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All-Optical Orthogonal Frequency Division Multiplexing (AO-OFDM) modulation 

technique has attracted significant attention of the optical communication community for 

the high speed transmission systems. This research investigates the effects of the fiber 

nonlinear impairments on the performance of the AO-OFDM transmission systems and 

proposes three AO-OFDM systems which have high tolerance against the nonlinear 

impairments. The first AO-OFDM system employs Differential Quadrature Phase Shift 

Keying (DQPSK), while the second and third systems employ m-array Quadrature 
Amplitude Modulation (m-QAM), and Non Return to Zero (NRZ) DQPSK, respectively.  

Each proposed system employs 29 subcarriers which are generated by an Optical Frequency 

Comb Generator (OFCG). The generated signals are transmitted over the transmission link 

and received by the coherent receiver. The analytical model of each system is developed to 

investigate the effects of various parameters such as the transmission distance, number of 

fiber spans, fiber dispersion, number of subcarriers, and power of subcarrier on the 

Nonlinear Phase Noise (NLPN) which induced by the fiber nonlinearity effects. The impacts 

of the NLPN due to Four-Wave Mixing (FWM), Self-Phase Modulation (SPM), and Cross-

Phase Modulation (XPM) on the performance of the proposed systems are also investigated. 

The proposed systems are numerically simulated at the symbol rate of 25 Gsymbol/s. The 
optical multi-carrier signals were generated, modulated, de-correlated, and detected by the 

VPI transmission maker software 9.0. The received signals were linked to Matlab software 

and processed by using the Digital Signal Processing (DSP) algorithm in order to 

compensate the effects of the nonlinear impairments and improve the performance of the 

transmission system. The digital processing of the detected signals and Bit Error Rate (BER) 

calculation are performed by using DSP algorithm in Matlab software. In order to quantify 

the effectiveness of the proposed techniques, three AO-OFDM systems are demonstrated 

numerically before and after employing the nonlinearity mitigation techniques. The total 

phase noise variances, BER, and Error Vector Magnitude (EVM) are investigated to explore 
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the effectiveness of the proposed technique. The results show that after using the phase noise 

mitigation technique, the EVM and BER are decreased by 20% and 7%, respectively. In 

addition, by employing the proposed technique the total phase noise variance is reduced by 

50%. The simulation results clearly indicate that the constellation diagrams of the proposed 

system become more squeezed around the ideal constellation and the received signals are 

closer to the ideal point compared with the original system. That means, after employing 
the proposed techniques, the received signals have higher tolerance towards the fiber 

nonlinear impairments as compared to the original system. The obtained results show the 

significant improvements on the transmission performance of the proposed system after 

employing the post-compensation DSP or Optical Phase Conjugation (OPC) module. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

ANALISIS SIMULASI PAMPASAN KESAN KETAKLINEARAN DALAM 

SISTEM SEMUA OPTIK-PEMULTIPLEKSAN PEMBAHAGIAN FREKUENSI 

ORTOGON (AO-OFDM) 

Oleh 

ALI AZARNIA 

Ogos 2020 

Pengerusi :   Ratna Kalos Zakiah bt. Sahbudin, PhD 

Fakulti :   Kejuruteraan 

Teknik modulasi semua optik-pemultipleksan pembahagian frekuensi ortogon (AO-

OFDM) telah menarik perhatian penting komuniti komunikasi optik untuk sistem 

penghantaran berkelajuan tinggi. Penyelidikan ini mengkaji kesan kemerosotan gentian 

tidak linear terhadap prestasi sistem penghantaran AO-OFDM dan mencadangkan tiga 

sistem AO-OFDM yang mempunyai toleransi yang tinggi terhadap kemerosotan tidak 

linear. Sistem AO-OFDM yang pertama menggunakan Kebezaan Kudratur Kekunci 

Anjakan Fasa  (DQPSK), manakala sistem kedua dan ketiga menggunakan modulasi 
Kuadratur Amplitud Susunan (m-QAM), dan tidak kembali ke sifar  (NRZ) DQPSK, 

masing-masing.  

