discrete frequency table, bivariate discrete frequency table, univariate continuous
frequency table, and the existing bivariate continuous frequency table. Generally,
continuous data are measured values such as amount rainfall, length

Table 1.1: Existing Univariate Discrete Frequency Table

Class Element Frequency
(e) ( f )

1 e1 f1

2 e2 f2
...

...
...

m em fm

Generally, continuous data are measured values such as amount rainfall, length
where m is the number of elements in the discrete dataset, e1,e2, · · · ,em and
f1, f2, · · · , fm are respectively, the elements and the frequencies of the classes,
m,e1,e2, · · · ,em ∈ Z. The frequencies are the number of occurrences of the ele-
ments. A large number of elements in the discrete data leads to a very long table.
Here, the suitable measures of location and scale are mode and range. The mode
is the element that appeared the most, while the range is the difference between the
smallest and largest elements.

3
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Table 1.2: Existing Bivariate Discrete Frequency Table

Y
X

xe1 xe2 · · · xem1

ye1 f11 f12 · · · f1m1

ye2 f21 f22 · · · f2m1

...
...

... · · ·
...

yem2 fm21 fm22 · · · fm2m1

where xei, i= 1,2, · · · ,m1 denote the elements of variable X displayed in the columns
and ye j, j = 1,2, · · · ,m2 are the elements of the second variable Y presented in the
rows, fi j is the joint frequency of variables X and Y in cell i j. A cell is usually
blanked if no entry for the cell i j, it means the two variables have no joint frequency
in cell i j. The total frequency n can be obtained either by adding the frequencies
accross the rows, ∑

j
fi j, and then totaling the marginal sums in column or by adding

the frequencies accross the columns, ∑
i

fi j, and then totaling the marginal sums in

row or by summing the frquencies in the cells in any order, ∑
i

∑
j

fi j, m1,m2 ∈ Z.

When the numbers of elements in the two variables, m1 and m2 are large, the table
can be very long and big. Generally, continuous data are measured values such as
amount rainfall, length

Table 1.3: Existing Univariate Continuous Frequency Table

Class
CI CB

Freq Cum Freq midpoint
lc uc lb ub ( f ) ( fc) (x∗)

1 l1 u1 l1− δ
2 u1 +

δ
2 f1 f1

l1+u1
2

2 l2 u2 l2− δ
2 u2 +

δ
2 f2 f1 + f2

l2+u2
2

...
...

...
...

...
...

...
...

k lk uk lk− δ
2 uk +

δ
2 fk

k
∑

i=1
fi

lk+uk
2

Generally, continuous data are measured values such as amount rainfall, length
where k is the number of classes, δ is the smallest measurement unit of the dataset, CI
is the class interval, lc and uc are the lower and upper-class intervals , CB is the class
boundary, lb and ub are the lower and upper-class boundaries, fi is the frequency of
class i and c f is the cumulative frequency. i= 1,2, · · · ,k, k∈Z, lc,uc, lb,ub, fi,δ ∈R.
The midpoint of class i is equal to li+ui

2 , li and ui are respectively the lower and upper
limits of class i, i = 1,2, · · · ,k. The midpoint x∗ is used to represent the magnitude
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of observations in each class when obtaining statistical measures from the univariate
continuous frequency table. Either of the two parameters, the number of classes k,
or the class width w = uc− lc, must be determined first before constructing the table.
The scientific classification rules can be used to obtain a suitable number of classes or
class width. Generally, continuous data are measured values such as amount rainfall,
length

Table 1.4: Existing Bivariate Continuous Frequency Table

Y

X
Class [lx1 ,ux1) [lx2 ,ux2) · · · [lxk1

,uxk1
)

Class
y∗

x∗
x∗1 x∗2 · · · x∗k1

[ly1 ,uy1) y∗1 f11 f12 · · · f1k1

[ly2 ,uy2) y∗2 f21 f22 · · · f2k1
...

...
...

... · · ·
...

