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Microwave freeze-drying (MFD) is the process that applies the microwave as the 
energy source to freeze-dry the food product. It is a complex process due to the 
combination of microwave power, vacuum pressure, drying time, material 
temperature and moisture content that affects the drying rate, product quality, 
and energy consumption. The proper control of MFD process conditions to 
achieve the optimum drying performance and quality of products is a challenge 
for researcher. Therefore, the objective of this research was to design the MFD 
process strategy called dynamic microwave logic control (DMLC) and integrated 
into the closed-loop control (CLC) system for improving the MFD performance. 
In the first part of this research, the uncertainty of the measurement system and 
moisture content calculation was evaluated following the Guide to the expression 
of uncertainty in measurement or GUM (ISO, 2008) to verify the accuracy of the 
measurement systems and the calculation of the moisture content. The results 
show that the uncertainty of temperature measurement is ±1.5oC or 3.9% from 
full scale range of 30 – 50oC, the uncertainty of weight measurement is ±0.347 
grams or 0.8% from full scale range of 0 – 150 grams, and the uncertainty of 
real-time moisture content calculation is ±1% (wet basis). As the results, the 
measurement systems were acceptable for using in the CLC system with no 
affected in terms of process control and product quality which confirm by the 
same later results in repetition of each treatment in this research. In the second 
part, the temperature variations during MFD of carrot slices was study by 
applying the closed-loop temperature control (CLT) system to control the carrot 
slices temperature in the final stage of MFD process. The MFD with CLT can 
improved the temperature control efficiency up to 60% compared to the MFD 
without CLT while provided the product quality similar to freeze drying (FD). 
Therefore, the CLT was applied to use with the MFD process for develop CLC 
system in the final part of this research. In the final part, the CLC system was 
developed to improve the MFD process and to examine the effects of a DMLC 
on the drying characteristics of MFD. The development consists of two sections. 
In the first section, the MFD process was examined to obtain the strategy for 
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drying the carrot slices using microwave powers of 100 W, 200 W, and 300 W, 
with a temperature profile of the sample from -15oC to 40oC, and the final 
moisture content of 6% (wet basis). In the second section, the DMLC was 
strategically developed based on a drying-phase configuration and dynamic 
control between the microwave power and real-time moisture content sensing to 
provide feedback to the CLC system. After developed the DMLC, it was 
integrated into the CLC system. The results showed that applying the DMLC into 
the control logics, the CLC can work properly in MFD process by shortened the 
drying time by 62.4% and 23.4% compared with those of FD and MFD with no 
DMLC, respectively. The MFD-DMLC provided the final product with a quality 
equivalent to that of the FD process but achieved the 44.3% better SMER, which 
indicated the more efficient drying process with lower energy consumption. The 
findings from this research suggested that the DMLC based on the moisture 
content and temperature of the samples could be combined with the MFD 
process to enhance its efficiency while maintaining the superior quality of the FD 
process.
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PEMBANGUNAN SISTEM KAWALAN GELUNG TERTUTUP UNTUK 
PENGERINGAN SEJUK BEKU GELOMBANG MIKRO HIRISAN LOBAK 