Setiap sistem yang dicadangkan menggunakan 29 sub-pembawa yang dihasilkan oleh 

satu Penjana Sisir Frekuensi Optik (OFCG). Isyarat yang dihasilkan dihantar melalui 

pautan penghantaran dan diterima oleh penerima koheren. Model analisis setiap sistem 

dibangunkan untuk mengkaji kesan pelbagai parameter seperti jarak penghantaran, 

bilangan jarak gentian, penyebaran gentian, bilangan sub-pembawa, dan kuasa sub-

pembawa ke atas Hingar Fasa Tidak Linear (NLPN) yang disebabkan oleh kesan gentian 

tidak linear. Kesan NLPN disebabkan oleh Pencampuran Empat Gelombang (FWM), 

Modulasi Fasa Kendiri (SPM), dan Modulasi Fasa Silang (XPM) ke atas prestasi sistem 
yang dicadangkan juga disiasat. Sistem yang dicadangkan disimulasikan secara 

berangka pada kadar simbol 25 Gsimbol/s. Isyarat pelbagai-pembawa optik dijanakan, 

dimodulasi, de-korelasi, dan dikesan oleh perisian VPI transmission maker. Isyarat-

isyarat yang diterima dihubungkan ke perisian Matlab dan diproses dengan 

menggunakan algoritma Pemprosesan Isyarat Digit (DSP) untuk mengimbangi kesan 

tidak linear dan meningkatkan prestasi sistem penghantaran. Pemprosesan digit isyarat 

yang dikesan dan pengiraan Kadar Ralat Bit (BER) dilakukan dengan menggunakan 

algoritma DSP dalam perisian Matlab. Untuk mengukur keberkesanan teknik yang 

dicadangkan, tiga sistem AO-OFDM ditunjukkan secara berangka sebelum dan selepas 
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menggunakan teknik pengurangan tidak linear. Jumlah varians hingar fasa, BER dan 

Ralat Magnitud Vektor (EVM) disiasat untuk meneroka keberkesanan teknik yang 

dicadangkan. Keputusan menunjukkan bahawa selepas menggunakan teknik 

pengurangan hingar fasa, EVMs menurun sebanyak 20% dan BER menurun sebanyak 

7%. Sebagai tambahan, varians kebisingan fasa tidak linear menurun sebanyak 50%. 

Hasil simulasi dengan jelas menunjukkan bahawa gambarajah gugusan sistem yang 
dicadangkan menjadi lebih tertumpu di sekitar gugusan unggul dan isyarat yang diterima 

lebih dekat ke titik unggul berbanding dengan sistem asal. Ini bermakna, selepas 

menggunakan teknik yang dicadangkan, isyarat yang diterima mempunyai toleransi 

yang lebih tinggi terhadap kemerosotan gentian tidak linear berbanding dengan sistem 

asal. Hasil yang diperolehi menunjukkan peningkatan yang ketara terhadap prestasi 

penghantaran sistem yang dicadangkan selepas menggunakan modul pasca-pampasan 

DSP atau konjugat fasa optik (OPC). 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction 

This chapter begins with an introduction to the background of the study containing 

describing the optical communication networks and reviews the recent progress in the 

high bit rate transmission systems. It provides an overview of the existing optical 

communication techniques, covering conventional Optical Orthogonal Frequency 

Division Multiplexing (O-OFDM), and All-Optical OFDM (AO-OFDM) techniques. In 

addition, this chapter explores the impairments which limit the performance of the AO-

OFDM transmission systems and demonstrates various methods to improve the 
performance of the transmission system.   