[lyk2
,uyk2

) y∗k2
fk21 fk22 · · · fk2k1

Generally, continuous data are measured values such as amount rainfall, length
where x∗ denotes the midpoints of variable X classes displayed in the columns and
y∗ are the midpoints of class intervals of the second variable Y presented in the rows,
fi j is the joint frequency of variables X and Y in cell i j. A cell is usually blank if
no entry for the cell i j, it means the two variables have no joint frequency in cell i j.
The lx j and ux j are lower and upper class limits of class j of variable X . Whereas lyi
and uyi are lower and upper class limits of class i of variable Y , , k1,k2, fi j ∈ Z, and
lxi ,uxi , ly j ,uy j ,∈ R, j = 1,2, . . . ,k1, and i = 1,2, . . . ,k2. The number of classes of
the two variables k1 and k2 must be determined first before the table is constructed.
The scientific number of classes and class width rules can be used to obtain the ap-
propriate number of classes. When the rules that are based on only the sample size
are used to determine k1 and k2 we have a square table k1 = k2. Meanwhile, the table
can be rectangular, k1 6= k2, when rules that also incorporate the deviance concept
apart from the sample size are used.

1.2 Problem Statement

The graphical and tabular representation of data provides the simplest and most ef-
fective means of understanding and interpreting data. The frequency classifications
are unbendable, both as a means of condensing compactly large data size and a form
of generalization. Therefore, frequency distribution analysis is likely to remain one
of the essential statistical tools (Davies, 1929). Generally, continuous data are mea-
sured values such as amount rainfall, length
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Though grouping is unavoidable, especially when the dataset is large, the process can
lead to a considerable error compared to the original data. When computing the sta-
tistical measures from the existing continuous frequency table, the magnitude of ob-
servations in each class is represented by the midpoint, which results in error known
as grouping error (Davies, 1929; Kenney, 1939). Different researchers in the litera-
ture suggested various approaches to minimizing this error. One of the approaches
is the use of a correction formula to minimize the error. The most use correction for-
mula is Sheppard’s correction, which was due to Sheppard in 1898 (Sheppard, 1898,
1907; Kendall, 1938; George, 1941; Hald, 2001). This adjustment formula has con-
tributed immensely to minimizing the grouping error, though it works for normal
data and is applied to only even powers of moments. The odd powers are assumed
not affected by the grouping error. Following this several researches on correction
for grouping error have emerged; such as, the Canning (1926), Davies (1929), Baten
(1931), Jones (1941), Dwyer (1942), Pierce (1943), Hald (2001) and the most recent
work by Di Nardo (2010). Generally, continuous data are measured values such as
amount rainfall, length

Furthermore, one of the two significant parameters, the number of classes and the
class width, must be determined before constructing the continuous frequency table.
While the former describes the number of partitions of the dataset, the later is the
distance between lower and upper-class limits (Wand, 1997). These two parameters
are dependent on one another; if one is known, the other can be obtained. Deter-
mining the appropriate number of classes to be used in constructing a frequency
table remains a long-existing problem in statistics. Different rules for choosing the
number of classes and class width were reported in the literature; however, none of
the rules has been proven to be better in all situations (Birge and Rozenholc, 2006).
Generally, continuous data are measured values such as amount rainfall, length

So also, the existing non-parametric correlation measures tend to be laborious when
the number of pairs of the bivariate data is substantial. Moreover, in the case of the
existing discrete frequency tables, when the number of elements in the data is large
enough, the process can result in a very long frequency table that cannot be easily
handled. Generally, continuous data are measured values such as amount rainfall,
length

Missing data are sometimes inevitable and can affect the conclusions that can be
drawn from data. In classes of frequency tables, missing observations do occur, and
it is necessary to estimate them to arrive at valid conclusions. Various techniques of
handling missing data have been reported in the literature, but none has been exam-
ined to estimating missing observations in a frequency table. Generally, continuous
data are measured values such as amount rainfall, length

In this research, the problems are addressed by developing new ways of constructing
both the continuous and discrete frequency tables. In choosing a suitable number of
classes or class width, a new rule is proposed. Moreover, a new, bivariate continuous
frequency table’s correlation measure is developed. A suitable method is recom-
mended in addressing the issue of missing observations in a univariate continuous
frequency table.
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1.3 Research Aim and Objectives

This research aims to develop new methods of constructing both the continuous and
discrete frequency tables. The objectives are;

1. To propose three statistics, random selection, median, and midrange, to repre-
sent the mid-value of observations in each class of the continuous frequency
table.

2. To develop a new rule for choosing the class width based on the median abso-
lute deviation for the continuous frequency tables.

3. To propose new univariate and bivariate discrete frequency tables by partition-
ing the elements in the discrete data into classes and using the mode as the
magnitude of elements in each class.

4. To develop a new correlation measure, which is based on Kendall’s concor-
dance and discordance approach for the empty cells in a bivariate continuous
frequency table.

