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Multilevel Inverter (MI) is a device to convert Direct Current (DC) power to 

Alternating Current (AC) power. The MI is widely used in renewable energy 

applications such as Photovoltaic (PV) solar cells and wind turbine systems. The main 

challenges of MIs design are reducing the huge number of Component Count (CC), 

Total Harmonic Distortions (THD) value and power losses. These challenges are 

interconnected with the operation challenges such as the types of control algorithms 

and switching frequencies of MI which overall effect on the MI circuit design and 

increases the design complexity. The MI can be designed to generate a three-phase 

output voltage. However, most researchers are more interested in reducing the 

component count as a single-phase design and then tripled the circuit to generate a 

three-phase output voltage. Three-Time-Repetition (TTR) is a process of replicating the 

circuit three times to produce a three-phase output voltage from a single-phase circuit 

that has contributed to thrice the number of CC. 

 

 

Two proposed design called Voltage Selection Multilevel Inverter Matrix Converter 

(VSMIMC) and H-bridge Multilevel Inverter Matrix Converter (HMIMC) was used to 

solve the TTR problem. The Matrix Converter (MC) was used to share the three input 

signals into three phase output voltage. For VSMIMC the three input signals of MC 

ware used as following Maximum Positive Voltage (MPV), Zero Voltage (ZV) and 

Maximum Negative Voltage (MNV). While for HMIMC, the three input signals are 

Upper Positive (UP), Middle Positive (MP) and Lower Positive (LP). 

 

 

The operation of VSMIMC and HMIMC circuits are sophisticated when both of 

multilevel inverter and matrix converter are connected in series. Therefore, a new 

proposed control system called Voltage Selection Algorithm (VSA) was formulated to 

simplify the operation of the proposed circuit. In addition, mix-mode operation using 

VSA and Nearest Level Control (NLC) was tested to decrease the total harmonic 

distortions and check the performance flexibility of VSA operation. 
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The comparison with others’ published circuits showed that the proposed VSMIMC 

and HMIMC had reduced the component count of MI at several different voltage 

levels. The VSMIMC and HMIMC circuit designs at twenty-five levels had the same 

number of switches, where below twenty-five levels, the VSMIMC had the lowest 

number of CC. However, for above twenty-five levels, the HMIMC had the lowest 

number of CC. The VSMIMC and HMIMC had reduced the CC switches by 75% 

compared to the traditional MI and 30% compared to the modern designs of MI. The 

seven levels circuit design of HMIMC gives Total Harmonic Distortion results of 

13.38% on simulation model and 12.9% on hardware model. 
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Penyonsang Berbilang Aras (PBA) adalah satu peranti untuk menukar kuasa Arus 

Terus (AT) ke kuasa Arus Ulang-alik (AU). PBA digunakan secara meluas dalam 

penggunaan tenaga boleh diperbaharui seperti sel suria Photovolta dan sistem turbin 

angin. Cabaran utama dalam rekaan PBA adalah penggurangan jumlah yang besar 

Bilangan Komponen (BK), Herotan Harmonik Seluruh (HHS) dan lesapan kuasa. 

Cabaran ini saling terhubungan dengan cabaran operasi seperti jenis algorithma 

kawalan  dan frekuensi pensuisan PBA yang mana keseluruhan memberi kesan kepada 

rekaan litar PBA dan meningkatkan kerumitan rekaan. PBA boleh direka untuk 

menjana voltan keluaran tiga fasa. Namun, kebanyakan penyelidik lebih berminat 

untuk menggurangkan bilangan komponen sebagai rekaan satu fasa dan menggandakan 

litar tiga kali untuk menjana voltan keluaran tiga-fasa. Penggulangan-tiga-kali (PTK) 

ialah satu proses mereplika litar sebanyak tiga kali untuk menghasilkan voltan keluaran 

tiga-fasa daripada litar satu fasa yang mana akan menyumbang kepada jumlah bilangan 

komponen tiga kali ganda. 

Dua cadangan rekaan bernama Penyongsang Berbilang Aras Penukar Matrik Voltan 

Pemilihan (PBAPMVP) dan Penyongsang Berbilang Aras Penukar Matrik Jejambat-H 

(PBAPMJ) telah digunakan untuk menyelesaikan masalah PTK. Penukar Matrik (PM) 

digunakan untuk berkongsi tiga isyarat masukan kepada voltan keluaran tiga fasa. Bagi 

PBAPMVP ketiga-tiga isyarat masukan PM digunakan sebagai Voltan Maksimum 

Positif (VMP), Voltan Sifar (VS) dan Voltan Maksimum Negatif (VMN) Manakala 

bagi PBAPMJ, ketiga-tiga isyarat masukan  adalah Positif Atas (PA), Positif Tengah 

(PT) dan Positif Bawah (PB).  