1.2 Background of Study 

System vendors and the network operators are trying to increase the Spectral Efficiency 

(SE), channel capacity, and the flexibility of the optical networks to produce high-speed 
transmission applications. The optical transmission systems can gain this demand due to 

the ability to transmit the signal with the required data rate, specifically with evolving 

the multichannel optical communication systems such as Time-Division Multiplexing 

(TDM), Wavelength Division Multiplexing (WDM), and Orthogonal Frequency 

Division Multiplexing (OFDM). TDM, WDM, and OFDM are three common 

multiplexing schemes in the fiber communication systems, which are employed in many 

transmission applications (Yao et al., 2015). The OFDM systems split a high data rate 

data-stream into multiple low-rate data-streams that can be transmitted simultaneously 

over both the wired and wireless transmission links. The OFDM systems are able to 

transmit a high bit rate signal over long distance and they have high interest between the 

other multichannel systems due to high SE. OFDM is one of the most successful 
technologies for high-speed optical communication systems due to its high tolerance 

against dispersion (Hillerkuss et al., 2011). This modulation technique attracted 

significant attention from the optical communication community to use in large capacity 

transmission networks. OFDM is used to divide a high data rate signal into multiple 

lower speed signals which leads to the Inter-Symbol Interference (ISI) reduction and 

decreases the complexity of the receiver (Hillerkuss et al., 2011). 

The OFDM modulation scheme has considerable advantages such as immunity to 

Polarization Mode Dispersion (PMD) and Chromatic Dispersion (CD). The OFDM 

subcarriers are orthogonal to each other, which make OFDM systems more spectrally 

efficient than other types of communication techniques. In addition, due to employing 

the high number of subcarriers in OFDM systems, these systems can transmit the high 

speed signals over the longer transmission distances as compared with WDM or TDM 
systems (Hillerkuss et al., 2011). 
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Although OFDM systems have many advantages, they suffer from various impairments 

such as the Phase Noise (PN), carrier frequency offset, and high Peak-to-Average Power 

Ratios (PAPR). These impairments destroy the orthogonality between subcarriers, which 

results in Inter-carrier Interference (ICI). For instance, PN makes phase rotation between 

subcarriers which leads to destroy the orthogonality between them and decrease the SE 

in OFDM systems. Because of the high resilient to channel dispersion, this technology 
has been proposed to use in the optical communication systems. Up to date, two types 

of the OFDM systems have been implemented in the optical domain. The first type is 

conventional optical OFDM systems, and the other one is called AO-OFDM systems. 

1.2.1 Conventional Optical OFDM Systems 

The key idea behind O-OFDM technology is to split a high data rate stream into multiple 

low rate data-streams in optical domain which are transmitted simultaneously over an 

optical fiber transmission link (Omiya et al., 2013). In O-OFDM transmission systems, 

all the subcarriers are generated electronically and modulated in the optical domain 

(Omiya et al., 2013). The bit rates of the O-OFDM transmission systems are limited by 

electronics process speed and bandwidth of the Digital to Analog and Analog to Digital 

(DAC/ADC) conversions. The O-OFDM systems have high tolerance towards linear 

fiber impairments such as PMD and CD, but they highly suffer from electronic speed 

limitations (Hillerkuss et al., 2011).  

1.2.2 AO-OFDM Systems 

In order to avoid the electronic bottleneck and overcome the bandwidth limitation in the 

conventional O-OFDM systems, the AO-OFDM technique has been proposed for high-

speed optical data transmission. The AO-OFDM systems are employing the Optical Fast 

Fourier Transform (OFFT) instead of electrical FFT, and the Optical Inverse Fast Fourier 

Transform (OIFFT) is implemented in the optical domain (Hichem et al, 2018). In the 
AO-OFDM systems, the subcarriers are generated, modulated, and also transmitted in 

the optical domain. It leads to overcome the electronics speed limit which exists in the 

conventional O-OFDM systems. The AO-OFDM technique also can overcome the 

system capacity limit which exists in the conventional O-OFDM. Therefore, AO-OFDM 

systems can transmit the high-speed signals over the long distances, and they are more 

spectrally efficient compared to conventional OFDM systems. In the AO-OFDM 

transmission systems, the sub-channels are generated directly in the optical domain with 

larger power efficiency compared to the conventional O-OFDM systems. In the AO-

OFDM systems, the OFDM subcarriers are optically generated by utilizing the optical 

components such as the Optical Frequency Comb Generator (OFCG) and each subcarrier 

is modulated by an external modulator such as Differential Quadrature Phase Shift 