5. To conduct simulation studies and identify the best method of handling miss-
ing data in univariate continuous frequency tables.

1.4 Limitation of the Study

In this research the issue of outliers is not considered when constructing the continu-
ous frequency tables. Also, the continuous frequency tables are limited to only equal
width classes.

1.5 Structure of the Thesis

This thesis’s overall structure takes the form of eight chapters, including this intro-
ductory chapter, Chapter 1. Chapter 2 presents a general literature review on the
frequency table. This research’s main findings are presented in Chapter 3, Chapter 4,
Chapter 5, Chapter 6, and Chapter 7. Chapter 3 focused on the proposed univariate
continuous frequency tables. Meanwhile, the new univariate and bivariate discrete
frequency tables are respectively given in Chapters 4 and 6. In Chapters 5 and 7,
the new bivariate continuous frequency table’s correlation measure and methods of
handling missing data in a univariate continuous frequency are discussed. The last
chapter, Chapter 8, gives the general summary, conclusion, and the identified areas
for future work. Generally, continuous data are measured values such as amount
rainfall, length

Chapter 1 presents a general background on the exploratory data analysis (EDA) tool,
frequency table, the types of frequency table based on the data type, continuous and
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discrete frequency table, and the types regarding the number of variables, univari-
ate and bivariate frequency tables. The chapter also highlights the statement of the
problem, research aim and objectives, the limitations of the research, and the thesis
structure. Chapter 2 covers the general literature review on the frequency table. A
review on real numbers, types of variable, data types, continuous frequency tables,
discrete frequency tables, missing data in a univariate continuous frequency table,
graphs of the univariate frequency tables, and error incurred as a result of grouping
raw data in a continuous frequency table. Generally, continuous data are measured
values such as amount rainfall, length

The new univariate continuous frequency table, using the four proposed statistics,
arithmetic mean, median, midrange, and random selection, are presented in Chapter
3. Assessment of the proposed statistics used to represent the magnitude of observa-
tions in each class and the rules used in choosing the number of classes are given in
this chapter. Generally, continuous data are measured values such as amount rainfall,
length

Chapter 4 presents the proposed univariate discrete frequency table, the table’s de-
scription using simulation studies from five discrete distributions, and real data.
Chapter 5 illustrates the new bivariate continuous frequency table’s correlation mea-
sure, empty cell correlation. In Chapter 6, we describe the new bivariate discrete
frequency table. Meanwhile, Chapter 7 presents the results of comparing five im-
putation methods used in handling missing observations in a univariate continuous
frequency table. A general summary of the whole thesis, conclusion, and recom-
mendation for future work are given in Chapter 8.
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Köroğlu, Ö. (2019). Weather Istanbul Data 2009-2019. Retrieved
November 15, 2019 from https://www.kaggle.com/vonline9/
weather-istanbul-data-20092019.

Larry, J. S. (1998). Schaum’s Outline, Theory and Problems of Beginning Statistics,
New York, McGraw-Hill.

Levin, J., and Fox, J. A. (2004). The essentials: Elementary Statistics in Social
Research. New York, Pearson Education.

Liao, S.G., Lin, Y., Kang, D. D., Chandra, D., Bon, J., Kaminski, N., Sciurba, F.
C., and Tseng, G. C. (2014). Missing Value Imputation in High-Dimensional
Phenomic Data: Imputable or Not, and How?. BMC Bioinformatics, 15(1): 346.

197

© C
OPYRIG

HT U
PM



Liu, B., Hennessy, E., Oh, A., Dwyer, L., and Nebeling, L. (2018). Comparison
of Multiple Imputation Methods for Categorical Survey Items with High Miss-
ing Rates: Application to the Family Life, Activity, Sun, Health and Eating
(FLASHE) Study. Journal of Modern Applied Statistical Methods, 17(1): 23.

Lohaka, H. O. (2007). Making A Grouped-Data Frequency Table: Development
and Examination of the Iteration Algorithm. Unpublished Ph.D. Thesis, Ohio
University, USA.

Lewandowsky, S. and Spence, I. (1989). The Perception of Statistical Graphics,
Sociological Methods and Research, 18(2-3): 200-242.

Leys, C., Ley, C., Klein, O., Bernard, P., and Licata, L. (2013). Detecting Out-
liers: Do not Use Standard Deviation Around the Mean, Use Absolute Deviation
Around the Median, Journal of Experimental Social Psychology, 49(4): 764-766.