Operasi litar PBAPMVP dan PBAPMH adalah canggih apabila kedua-dua 

penyongsang berbilang aras dan penukar matrik bersambung secara sesiri. Oleh itu, 

satu sistem kawalan baru dicadangkan bernama Algorithma Voltan Pemilihan (AVP) 

diformulasikan untuk meringkaskan operasi litar yang dicadangkan itu. Tambahan lagi, 
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operasi mod bercampur menggunakan AVP dan Kawalan Aras Terdekat (KAT) diuji 

untuk menggurangkan herotan harmonic seluruh dan memeriksa prestasi fleksibiliti 

operasi AVP. 

Perbandingan dengan litar terbitan lain menunjukkan bahawa PBAPMVP dan 

PBAPMH yang dicadangkan telah menggurangkan bilangan komponen PBA pada 

beberapa aras voltan yang berbeza. Rekaan litar PBAPMVP dan PBAPMH pada aras 

dua puluh lima mempunyai jumlah suis yang sama, di mana di bawah aras dua puluh 

lima, PBAPMVP mempunyai bilangan komponen yang terendah. Namum, untuk aras 

di atas dua puluh lima, PBAPMH mempunyai bilangan komponen yang terendah. 

PBAPMVP dan PBAPMH telah menggurangkan suis BK sebanyak 75% berbanding 

PBA tradisional dan 30% berbanding rekaan PBA moden. Rekaan litar aras tujuh 

memberi keputusan Herotan Harmonik Seluruh sebanyak 13.38% untuk model 

simulasi dan 12.9% untuk model perkakasan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Nowadays, power electronics converters are widely used in generation, transmission 

and distribution of electricity. In a generation, renewable energy systems need the 

power electronics converters to convert Direct Current (DC) power to Alternating 

Current (AC) power in order to make a suitable connection with the electrical grid. The 

on-grid connection of renewable energy devices have decreased the cost of the 

renewable energy system set up by excluding the battery and it also helped in 

electricity bills saving [1]. High power electronics converters have also been utilized in 

transmission system through the employment of High Voltage Direct Current (HVDC) 

system [2] and Flexible Alternating Current Transmission Systems (FACTS) [3] 

devices where power electronics converters have helped in transmitting bulk power 

over very long distances at higher efficiency, lower losses, and increased the quality of 

supply and stability respectively. While in distribution, power electronics converters 

are used in filtration and measurement such as shunt active power filter and smart 

meter applications [3], [4]. 

Many of the electrical loads now resort to adopting power electronics converters to 

regulate the load to operate at high quality and efficiency in applications such as 

lighting, heating and cooling to name a few. In general, power electronics converters 

are used in various area of electricity to support the system with smart operations and 

high efficiency. This has brought the attention to the need to decrease the generation 

cost and limit the demands load. These issues have been worked on in several different 

approaches. For example, first, through the usage of renewable energy technologies 

such as solar cells and wind turbine electrical generations. Second, through the use of 

energy-saving devices or applications such as Light-emitting diode (LED) light, where 

each LED light contains a power electronics converter to convert the power from AC to 

DC. Third, through government policies or incentives, where the government support 

publics and companies to use hybrid or Electrical Vehicles (EV), as power electronics 

converters are used to control and operate the electric motors. There are so many more 

measures taken and not limited to those three.  

One of power electronics converters that has gained much attention is Multilevel 

Inverter (MI), a converter that converts DC power to AC power and has found 

applications in a wide range covering from low, medium and high voltage applications. 

Many recent applications have included MI in their designs such as the Internet of 

Things (IoT) [5], sustainable energies [6], Electrical Vehicles (EVs) [7] and smart grid 

[8][9]. This means any simple development or improvement in MI circuit design or 

operation control, it can be directly applied in top current research applications, or in 

the applications of generation, transmission and distribution of electricity, where some 

government benefits can be established. 
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The first generation of MI includes diodes such as diode clamped MI and another 

design uses capacitors such as flying capacitors MI. The recent designs of MIs focus on 

the active design of MI, where non-clamped diodes or capacitors are used. The active 

MI devices reduce the power losses and the cost so that the researchers preferred to use 

this type of designs. The cascaded H-bridge MI is also one of the first generations of 

MI, where in this design an isolated transformer is needed. With the inclusion of 

transformers in the MI design has increased the cost, weight, size and power losses. 

