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DEVELOPMENT OF DOLOMITE-SUPPORTED COPPER CATALYSTS FOR 

GLYCEROL HYDROGENOLYSIS TO 1,2-PROPANEDIOL  

 

 

By 

 

 

NORSAHIDA BINTI AZRI 

 

 

July 2021 

 

 

Chairman: Associate Professor Irmawati binti Ramli, PhD 

Faculty : Science 

 

 

The strong growth of biodiesel production has led to a significant increase in glycerol, 

the by-product of the process. Therefore, this study focused into converting glycerol to 

high-value chemical which is 1,2-propanediol over heterogeneous catalyst. Metal 

supported catalyst was synthesized using wet impregnation method, later calcined, and 

subsequently reduced under 5%H2 environment. The metals investigated were copper 

(Cu), nickel (Ni), cobalt (Co), zink (Zn) and iron (Fe) while the supports used were 

dolomite (Dol), alumina (Al2O3), bentonite (Bent), montmorillonite (Mont), and talcum 

(Talc). Results showed that copper supported on dolomite (Cu/Dol) gave the best 

catalytic activity in glycerol hydrogenolysis. Henceforth, different loadings of copper 

on dolomite were synthesized. Cu/Dol catalyst calcined at 500 ºC and reduced at 600 

ºC exhibited the highest glycerol conversion of 78.5% and 1,2-PDO selectivity of 79% 

at 200 ºC reaction temperature, 4 MPa H2, 10 h reaction time, 20wt% glycerol 

concentration, and 1 g catalyst dosage. After optimization study, it was demonstrated 

that the glycerol conversion and 1,2-PDO selectivity was increased with the increasing 

reaction temperature, hydrogen pressure, reaction time, catalyst dosage, glycerol 

concentration and copper metal loading up to their optimum value. The results were 

optimized at copper loading of 20wt%, 180 ºC reaction temperature, 2 MPa hydrogen 

pressure, 6 h reaction time, 20wt% glycerol concentration, and 1 g catalyst dosage with 

maximum glycerol conversion of 100% and 1,2-PDO selectivity of 92.2%. It can be 

concluded that the high performance of 20%Cu/Dol catalyst was attributed to its 

macroporous and crystalline features, composed of mixed crystalline phases with 

calcium, magnesium, oxygen as main components, good copper surface area, copper 

dispersion and thermal stability. Also, the good copper-dolomite interaction, including 

high metal reducibility (~291 ºC) and very importantly the presence of its high acid 

capacity (19528 µmol/g) with Lewis sites on the catalyst surface as the active reaction 

sites. In addition, the incorporation of copper to dolomite presented a promising 

reaction performance rather metallic copper and dolomite alone attributed to its 

improved acidity and metal reducibility. On subjecting the 20%Cu/Dol to reusability 

study in five reaction cycles, it maintained good performance in glycerol conversion 

but inferior in 1,2-PDO selectivity after the first use. The evidence indicated that the 
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reduced 1,2-PDO selectivity was due to the coke formation and leaching of metal 

active sites (Cu, Ca dan Mg). The conversion of glycerol to 1,2-PDO followed the 

dehydration–hydrogenation pathway while reaction towards C–C cleavage with 

methanol as side product was minimal.  
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Pembangunan biodiesel yang mampan telah memacu peningkatan terhadap gliserol, 

iaitu produk sampingan proses tersebut. Oleh itu, kajian ini dilakukan bertujuan untuk 

menukar gliserol kepada bahan kimia yang lebih bernilai iaitu 1,2-propanadiol 

menggunakan mangkin heterogen. Mangkin logam berpenyokong telah disintesis 

menggunakan kaedah pengisitepuan langsung, dikalsinasi dan kemudian diturunkan di 

dalam persekitaran 5% hidrogen. Logam yang dikaji adalah kuprum (Cu), nikel (Ni), 

kobalt (Co), zink (Zn) dan besi (Fe) sementara bahan penyokong yang digunakan 

adalah dolomit (Dol), alumina (Al2O3), bentonit (Bent), montmorilonit (Mont) dan 

talkum (Talc). Hasil kajian menunjukkan bahawa mangkin kuprum tersokong dolomit 

(Cu/Dol) memberikan hasil yang terbaik dalam hidrogenolisis gliserol. Seterusnya, 

mangkin kuprum tersokong dolomit pada muatan kuprum yang berbeza telah disintesis. 