Birge, L. and Rozenholc, Y. (2006). How Many Bins Should be Put in a Regular
Histogram. ESAIM: Probability and Statistics, 10(2006): 24 - 45.

Manikandan, S. (2011). Frequency Distribution. Journal of Pharmacology and
Pharmacotherapeutics, 2(1): 54–56.

Mann, H. B. and Wald, A. (1942). On the Choice of the Number of Class Intervals
in the Application of the Chi Square Test. The Annals of Mathematical Statistics,
13(3): 306-317.

Mahendran, S. and Turaj, V. (2011). Explorarory Data Analysis for Almost Anyone.
Serdang, Universiti Putra Malaysia Press.

McKnight, P. E., McKnight, K. M. , Sidani, S., and Figuredo, A. J. (2008). Missing
Data: A Gentle Introduction. New York, The Guilford Press.

Murray, J. F. and Andrea, P. M. (2009). Understanding Descriptive Statistics. Aus-
tralian Critical Care, 22(2009): 93-97.

Murray, R. S. and Larry, J. S. (2008). Schaum’s Outline, Theory and Problems of
Statistics . Newyork, McGraw-Hill.

Murray, J. S. (2018). Multiple Imputation: A Review of Practical and Theoretical
Findings. Statistical Science, 33(2): 142-159.

Myatt, G. J. and John, W. P.(2014). Making Sense of Data I: A Practical Guide to
Exploratory Data Analysis and Data Mining. New Jersey, John Wiley & Sons,
Inc.

Nalla, Z. (2018). Premier League Results of Each Match and Stats of Each Team
from Season 2006/2007 to 2017/2018. Retrieved June 02, 2020 from https:
//www.kaggle.com/zaeemnalla/premier-league.

Newbold, P., Carlson, W. and Thorne, B. (2009). Statistics for Business and Eco-
nomics. Boston, Pearson Education.

198

© C
OPYRIG

HT U
PM



Nuzzo, R. L. (2019). Histograms: A Useful Data Analysis Visualization PM&R,
11(3): 309-312.

Oja, H. (1981). On Location, Scale, Skewness and Kurtosis of Univariate Distribu-
tions. Scandinavian Journal of Statistics, 8(3): 154-168.

Pawitan, Y. (2001). In All Likelihood: Statistical Modelling and Inference Using
Likelihood. New York, Oxford University Press.

Pham-gia, T. and Hung, T. L. (2001). The Mean and Median Absolute Deviations.
Mathematical and Computer Modeling, 34(1): 921-936.

Peter, H. (1992). On the Removal of Skewness by Transformation. Journal of the
Royal Statistical Society. Series B (Methodological), 54(1): 221-228.

Porter, M. M. and Niksiar, P. (2018). Multidimensional Mechanics: Performance
Mapping of Natural Biological Systems Using Permutated Radar Charts. PLOS
One, 13(9): e0204309.

Pernet, C. R., Wilcox, R., and Rousselet, G. A. (2013). Robust Correlation Analyses:
False Positive and Power Validation Using a New Open Source Matlab Toolbox,
Frontiers in Psychology, 6(606): 1-18.

Philips, M. J. (1993). Contingency Tables with Missing Data, The Statistician, 42(1):
9-18.

Ping, H. L. and Ataharul Islam, M. (2008). Analyzing Incomplete Categorical Data:
Revisiting Maximum Likelihood Estimation (Mle) Procedure, Journal of Modern
Applied Statistical Methods, 7(2): 488-500.

Pierce, J. A. (1943). Correction Formulas for Moments of a Grouped-Distribution
of a Discrete variates. Journal of the American Statistical Association, 38(221):
57-62.

Premier League Player Stats. Retrieved May 27, 2019 from https://www.
premierleague.com/stats/top/players/goals?se=210.

PhyAmal (2019). Glasgow Weather Data. Retrieved Jan-
uary 17, 2020 from https://www.kaggle.com/phyamal/
glasgow-weather-data-20152019.

Rayner, J. C. W., Best, D. J., and Mathews, K. L. (1995). Interpreting the Skewness
Coefficient. Communications in Statistics - Theory and Methods, 24(3): 593–600.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turn-
baugh, P. J. and Sabeti, P. C. (2011). Detecting Novel Associations in Large Data
Sets. Science, 334(6062): 1518-1524.

Roberts, J. B. (2018). The Real Number System in an Algebraic Setting. New York,
Courier Dover Publications.