MERAH 
 

Oleh 
 

NARATHIP SUJINDA 

Mei 2021 

Pengerusi  : Profesor Rosnah Shamsudin, PhD 
Fakulti   : Kejuruteraan 
 

Pengeringan sejuk beku mikrogelombang (PSBM) adalah proses yang 
menggunakan mikrogelombang sebagai sumber tenaga untuk mengering sejuk 
bekukan sesuatu produk makanan. Ini adalah proses yang rumit kerana 
kombinasi antara kuasa mikrogelombang, tekanan vakum, waktu pengeringan, 
suhu bahan, dan kandungan lembapan, akan mempengaruhi kadar 
pengeringan, kualiti produk, dan penggunaan tenaga. Pengawalan keadaan 
proses PSBM yang betul bagi mencapai prestasi pengeringan yang optimum 
dan kualiti produk adalah satu cabaran bagi penyelidik. Oleh itu, objektif kajian 
ini adalah untuk mereka strategi bagi proses PSBM yang disebut sebagai 
kawalan logik mikrogelombang dinamik (KLMD) dan diintegrasikan ke dalam 
sistem kawalan gelung tertutup (KGT) untuk meningkatkan prestasi PSBM. Pada 
bahagian pertama penyelidikan ini, ketidakpastian berkenaan sistem 
pengukuran dan pengiraan kandungan lembapan telah dinilai mengikut Panduan 
penyataan ketidakpastian dalam pengukuran atau GUM (ISO, 2008) untuk 
mentahkikkan ketepatan sistem pengukuran dan pengiraan kandungan 
lembapan. Hasil kajian menunjukkan bahawa ketidakpastian pengukuran suhu 
adalah ± 1.5ºC atau 3.9% dari julat berskala penuh 30 - 50ºC, ketidakpastian 
pengukuran berat adalah ± 0.347 gram atau 0.8% dari julat berskala penuh 0 - 
150 gram, dan ketidakpastian pengiraan kandungan lembapan pada masa nyata 
adalah ± 1% (asas basah). Hasil kajian menunjukkan sistem pengukuran dapat 
diterima untuk digunakan di dalam sistem KGT tanpa menjejaskan kawalan 
proses dan kualiti produk yang kemudiannya disahkan oleh hasil keputusan 
yang sama dimana setiap rawatan diulangi dalam penyelidikan ini. Pada 
bahagian kedua, variasi suhu semasa PSBM irisan lobak merah dikaji dengan 
menerapkan sistem kawalan suhu gelung tertutup (KSGT) untuk mengawal suhu 
irisan lobak merah pada tahap akhir proses PSBM. PSBM dengan KSGT dapat 
meningkatkan kecekapan kawalan suhu sehingga 60% berbanding dengan 
PSBM tanpa KSGT, disamping dapat memberikan kualiti produk yang serupa 
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dengan produk yang menggunakan proses pengeringan sejuk beku (PSB). Oleh 
itu, KSGT digunakan bersama dengan proses PSBM untuk membangunkan 
sistem KGT di bahagian akhir penyelidikan ini. Pada bahagian yang terakhir, 
sistem KGT dibangunkan untuk meningkatkan proses PSBM, dan untuk 
memeriksa kesan KLMD kepada ciri-ciri pengeringan PSBM. Pembangunan ini 
terdiri daripada dua komponen. Pada komponen yang pertama, proses PSBM 
diperiksa bagi memperoleh strategi untuk mengeringkan irisan lobak merah 
dengan menggunakan kuasa mikrogelombang pada 100 W, 200 W, dan 300 W, 
dengan profil suhu sampel dari -15ºC hingga 40ºC, dan kandungan lembapan 
yang terakhir adalah 6% (asas basah). Pada komponen yang kedua, KLMD 
dibangunkan secara strategi berdasarkan konfigurasi fasa pengeringan dan 
kontrol dinamik antara kuasa mikrogelombang dan pengesan kandungan 
lembapan pada masa nyata untuk memberikan maklum balas kepada sistem 
KGT. Setelah pembangunan KLMD, ia diintegrasikan ke dalam sistem KGT. 
Hasil kajian menunjukkan bahawa penerapan KLMD ke dalam logik kawalan, 
KGT dapat berfungsi dengan baik dalam proses PSBM dengan memendekkan 
waktu pengeringan masing-masing dengan 62.4% dan 23.4% berdasarkan 
perbandingan diantara PSB dengan PSBM tanpa KLMD. PSBM-KLMD 
memberikan kualiti akhir produk dengan kualiti yang setara dengan proses PSB 
tetapi mencapai 44.3% lebih tinggi berbanding SMER. Hasil kajian ini 
mencadangkan bahawa KLMD berdasarkan kandungan lembapan dan suhu 
sampel dapat digabungkan dengan proses PSBM untuk meningkatkan 
kecekapannya sambil mengekalkan kualiti proses PSB yang unggul. 
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𝑣ௐ,௖௕ the degrees of freedom of the standard uncertainty of the load-
cell base on its calibration data 

𝑣ௐ,௥ௗ the degrees of freedom of the standard uncertainty of the weight 
reading 

𝑣ௐ,௥௘௦ the degrees of freedom of the standard uncertainty of the load-
cell resolution 

𝑣ௐ,௥௢௧ the degrees of freedom of the standard uncertainty of load-cell 
due to the effect of the rotation tray 

𝑣ௐ,௩௖ the degrees of freedom of the standard uncertainty of load-cell 
due to the effect of the vacuum pressure 

𝑊௜௡ the initial materials weight (grams) 

𝑊௥ the real-time materials weight (grams) 