Keying (DQPSK), Quadrature Amplitude Modulation (QAM), and On-Off Keying 
(OOK) (Shahad et al., 2020). Although the AO-OFDM systems have several advantages 

for the high-speed optical data transmission, they highly suffer from nonlinear 

impairments such as Nonlinear Phase Noise (NLPN).  © C
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1.3 Problem Statement 

In optical communication systems, the nonlinear effects occur at the transmitter, fiber 

channel, and receiver. At the transmitter side, when a Mach–Zehnder Modulator (MZM) 

is used to modulate the optical subcarrier by the electrical data, its transfer function is 

not linear. When the signal is propagating through the transmission link, several 

nonlinear impairments such as the Kerr effect and inelastic scattering are originated in 

the optical fiber link and degrade the performance of the transmission system.  

The performance of an AO-OFDM system is determined by the orthogonality among the 

subcarriers. In an AO-OFDM system, the NLPN creates a Phase Rotate Term (PRT) on 

each subcarrier and the PRT leads to the destruction of the orthogonality among 
subcarriers. Therefore, in order to improve the performance of the transmission system, 

the NLPN must be mitigated. In addition, at the receiver side, the nonlinearity may occur 

in the photo-detector. The NLPN is the main problem facing the researchers in AO-

OFDM transmission systems, which is caused by the nonlinear fiber impairments such 

as the Self Phase Modulation (SPM), Cross-Phase Modulation (XPM), and Four-Wave 

Mixing (FWM). The NLPN significantly limits the bit rate, system capacity, and 

performance of the transmission system. This research evaluates the parameters such as 

the transmission distance, laser phase noise, number of subcarriers, the power of 

subcarriers, and number of amplifiers which govern the nonlinear impairments by using 

the numerical simulation. In this research, three efficient AO-OFDM schemes with the 

nonlinear mitigation techniques are proposed for the high-speed optical transmission 
system. In order to improve the performance of the AO-OFDM transmission systems, a 

new approach is proposed for mitigating the nonlinear fiber impairments and 

demonstrates the proposed system setup by aiding the numerical simulation using the 

Virtual Photonics Integrated (VPI) software 9.0. 

1.4 Motivation of the Study  

Nonlinear impairments limit the performance of the optical transmission systems and 

degrade the quality of the transmitted signals. In order to improve the performance of 

the optical transmission systems, the effects of the nonlinear impairments must be 

mitigated. The purpose of this research is to explore the effects of the nonlinear fiber 

impairments on the quality of the transmitted signals in the AO-OFDM transmission 

systems. This study aims to estimate the impacts of the fiber nonlinear impairments on 

the performance of various AO-OFDM schemes, and presents a technique to mitigate 

the fiber nonlinear impairments in the AO-OFDM transmission systems. In addition, 

three AO-OFDM schemes are demonstrated by employing the proposed techniques. This 

research also intends to analyze the effects of the nonlinear impairments on the 

performance of the proposed AO-OFDM systems in order to explore the efficiency of 
the proposed techniques in mitigating the nonlinear fiber impairments. © C
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1.5 Objectives of the Study 

This study proposes the new and efficient techniques to mitigate the nonlinear 

impairments and improve the performance of the AO-OFDM transmission systems. This 

study embarks on the following objectives: 

 

a) To implement three efficient schemes of the AO-OFDM transmission systems 

and investigate the performance of the systems in presence of the fiber 

nonlinear impairments. 

 

b) To develop the analytical model of the DQPSK AO-OFDM, 4/16 QAM AO-
OFDM, and Non Return to Zero (NRZ)-DQPSK AO-OFDM systems.  