199

© C
OPYRIG

HT U
PM



Rosco, J. F., Pewsey, A., and Jones, M. C. (2013). On Blest’s Measure of Kurto-
sis Adjusted for Skewness. Communications in Statistics - Theory and Methods,
44(17): 3628–3638.

Roscoe, J. T. (1975). Fundamental Research Statistics for the Behavioral Sciences.
New York, Holt Rinehart and Winston.

Rousseeuw, P. J., and Croux, C. (1993). Alternatives to the Median Absolute Devia-
tion. Journal of the American Statistical Association, 88(424): 1273–1283.

Royston, E. (1956). Studies in the History of Probability and Statistics: III. A Note
on the History of the Graphical Presentation of Data. Biometrika, 43(3/4): 241-
247.

Rubin, D. B. (1976) Inference and Missing Data. Biometrika, 63(3): 581-592.

Rubin, D. B. (1987). Multiple Imputation for Non-Response in Surveys. New York,
John Wiley & Sons.

Rudemo, M. (1982). Empricial Choice of Histograms and Kernel Density Estima-
tors. Scandinavian Journal of Statistics, 9(2): 65-78.

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data. London, Chapman
and Hall.

Schmitt, P., Mandel, J., and Guedj, M. (2015). A Comparison of Six Methods for
Missing Data Imputation. Journal of Biometrics & Biostatistics, 6(1): 1-6.

Scott, D. W. (1979). On Optimal and Data-Based Histograms. Biometrika, 66(3):
605-610.

Scott, D. W. (1985). Frequency Polygons: Theory and Application. Journal of the
American Statistical Association, 80(390): 348-354.

Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice and Visuali-
sation. New York, John Wiley & Sons, Inc.

Scott, D. W. (2009). Sturges’ Rule. Wiley Interdisciplinary Reviews: Computational
Statistics, 1(3): 303-306.

Seattle (2017). Seattle Road Weather Information Stations. Retrieved
May 24, 2019 from https://www.kaggle.com/city-of-seattle/
seattle-road-weather-information-stations.

SDSN (2019). World Happiness Report. Retrieved October 21, 2019 from https:
//www.kaggle.com/unsdsn/world-happiness.

Sheppard, W. F. (1898). On the Calculation of the Most Probable Values of
Frequency-Constants, for Data Arranged According to Equidistant Divisions of
a Scale. Proceedings of the London Mathematical Society, 29(1): 353-380.

Sheppard, W. F. (1907). The Calculation of Moments of a Frequency-Distribution.
Biometrika, 5(4): 450-459.

200

© C
OPYRIG

HT U
PM



Shimazaki, H. and Shinomoto, S. (2007). A Method for Selecting the Bin Size of a
Time Histogram. Neural Computation, 19(6): 1503–152.

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Lon-
don, Chapman and Hall.

Stavseth, M. R., Clausen, T., and Røislien, J.(2019). How Handling Missing Data
May Impact Conclusions: A Comparison of Six Different Imputation Methods for
Categorical Questionnaire Data. SAGE Open Med, 2019; 7: 2050312118822912.

Stela, P. H., Benjamin, D. and Iztok, H. (2005). Estimating the Mean and Vari-
ance from the Median, Range, and the Size of a Sample. BMC Medical Research
Methodology, 5(13): 1-10.

Stillwell, J. (2013). The Real Numbers: An Introduction to Set Theory and Analysis
New York, Springer.

Sturges, H. A. (1926). The Choice of a Class Interval. Journal of the American
Statistical Association, 21(153): 65-66.

Szekely, G. J., Rizzo, M. L., and Bakirov, N. K., (2007). Measuring and Testing
Independence by Correlation of Distances. Annals of Statistics. 35(6): 2769–2794.

Templ, M., Alfons, A., and Filzmoser, P. (2011). Exploring Incomplete Data Using
Visualization Techniques. Advances in Data Analysis and Classification, 6(1):
29–47.

Terrell, G. R. and Scott, D. W. (1985). Oversmoothed Non-parametric Density Esti-
mates. Journal of the American Statistical Association, 80(389): 209-214.

Tufte, E. R. (2001). The Visual Display of Quantitative Information. Connecticut,
Graphics Press.

Tukey, W. J. (1977). Explorarory Data Analysis. Boston, Addison-Wesley Publish-
ing Company, Inc.

Van Buuren, S., and Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation
by Chained Equations in R. Journal of Statistical Software, 45(3): 1-67.