Mangkin Cu/Dol yang dikalsinasi pada suhu 500 ºC dan diturunkan pada suhu 600 ºC 

mempamerkan penukaran gliserol yang paling tinggi iaitu 78.5% dan pemilihan 1,2-

PDO iaitu 79% pada suhu tindak balas 200 ºC, tekanan hidrogen 4 MPa, masa tindak 

balas 10 j, kepekatan gliserol 20bt%, dan berat mangkin 1 g. Selepas tindak balas 

lanjutan pula, ia menunjukkan bahawa penukaran gliserol dan pemilihan terhadap 1,2-

PDO menjadi semakin bertambah seiring dengan suhu tindak balas, tekanan hidrogen, 

masa tindak balas, berat mangkin,  kepekatan gliserol serta muatan logam kuprum 

sehingga paras optimal. Hasil kajian adalah optimal pada muatan kuprum 20bt%, suhu 

tindak balas 180 ºC, tekanan hidrogen 2 MPa, masa tindak balas 6 j, kepekatan gliserol 

20bt%, dan berat mangkin 1 g dengan hasil yang maxima iaitu 100% penukaran 

gliserol dan 92% pemilihan 1,2-PDO. Kesimpulannya, kecemerlangan prestasi oleh 

mangkin 20%Cu/Dol adalah didorong oleh sifat makroporos dan kristalnya, terdiri 

daripada campuran kalsium, magnesium, dan oksigen sebagai komponen teras, 

mempunyai luas permukaan logam kuprum, serakan logam kuprum serta kestabilan 

terma yang baik. Juga, interaksi diantara kuprum-dolomit yang baik, ini termasuklah 

penurunan logam yang tinggi (~291 ºC) dan yang paling utama adalah kehadiran 

kapasiti asid yang tinggi (19528 µmol/g) dengan tapak Lewis pada permukaan 

mangkin yang bertindak sebagai tapak aktif pemangkinan. Selain itu, kehadiran logam 

kuprum terhadap dolomit menunjukkan aktiviti pemangkinan lebih bagus berbanding 
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dengan logam kuprum dan dolomit sahaja kerana didorong oleh tapak asid dan 

penurunan metal yang lebih bagus. Mangkin 20%Cu/Dol kemudiannya digunakan 

dalam kajian kebolehkitaran untuk lima kitaran tindak balas dan didapati ia mampu 

mengekalkan prestasi yang baik dalam penukaran gliserol, walaubagaimanapun 

pemilihan 1,2-PDO adalah berkurang setelah penggunaan yang pertama. Berdasarkan 

analisis yang diperolehi, pengurangan 1,2-PDO adalah disebabkan berlakunya 

pembentukan karbon dan juga pelarutlesapan tapak aktif logam (Cu, Ca dan Mg). 

Penukaran gliserol kepada 1,2-PDO mengikuti laluan penyahidratan-penghidrogenan 

serta tindak balas terhadap pemecahan ikatan C-C dengan methanol sebagai produk 

sampingan adalah tidak ketara.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Background of research 

 

 

Biodiesel is a biofuel which chemically known as fatty acid methyl ester produced 

mainly by transesterification reaction of different triglycerides from vegetable oil or 

animal fat (He et al., 2017; Nanda et al., 2017). It is a renewable and sustainable 

biofuel with high quality, nontoxic, has high cetane number, in-built oxygen content 

with higher combustion and complete carbon cycle. It is highly researched by 

industrialists and governments worldwide due to its inherent advantages. In addition to 

complement the already-dwindling petroleum products, and the foregoing directive of 

European Union (EU) legislation that conventional fuels should have an addition of at 

least 5.75% biodiesel by 2010, and with the possibility of increasing it to 20% by 2020, 

member countries have already responded to the production and use of biodiesel and 

made ensure that energy from renewable sources forms at least 10% of the 

transportation fuels (Comelli, 2011; Decision, 2009). 

 

 

The compliance of EU efforts can be seen from the available data from various sources 

reporting that biodiesel production in EU member countries was put at 1.93 million 

tons in 2004, and after ten years, in 2013, it was put at 10.37 million tons, moving up to 

11.58 million tons in 2016 (European Biodiesel Board). Similarly, the United States 

biodiesel production grew from 0.5 million gallons in 1999 to 250 million gallons in 

2006 (Stelmachowski et al., 2014), and later to 2.89 billion gallons in 2016, indicating 

the capacity and actual growth of biodiesel production (National Biodiesel Board, U.S). 