 

c) To investigate the nonlinear impairments and mitigate the effects of phase noise 

in the AO-OFDM transmission systems.  

 

 

1.6 Scope of the Study  

This research explores the fundamental principles of the existing multichannel optical 

communication methods and introduces various schemes of the AO-OFDM systems. It 

reviews the recent advances in compensating the fiber nonlinearity in the optical 

transmission systems and presents various existing techniques on mitigation of the 

nonlinear fiber impairments in the AO-OFDM systems. It analyses the effectiveness of 

the reported techniques on mitigation of the fiber nonlinear impairments in the AO-

OFDM systems. It investigates the effects of various parameters such as the transmission 

distance, dispersion, number of subcarriers, and the power of subcarrier on the 
performance of the AO-OFDM systems. This research explains how to investigate the 

proper phase correction factor in order to compensate the effects of the NLPN on the 

performance of the AO-OFDM systems electrically. Therefore, an efficient nonlinearity 

mitigation technique is proposed, and the system setup is numerically simulated by using 

the VPI transmission maker software 9.0. The investigations of the proposed techniques 

are carried out for both the DQPSK and m-array Quadrature-Amplitude Modulation (m-

QAM) modulation formats. In order to show the efficiency of the proposed techniques 

to improve the performance of the AO-OFDM system, the AO-OFDM transmission 

system is simulated before and after employing the proposed techniques and the obtained 

results are compared to each other. 

1.7 Thesis Organization 

This research is organized into five chapters where  

 

Chapter 1 introduces the basic principle of the AO-OFDM systems and explores various 

types of the impairments. This chapter evaluates the effects of the fiber impairments on 

the capacity and performance of the AO-OFDM transmission systems. Also, the problem 
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statement, research objectives, motivation of study, and scope of study are presented in 

this chapter. 

Chapter 2 explores the fundamental principles of the optical communication techniques, 

which have been reported in recent years. In addition, this chapter introduces various 

schemes of the AO-OFDM systems, which have been proposed in the recent years. In 

this chapter, the nonlinear fiber impairments are briefly discussed, and several 
approaches to mitigate the nonlinearity in the AO-OFDM transmission systems are 

explored. This chapter briefly explores the effects of the nonlinear fiber impairments on 

the transmitted signals in the AO-OFDM transmission systems. Moreover, this chapter 

introduces various evaluation methods to investigate the effects of the nonlinear 

impairments on the performance of the AO-OFDM systems. This chapter also explores 

several techniques to investigate the efficiency of the nonlinearity compensation 

techniques in mitigating the effects of the nonlinear fiber impairments on the 

performance of the AO-OFDM systems.  

Chapter 3 presents three efficient schemes of the AO-OFDM systems and proposes two 

techniques to mitigate the effects of the phase noise on the performance of the systems. 

This chapter describes the proposed system setups containing the schematic diagrams of 

the transmitter, fiber link, and receiver. The proposed AO-OFDM transmission systems 
are successfully demonstrated by simulating the schematics. For each proposed AO-

OFDM system, the numerical simulation is performed by VPI software 9.0. The signals 

are generated, modulated, transmitted, and received by using VPI software. Afterwards, 

the received signals were linked and analyzed with Matlab software in order to process 

the signals and perform BER calculation. In addition, the phase correction algorithm and 

phase conjugation techniques have been proposed in order to improve the performance 

of the AO-OFDM systems. The proposed techniques are demonstrated analytically by 

Matlab software.  

Chapter 4 presents the obtained simulation results before and after employing the 

nonlinearity mitigation techniques, and investigates the performance of the implemented 

AO-OFDM systems by the numerical simulation. The obtained simulation results are 
analyzed to explore the efficiency of the proposed techniques. This chapter also 

estimates the phase noise variances, Bit Error Rate (BER), and Error Vector Magnitude 

(EVM) in order to quantify the effectiveness of the proposed phase noise mitigation 

technique.  

Chapter 5 contains the conclusion, future works, and contribution of the research field. 
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