Velleman, P. F. and Hoaglin, D. C. (2004). Applications, Basics, and Computing of
Explorarory Data Analysis. New York, Internet First University Press.

Wand, M.P. (1997). Data-based Choice of Histogram Bin Width. The American
Statistician, 51(1): 59-64.

Wang, X. X. and Zhang, J. F. (2012). Histogram-Kernel Error and Its Application
for Bin Width Selection in Histograms. Mathematicae Applicatae Sinica, English
Series, 28(3): 607–624.

Wilcox, R. (1994). The Percentage Bend Correlation Coefficient. Psychometrika,
59 (4): 601-616.

201

© C
OPYRIG

HT U
PM



Xu, D. and Y. Wang (2020). Area-Proportional Visualization for Circular Data. Jour-
nal of Computational and Graphical Statistics, 29(2): 351-357.

Yule, G. U. (1911). An Introduction to the Theory of Statistics. London, Charles
griffin and company.

Zainuri, N. A., Jemain, A, and Muda, N. A. (2015). Comparison of Various Impu-
tation Methods for Missing Values in Air Quality Data. Sains Malaysiana, 44(3):
449 - 456.

Zhang, S. (2012). Nearest neighbor selection for iteratively kNN imputation. Jour-
nal of Systems and Software, 85(11): 2541-2552.

Zwillinger, D. and Kokoska, S. (2000). CRC, Standard Probability and Statistics
Tables and Formulae. Newyork, Chapman and Hall CRC Press.

202

© C
OPYRIG

HT U
PM



BIODATA OF STUDENT

The student, Mohammed Mohammed Bappah, was born On 16 May 1982. He 
respectively obtained his national diploma and bachelor degree in statistics from 
Federal Polytechnic Damaturu and Modibbo Adama University of Technology Yola, 
Nigeria. He finished his Master of Sciences, in Statistics from the University of 
Ilorin, Nigeria, in 2015. He is currently a PhD candidate in the area of Exploratory 
Data Analysis (EDA). His research interest is in Exploratory Data Analysis, Extreme 
Value, Circular Statistics, and Survival Analysis.

© C
OPYRIG

HT U
PM



LIST OF PUBLICATIONS

The following are the list of publications that arise from this study.

Mohammed, M. B., Adam, M.B., Zulkafli, H. S., & Ali, N. (2020). Improved Fre-
quency Table with Application to Environmental Data. Mathematics and Statis-
tics; 8(2): 201-210.

Mohammed, M. B., Adam, M.B., Ali, N., & Zulkafli, H. S. (2020). Im-
proved Frequency Table’s Measures of Skewness and Kurtosis with Applica-
tion to Weather Data. Communications in Statistics - Theory and Methods; doi
:10.1080/03610926.2020.1752386..

Mohammed, M. B., Adam, M.B., Ali, N., & Zulkafli, H. S. (2021). Com-
parison of Five Imputation Methods in Handling Missing Data in a Contin-
uous Frequency Table, AIP Conference Proceedings; 2355, 040006 (2021);
https://doi.org/10.1063/5.0053286. .

Mohammed, M. B., Adam, M.B., Ali, N., & Zulkafli, H. S. A Novel Frequency
Table for Discrete Data. Pakistan Journal of Statistics, (Under Review).

Adam, M. B., Mohammed, M.B., Subhi, M. J. & Jamsari, A. A. Improvement of
Statistic values from Frequency Table for Continuous Symmetrical Positive Data,
Pakistan Journal of Statistics and Operations Research, (Under Review).

Mohammed, M. B., Adam, M.B., Ali, N., & Zulkafli, H. S. Exploration of COVID-
19 Pandemic Using Variety of Frequency Tables, Example and Counterexample,
(Under Review).

Mohammed, M. B., Adam, M.B., Ali, N., Zulkafli, H. S., & Olaniran, O. R. A Novel
Bivariate Discrete Frequency Table, Cogent Mathematics & Statistics, (Under
Review).

Adam, M. B., Mohammed, M.B., Fernando, M., & Yong, L. New Measure of Linear
Association Based on Two-way Contingency Tables, Journal of Modern Applied
Statistical Methods, (Under Review).

Mohammed, M. B., Adam, M.B., Ali, N., & Zulkafli, H. S. New Class Width Rule
for Continuous Frequency Tables, (To submit for publication).

206

© C
OPYRIG

HT U
PM


	Blank Page
	Blank Page