However, the global status report in 2019 indicates that in 2019, the world biodiesel 

production was more than 30 billion liters, with the United States, Brazil, Germany, 

France and Argentina being the top five producers by the report of Statista 2021 

published by N. Sönnichsen, Jan 6, 2021. 

 

 

The biodiesel global production of the top 16 countries in 2019 is shown in Figure 1.1. 

It has also been stated in several works that biodiesel production will soar in the 

coming years, and this is evident from the series of diversified global research activities 

in boosting biodiesel production both in the areas of feedstock and catalysis to improve 

energy efficiency and reduce greenhouse gas emission.      
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Figure 1.1: The biodiesel global production of the top countries in 2019 (Statista 

2021) 

 

 

In addition, it has been reported that 10-20% of the total volume of biodiesel produced 

is made up of glycerol. That is, with every 100 kg production of biodiesel, 10 kg of 

glycerol is generated as by-product, with purity of around 50%–55% (Bagnato et al., 

2017; Quispe et al., 2013; Singhabhandhu & Tezuka, 2010). The balanced reaction 

from the triglycerides chemically reacts with alcohol (methanol) in the presence of 

catalyst is as shown in Figure 1.2. One mole of triglyceride reacts with three moles of 

alcohol to yield one mole of glycerol and three moles of fatty acid methyl esters 

(FAME).  
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Figure 1.2: Production of biodiesel and glycerol via transesterification process 

 

 

Apart from predominantly produced glycerol and already saturated market from 

biodiesel process, glycerol is also formed in large quantities as a by-product from soap 

manufacturing in the process of alkaline saponification as illustrated in Figure 1.3. In 

alkaline saponification (generally sodium hydroxide or potassium hydroxide), salts of 

the fatty acids (also called soap) and glycerol was produced. The soap production 

process as the essence of the commercial soap-making industry usually yields glycerol 

at about 10% of the value of the soap formed or 0.5 million tons per year (Nakagawa & 

Tomishige, 2011; Quispe et al., 2013; Tan et al., 2013).   
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Figure 1.3:  The saponification process from triglyceride to produce soap and 

glycerol as the by-product 

 

 

In other reaction process, glycerol is also produced as by-product from hydrolysis of 

fatty acid for free fatty acid production. Hydrolysis is a reversible reaction whereby a 

molecule of steam breaks a fatty acid off the glycerol backbone of a triglyceride, 

resulting in a free fatty acid and glycerol. The reaction can be represented by the 

following equation as shown in Figure 1.4. Generally, hydrolysis reaction is similar to 

saponification reaction, but fat and oil reacts with water to yield a free fatty acid and 

glycerol in this case. During the hydrolysis reaction, each molecule of fat and oil will 

yield one mole of glycerol and three moles of fatty acid with approximately 100 g fat 

and oil with 6.1g of water produced 95.7g of free fatty acid and 10.4g of glycerol (Tan 

et al., 2013).  
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Figure 1.4:  The hydrolysis process from triglyceride to produce fatty acid and 

glycerol as the by-product 

 

 

The growing biodiesel industry as well as soap and hydrolysis production have  

resulted in a significant global glycerol supply and lead to the fall of glycerol market 

prices from 2000 to 2010 in particular for European Union (EU) from about 3200 $/ton 

to 2000 $/ton in EU and to under 500 $/ton and 600 $/ton in USA for refined glycerol 

price (Anitha et al., 2016; Yang et al., 2012; Yazdani & Gonzalez, 2007). Apart from 

becoming as a financial liability there are also social and environmental concerns for 

sustainability of glycerol waste disposal when discarded without adequate treatment. 

Hence, a lot of research is focused on the conversion of glycerol into high value and 

useful products with better reaction routes and reaction conditions through catalytic 

process is demanded  (Anitha et al., 2016).  