Therefore, several transformerless MI designs are studied and applied in several types 

of applications. 

 

 

Another power electronics converter that has gained popularity is Matrix Converter 

(MC), an AC to AC power electronics converter and has been widely used in the motor 

control applications. The traditional MC has nine interconnected bidirectional switches 

distributed among 3-by-3 matrix shape, with three input signals and three output 

signals, where any output signal can be connected from any input signal. This is one of 

the main features of MC that is sharing the input signals to any output loads. 

  

 

1.2 Problem Statement 

 

There are many problems and challenges faced for MI circuit design to be more 

feasible in medium and high voltage applications. Based on the literature reviews, there 

have been found four main problems of MI to be highlighted and then discussed. 

 

 

First, huge number of switches used in MI has made this to be one of the main 

challenges in MI as the cost and power losses can be greatly increased. Furthermore, 

the single-phase MI switches are tripled in order to produce three-phase output voltage, 

which has made many researchers to focus on reducing the component count (CC) 

switches. Moreover, the designs that use Bidirectional Switch (BDS) instead of 

Unidirectional Switch (UDS), means that the researchers need to double the number of 

switches, therefore, making their designs more complicated and intricate [10], [11]. 

 

 

Second, the Total Harmonics Distortion (THD) value still pose a problem eventhough 

MI has been used. THD reduction to be within the standard values by increasing the 

number of output voltage levels is an inefficient solution. Therefore, in the design of 

MI, the number of levels, the type of operation controls and the switching frequency 

values that are required, should be balanced and taken into account of each other [12], 

[13].  

 

 

Third, the power losses in the MI circuit can be handled in two ways; the number of 

switches count and the triggering frequency value. The power losses increased when 

the number of switches and the triggering frequency are increased. Furthermore, the 

power losses of BDS can be higher than the UDS [14]–[16]. 

 

 

Lastly, fourth, the operation of MI is divided into two types; Low Switching Frequency 

(LSF) and High Switching Frequency (HSF). HSF consumes higher power losses by 
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the switches, which will decrease the efficiency of the total power converted, especially 

when a high number of MI switches are used. Additional losses are consumed when the 

BDS is used instead of UDS [17], [18]. All these problems are interconnected as shown 

in Figure 1.1. 

 

 

Moreover, replicating the circuit three times to produce a three-phase output voltage 

from a single-phase circuit has contributed to thrice the number of CC and is defined as 

Three-Time-Repetition (TTR). Diminution effect of TTR can reduce the CC switches 

of MI as reducing each switch will reduce additional components such as the gate 

drivers circuit. 

 

 

Component 

Count

Power

Losses

Total
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Distortion

Switching

Frequency

Performance
Modulation

Design

Effect

 
 

Figure 1.1: Problem statement configuration. 

 

 

The motivation of this work is to propose an integrated Multilevel Inverter Matrix 

Converter (MIMC) that has a minimum CC of switching devices and solve the TTR 

problem that exists in DC to three-phase AC system. This is carry out by proposing two 

new circuit arrangements with specific control algorithms. The circuit will integrate MI 

and MC circuits in a compact structure utilizing UDS and positive DC voltage supply. 

The proposed MIMC will be controlled with specific control algorithm that will 

minimize THD value. This research aspect is important as the number of components 

in the converter can increase the cost, size, complexity and power losses. 

 

 

1.3 Aims and Objectives 

 

The aim of this work is to design, develop and construct an integrated MIMC. The 

work has the following objectives to accomplish the novelty: 
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1.To design Voltage Selection Multilevel Inverter Matrix Converter 

(VSMIMC) that reduce CC and solve TTR. 

 

2.To design H-bridge Multilevel Inverter Matrix Converter (HMIMC) that is 

improved from VSMIMC with positive DC voltage supply using UDS and H-

bridge circuit. 

 

3.To develop Voltage Selection Algorithm (VSA) for controlling VSMIMC 

and HMIMC circuit. 

 

4.To validate 7L HMIMC controlled by VSA with a laboratory model. 