𝑊௥ௗ the weight reading of the load-cell (grams) 

𝑊௫ the weight measurement  

𝑋ଶ the chi-square 

𝑋ே the input quantity 

𝑥ே the estimated input quantity  

𝑌 the output of measured quantity 

y the measurement result 

∆𝑇௖௕ the temperature correction of the OFT reading based on its 
calibration data (oC) 

∆𝑇௥௘௦ the temperature correction due to the resolution of the OFT (oC) 

∆𝑇௩௖ the temperature correction of the OFT due to the vacuum 
pressure (oC) 

∆𝑊௖௕ the weight correction of the load-cell based on its calibration data 
(grams) 

∆𝑊௥௘௦ the weight correction due to the resolution of the load-cell 
(grams) 

∆𝑊௥௢௧ the weight correction of the load-cell due to the effect of rotation 
tray (grams) 

∆𝑊௩௖ the weight correction of the load-cell due to the effect of the 
vacuum pressure (grams) 
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INTRODUCTION 

 

1.1  Significance of research 
 

Freeze-drying (FD) has been suggested as a way for the storage of fruits and 
vegetables in the food industries. This method is considered the most 
appropriate for retaining the organoleptic and nutritional properties compared to 
other typical drying methods. Nonetheless, the disadvantage of FD is the time-
consuming drying period that utilizes much energy. It has a high operation cost 
and high energy consumption, resulting from the inadequate heat supply 
operated through a heated plate from the exterior to the interior of the material 
being dried (Cao et al., 2018b; Wu et al., 2020). Hence, decreases in the drying 
period and energy usage, and retaining the product’s quality are significant 
concerns that need to be resolved. 
 

Microwave freeze-drying (MFD) is a drying process that applies microwave 
energy as a heating source to the FD process (Duan et al., 2010a). Thus, 
microwave energy offers an alternative heat source to reduce the drying period 
and energy usage (Cao et al., 2018a; Huang et al., 2009) while considerably 
increases the drying rate (Ozcelik et al., 2019) due to rapid heating in materials 
through the use of microwave energy. The heat generation by microwave energy 
in the materials involves two mechanisms: ionic polarization and dipole rotation. 
These mechanisms occur simultaneously, as the electrical oscillation induces 
the ions to align the ions within the electromagnetic field. The electromagnetic 
energy in this process is converted to kinetic energy and absorbed in all parts of 
the material (Song et al., 2018; Varith et al., 2007) which is influenced by the 
dielectric properties of food materials. For this reason, the MFD process can 
reduce the drying time by half (Duan et al., 2010b; Wang et al., 2010a) and up 
to 30% of the energy consumption while obtaining a product quality similar to FD 
(Jiang et al., 2013). Thus, MFD is an effective drying method that could solve the 
weakness of traditional FD. Moreover, microwave heating can eliminate 
microorganisms as well (Duan et al., 2007a) 
 

In the MFD process, the complex parameters among the microwave power 
levels, moisture content, material temperature, and vacuum pressure affect the 
drying rate, product quality, and energy consumption. The higher microwave 
power could reduce the drying time and increase the drying rate by more than 
the lower power, but the higher microwave power could also result in low product 
quality (Ambros et al., 2018; Duan et al., 2007a; Wang et al., 2009). Additionally, 
the relationship between the microwave power levels, moisture content, and 
vacuum pressure level would need to be considered for the designing of the MFD 
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process. This was because the possibility of corona discharging during the 
process could consume excessive microwave energy, burn the drying material, 
and damage the magnetrons (Duan et al., 2010b). Thus, it would be necessary 
to set the vacuum pressure to a range of 50 - 100 Pa to ensure that plasma 
discharge would not occur during the MFD process (Duan et al., 2008b; Li et al., 
2019; Ren et al., 2015; Wang et al., 2009). The relationship among the material 
temperature, microwave power level, and moisture content of the material is also 
essential. This would affect the efficiency of the MFD process and the product 
quality of the result (Duan et al., 2010b). Ren et al. (2015) reported using a step-
down microwave power loading scheme with mushrooms to be microwave 
freeze-dried to enhance their quality. Besides, Liu et al., 2017 found that the MFD 
process with a dynamic microwave loading scheme increased the mushrooms’ 
porosity and shortened the drying time. According to dielectric properties, a 
multistage microwave loading scheme was also reported by Duan et al., 2012 
and Li et al., 2019. These were able to reduce the drying time and obtain a better 
quality of dried products. 
 