 

 

1.2 Potential applications of glycerol 

 

 

The versatility of glycerol is well known in view of its applications in almost all the 

fields of human endeavors. However, for glycerol to be used as synthetic intermediates 

in the production of food, pharmaceutical, cosmetics and other personal care industries, 

it must be pure. Unfortunately, the purification process, which involves filtration, 

chemical treatment and vacuum distillation, is expensive, especially to the small and 

medium production plants, and therefore not commensurate with its current low market 

value (Comelli, 2011; Gupta & Kumar, 2012). Therefore much studies have sought the 

direct conversion route towards upgrading glycerol versatility of crude glycerol or 

partially-treated raw glycerol in the production of higher value added chemicals 

products for various industrial sectors via catalytic reaction process (Nanda et al., 

2017).   

 

 

Basically, glycerol can be transformed into many beneficial products which concept is 

known as biorefinery conversion technique through several chemical and biological 

processes, in the synthesis of hydrogen, as fuel additives, as a substrate for 

fermentation, as an animal feed, for methanol generation, in wastewater treatments and 

many others via process such as reforming, dehydration, direct hydrogenation, 

esterification, hydrogenolysis, oxidation, oligomerization and cyclization that led to 

various chemical products as shown in Figure 1.5.   
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Figure 1.5: Summary for the glycerol conversion and their possible derivatives 

(Monteiro et al., 2018; Pradima et al., 2017) 

 

 

Among the conversion routes, the case of 1,2-propanediol (1,2-PDO) production via 

catalytic glycerol hydrogenolysis offers great potential and highlighted as among the 

promising approach due to its various product applications. The 1,2-PDO is a high 

value added and important commodity chemical having major application as a coolant, 

airplane de-icing agent, in the production of pharmaceuticals, cosmetics, solvent and 

raw material for unsaturated polyester resins (Liu et al., 2019; Nanda et al., 2017; 

Soares et al., 2016). The global production of 1,2-PDO is constantly growing, having 

already reached approximately 1.4 million tons per year with the annual growth rate of 

4% (Vasiliadou & Lemonidou, 2011) including annual production of about 1 million 

tons in the United States (Monteiro et al., 2018). This increase is due to its extensive 

use as an important chemical intermediary in the manufacture of products daily 

application such as in medicine, polymers, cosmetics, food, adhesives, antifreeze and 

deicing agents, pharmaceuticals, lubricants, liquid detergents, flavorings, and as solvent 

in unsaturated polyester resin (Monteiro et al., 2018). Without the use of glycerol, the 

synthesis of 1,2-propanediol involves environmental issues for which chemical process 

via petroleum feedstocks is preferred, especially in the hydration of ethylene oxide or 

propylene oxide. In this research, emphasise is given to the hydrogenolysis process of 

glycerol in the production of 1,2-PDO which is known as a bifunctional reaction since 

it required the use of acid and metal sites for its reaction. 

 

 

1.3 Problem statement  
 

 

Biodiesel production is going stronger each year as it seen as an alternative to fossil 

fuel that is facing existential threat. It is forecasted that the world dependence on 

biodiesel is continue to grow as it afford a much cleaner burning hence low 

environmental impact. However, the transesterification process for biodiesel 

production releases plenty of glycerol by products to the brink of oversupply. Therefore 

action has to be taken to utilize glycerol by converting it into high value chemicals 
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which will improve the commercial viability of biodiesel and at the same time 

promoting a circular economy.  

 

 

In this study, glycerol is targeted to be converted into 1,2-propanediol via 

hydrogenolysis process over heterogeneous catalysts. Reports showed that the 

conversion of glycerol requires a dual catalyst sites which are metal site and acid site 

(Wu et al., 2013; Jiang et al., 2016). The acid site is required for the dehydration route 

while metal sites are for hydrogenation route during the catalytic process. Transition 

metal oxides such as copper, nickel, cobalt, iron and zinc have been used for 

hydrogenolysis of glycerol, unfortunately their low metallic dispersion, low ability for 

metal reduction and low acid capacity limited their potential and be the reason for their 

low hydrogenolysis performance. Even the noble metals of Pd, Pt and Ru have been 

reported to be effective in the hydrogenolysis reaction due to their good metallic 

dispersion and high metal reducibility, unfortunately their cost are expensive. 

Henceforth, transition metals were chosen to be investigated in this work. For that 

purpose, the oxides should be reduced to their metallic phase as site for hydrogenation 

of acetol intermediate to corresponding 1,2-PDO.  