 

 

1.4 Scope of the Work 

 

The scope of this work focuses on the DC to AC converter that will generate multilevel 

output voltages. It consists of MI and MC that will both operate simultaneously in 

synchronism with each other. For the input voltages to DC side, only equal and 

symmetrical voltage sources are used. Insulated Gate Bipolar Transistor (IGBT) is 

selected as the switching device. The proposed circuit will be simulated using 

MATLAB-Simulink to verify and validate its operation and performance. Later, a 

laboratory model of the best circuit will be constructed and compared with its 

simulation model. 

 

 

The number of the CC of MI switches will be calculated at three-phase operations, 

where a CC equation is then formulated with respect to the number of output voltage 

levels. The MI switches for both UDS and BDS types are clearly demonstrated and 

emphasized. Comparisons of the CC of others’ designs and proposed design are carried 

out and determined. Elimination of the TTR problem is one of the key components in 

reducing the number of component count. 

 

 

A new control algorithm will be developed for controlling MI and MC simultaneously. 

This algorithm will be formulated at LSF and developed for the simulation model using 

MATLAB-Simulink program. Then, the algorithm will be coded using Arduino for the 

laboratory model. The results of both simulation and laboratory models are then 

compared and analyzed. 

 

 

1.5 Contributions 

 

There are four contributions of this work. They are: - 

 

1. An integrated MIMC circuit has been successfully designed and developed 

that has solved TTR problem and decrease the total CC of the circuit. This is a 

novelty because the others’ designed circuits have only managed to reduce CC 

based on single-phase circuit through MI. However, they faced increased 

number of CC when they replicated the single-phase circuit for three-phase 

circuit due to TTR. 
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2. A new design circuit called Voltage Selection Multilevel Inverter Matrix 

Converter has been successfully filed for patent. This VSMIMC has been 

designed using BDS. It contains Voltage Selection Multilevel Inverter (VSMI) 

and MC circuit. The design has been formulated mathematically and 

simulated in MATLAB-Simulink program successfully. A generalized circuit 

is then established for a higher number of level upgrades. In addition, the 

formulation of equations to calculate CC switches with respect to the number 

of levels has been provided. 

 

3. A second new design circuit has been invented consequently based on 

VSMIMC, called H-Bridge Multilevel Inverter Matrix Converter and has been 

successfully simulated and constructed in the lab. This HMIMC design used 

UDSs instead of BDSs by employing an extra three H-bridge circuits. This 

design circuit shows better results in reducing the component count. The 

operating system of HMIMC is verified mathematically and through 

MATLAB-Simulink simulation. A generalized circuit is then established for a 

higher number of level upgrades for HMIMC. In addition, the formulation of 

equations to calculate CC switches with respect to the number of levels has 

also been provided. 

 

4. A new algorithm system has been designed to operate the VSMIMC and 

HMIMC circuits using a new proposed algorithm called: Voltage Selection 

Algorithm. This algorithm provides three-phase controlling steps to 

synchronize the operation of MI and MC of VSMIMC circuit and also 

synchronize the operation of MI, MC and H-bridge of HMIMC circuit. 

 

 

1.6 Thesis Outline 

 

This thesis is organized in five chapters. Chapter 1 gives an introduction to the 

importance and the application of power electronics converters. It also highlighted the 

challenges and the problems faced by power electronics converters and the measures 

taken to solve them. Problem statements, aim, objectives and scope of the work are also 

defined. The chapter ends with the contributions of the work. 

 

 

Chapter 2 starts with an overview of different published designs of MI, MC and 

MIMC. The literature reviews focus on the MI designs that reduced the number of 

component count and TTR problems. It then follows on the modulation techniques of 

MI and ended with the performance of the MI. 

   

 

Chapter 3 provides the theory and methodology of the two proposed circuit designs. 

The flow chart of this work is also presented. The first proposed circuit VSMIMC is 

designed, operated, generalized its form and counted mathematically. The second 

proposed HMIMC is also designed, operated, generalized its form and counted 

mathematically. Mix-mode operation of HMIMC is explained. The design of the 

simulation and hardware model are also presented.  
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Chapter 4 presents the results obtained from MATLAB-Simulink to verify the 

mathematical operation of VSMIMC and HMIMC. After that, the results of CC 

comparison in two conditions with a different number of levels are presented. Then the 

hardware and software implementation results of 7L HMIMC is presented, followed by 

the hardware costs. 

 

Chapter 5 concludes the research findings on VSMIMC and HMIMC, after that the 

chapter provides suggestions for future research works based on the study findings. 
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