Even though the multistage microwave loading schemes proposed by Liu et al. 
(2017) and Duan et al. (2012) were not reported as real-time process control, 
they have shown a potential to the MFD process achieve better product quality 
and drying efficiency. Furthermore, Sujinda et al. (2020) examined MFD using a 
closed-loop temperature control system that incorporated a multistage 
microwave loading scheme. The results showed some improvement in the MFD 
process, which was denoted in this work as a dynamic microwave logic control 
(DMLC). There were two main types of loop control in the MFD process: the 
open-loop and closed-loop controls. The open-loop control system is a single 
communication format with no feedback to control the MFD process and relies 
upon the output of the process; for example, the on-off control of a magnetron 
with a fixed timing cycle in a household microwave oven. On the other hand, the 
closed-loop control (CLC) system is a process control with the feedback of the 
output, e.g., moisture content or temperature of the product, to modify the input; 
such as the power level of the microwave, so to achieve better efficiency in the 
drying process (Drof and Bishop, 2017; Mayr and Bryant, 1971) 
 

To develop the condition of the MFD process and improve the efficiency of the 
CLC system, a study of the drying kinetics would be useful for understanding the 
MFD profiles and their characteristics and to optimize the MFD to maximize the 
quality of the products. The studies on MFD of cabbage by Duan et al. (2007) 
and MFD of onion slices by Abbasi and Azari, 2009 have proven that the findings 
from drying kinetics could be used as the basis for the optimization of the MFD 
process; such as increasing the microwave power in the first stage of MFD was 
able to increase the drying rate, and decreasing the microwave power in last 
stages of MFD was able to maintain the product quality. Moreover, moisture 
diffusivity was another index to indicate the efficiency of the MFD process. Past 
studies have also shown effective diffusivity in the MFD process due to the 
altered appearance of the drying material, e.g., porosity and shrinkage of the 
sample. Because of the excessive heat levels, while conducting MFD, the 
samples experienced a high internal vapor gradient that increased the pore 

© C
OPYRIG

HT U
PM



 
3 

 

formation and moisture diffusivity (Feng et al., 2001; Narjes et al., 2018; Sharma 
and Prasad, 2001; Wang et al., 2007a). Thus, using drying kinetics and moisture 
diffusion were proposed to develop the CLC system, which was able to explain 
the phenomena of the MFD process in each stage. If the focus on the drying 
kinetics and moisture diffusion were intended to select appropriate drying 
conditions and control MFD processes, a better understanding of the drying rate 
would help develop a CLC system to enhance the MFD process. 
 

Therefore, this research aimed to develop the logical design of the DMLC for the 
CLC-MFD. The study involved developing a MFD drying strategy that led to the 
design of the CLC system with the DMLC in the later part. As a food model, 
Carrot slices were used in this work to evaluate the energy consumption and 
product quality to match that of the CLC-MFD. The researcher’s goal was to 
enhance the efficiency of MFD and to improve the product quality when 
compared to that of the FD process. 
 

1.2  Objective of research 
 

1. To investigate the temperature variation during MFD of carrot slices 
using a closed-loop temperature control system (CLT) to improve 
temperature variations and study their effects on the product quality. 

2. To develop a closed-loop control (CLC) system to improve the 
microwave freeze-drying (MFD) process. 

3. To examine the effects of a dynamic microwave logic control (DMLC) on 
the drying characteristics of MFD. 

 

1.3  Scope of research 
 

This research involves designing a DMLC and developing a suitable CLC of 
microwave power levels in the range of 100 – 300 W at frequency 2.45 GHz for 
the MFD process. The MFD process was examined to obtain the drying strategy 
on the carrot slices using microwave power of 100, 200, and 300 W with a 
temperature profile of the sample range from -15oC to 40oC. The material 
thickness was 10 mm, the diameter of about 35 mm, the material weight of 100 
g, the constant vacuum pressure of 100 Pa, and a cold trap temperature of -
40oC. The final moisture content of carrot slices for all MFD drying conditions and 
FD was 6% (wet basis). The DMLC was strategically developed based on the 
drying kinetics and drying characteristics of the MFD process. The drying time, 
color, texture, rehydration ratio, shrinkage, and energy consumption were 
compared with the FD to assess the performance of CLC-MFD. 
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