 

 

Henceforth, the transition metals must be supported to a support material to allow good 

metals distribution over the catalyst support. It is discovered that the presence of 

support could not only provide a surface for metal dispersion but at the same time an 

acid site as well. A range of supports materials have been widely reported for its 

application in glycerol hydrogenolysis such as commercial graphite, alumina (Al2O3), 

silica (SiO2), titanium dioxide (TiO2), zirconia (ZrO), zinc oxide (ZnO), magnesium 

oxide (MgO), sulfonated carbon based catalyst (H3COH) and zeolite-based supports of 

MCM-41, HZSM-5, SBA-15 and SBA-16 (Montes et al., 2015;Pudi et al., 2016;Feng 

et al.,2016;Li et al., 2016). Nonetheless, quite many of them are rather limited in acid 

capacity and low regeneration activity. These weakness hence led to low selectivity 

towards 1,2-PDO (<40%) (Niu et al., 2013; Soares et al., 2016, Li et al., 2014; de 

Andrade et al., 2020) although the conversion of glycerol was appreciable (> 80%) 

(Montes et al., 2015;Pudi et al., 2016;Feng et al., 2016; Li et al., 2016). They are also 

less cost-effective due to the chemical production process. So, the low selectivity 

towards 1,2-PDO is a major problem that requires appropriate attention. For glycerol 

hydrogenolysis, the use of catalyst support with high acid capacity, rich in availability 

and high thermal stability is one of the concerns and must be the main feature in 

obtaining a high efficiency of catalytic reaction. Thereby, despites the attempts over 

different supported catalysts, the selectivity to 1,2-PDO, the most sought-after product 

of hydrogenolysis, should need improvement. Therefore, the interest now is to identify 

new catalyst material, which is inexpensive, environmentally friendly, high acid 

capacity, high metal reducibility and reusable to enhance the selectivity of 1,2-PDO 

and also glycerol conversion.  

 

 

Dolomite as mineral catalyst has been identified as a potential good material for such 

catalytic synthesis. It comprised from a mixture of mainly calcium carbonate (CaCO3) 

and magnesium carbonate (MgCO3). Due to its high acid characteristic together with 

good thermal stability which has not been reported before in glycerol hydrogenolysis 

reaction, this study thus focuses on its development as catalyst support for the 

transition metals with purpose of catalyzing and improving the 1,2-PDO selectivity. In 
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addition to its acid characteristic, dolomite has gained attention due to its low-priced 

and high availability in Malaysia.  

 

 

1.4 Objectives  

 

 

This research aims to develop copper catalyst for glycerol hydrogenolysis to 1,2-PDO 

and the specific objectives are as follows: 

 

1. To synthesize copper supported on different catalyst supports via 

impregnation method and characterize their physicochemical properties using 

several characterization techniques. 

2. To synthesize different metal oxides supported on dolomite via impregnation 

method and characterize their physicochemical properties using several 

characterization techniques. 

3. To synthesize different copper loadings supported on dolomite   via 

impregnation method and characterize their physicochemical properties using 

several characterization techniques. 

4. To test the catalytic activity over the prepared catalysts and hence to optimize 

the reaction condition at different parameters over the best catalyst. 

5. To evaluate the reusability and regeneration study of copper supported on 

dolomite catalyst.  

 

 

1.5 Scope of research 

 

 

In the present work, all catalysts are prepared using impregnation method. For 

screening studies, copper catalyst supported on different supports (Cu/Dol, Cu/Al2O3, 

Cu/Talc, Cu/Bent, Cu/Mont) and a series of transition metals supported on dolomite 

(Cu/Dol, Ni/Dol, Co/Dol, Fe/Dol, Zn/Dol) has been conducted for comparison purpose. 

For the best catalyst, Cu/Dol, several characterization techniques to study the 

physicochemical properties such as TGA-DTG, N2-physisorption, XRD, NH3-TPD, H2-

TPR, FTIR-pyridine, FESEM-EDX and XPS has been carried out. Optimization and 

catalytic studies of Cu/Dol catalysts at different copper loadings (10wt%, 20wt%, and 

30wt%), reaction parameters such as effect of reaction temperature, hydrogen pressure, 

reaction time, amount of catalyst dosage, amount of glycerol concentration and effect 

of different catalyst reduction temperatures are evaluated. Catalyst reusability and 

regeneration is conducted using the best catalyst at the best reaction condition.The 

deposition of carbon in spent catalyst is analysed using TGA, TPO, NH3-TPD, H2-TPR, 

XRD and FESEM-EDX.  
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