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Distributed generation has become one of the major electric power system 
elements. The advantages of utilizing distributed generations in power systems 
include economic, environmental, and technical benefits. The optimum utilization 
of distributed generation units offers potential benefits to the electric systems 
such as network reliability, peak loads reduction, voltage support, and power 
quality improvement. Improper utilization of distributed generation units in 
distribution networks lead to frequency variations, raise system power losses, 
voltage deviation, and altering the fault current value. The potentials of 
renewable energy sources are categorized based on theoretical, geographical, 
technical, and economical potentials. The geographic potentials are related to 
the implementation area, which shall be usable, sufficient, and stable to host the 
renewable energy sources, particularly photovoltaic solar plants sites are 
restricted with legal and technical constraints.  
 
 
Distribution network operators are practicing various topologies to align the 
optimal geographic sites with the optimal points of connection in the distribution 
networks. These topologies include the central photovoltaic solar plants, which 
consolidate the optimal distributed generation capacity at one central location, 
while the power are transferred to multiple optimal locations. On the other hand, 
the conventional scientific allocation methodology accommodates the optimal 
size of distributed generation directly to next to the optimal location. Although the 
scientific research community have investigated the optimal allocation of 
renewable energy sources from various perspectives that involve sophisticated 
theoretical, geographical, technical, and economical multi-objective functions, 
however it lacks a fundamental evidence that directly compares the conventional 
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bus dedicated topology versus the central distributed generation topology on a 
typical distribution network using a typical methodology. In addition, the applied 
distributed generation topology directly affects the network penetration limit, 
which influence network operational limits consequently. Therefore, the study 
proposed a comparison between the conventional bus dedicated distributed 
generation topology and the central distributed generation topology.  
 
 
The optimal sizing and allocation of distributed generation problem is based on 
active power loss reduction and voltage profiles improvement. The scope 
involved deterministic load flow formulation to obtain the essential power system 
parameters of the optimal distributed generation allocation. The load flow is 
performed using the Newton-Raphson method. On the other hand, to test the 
network operational limits when uncertainties of the photovoltaic generation and 
load demand are included, the probabilistic load flow was simulated using Monte 
Carlo Simulation method. The beta probability density functions were used to 
model the photovoltaic generation, while the normal probability density functions 
were used to model the load demand. The effectiveness of the proposed 
topology was validated on IEEE 33 and 69-bus distribution networks. 
Biogeography based optimization method was formulated to solve the optimal 
allocation problem, then manual method has been applied to accommodate the 
central unit. The manual accommodation of the optimally sized central unit was 
preferred to be applied, which removes the contradictions of comparing two 
different optimization allocation methodologies.  
 
 
The biogeography based optimization method has been proven to have better 
performance than artificial bee colony, genetic algorithm, particle swarm 
optimization, hybrid of particle swarm optimization and constriction factor 
approach, and hybrid of ant colony optimization and artificial bee colony methods 
in terms of active power loss reduction. Meanwhile, the central distributed 
generation unit topology was proved to have better performances over bus 
dedicated distributed generation topology and the results showed 6.25% and 
14.7% higher active power losses reduction in the central topology of IEEE 33 
and 69 bus distribution networks respectively. The voltage profiles, distributed 
generation capacity required, and the penetration limit have shown better 
performances on the central distributed generation topology over the bus 
dedicated distributed generation topology. Furthermore, the probabilistic 
boundaries at minimum, mean, and maximum of power loss reduction, 
penetration levels, and voltage profiles have shown better performances when 
the central distributed generation topology is applied. 
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MENENTUKAN HAD PENEMBUSAN TOPOLOGI PENJANAAN 
PENGEDARAN PUSAT KEATAS RANGKAIAN PENGEDARAN RADIAL  

 

Oleh 

MOHAMED SAAD ABDELGADIR SULIMAN 

Januari 2021 

Pengerusi : Hashim Bin Hizam, PhD 
Fakulti  : Kejuruteraan 
 
 
Penjanaan yang diedarkan telah menjadi salah satu elemen sistem kuasa 
elektrik utama . Kelebihan menggunakan penjanaan yang diedarkan dalam 
sistem kuasa merangkumi faedah ekonomi, alam sekitar, dan teknikal . 
Penggunaan optimum unit penjanaan yang diedarkan menawarkan potensi 
keuntungan kepada sistem elektrik seperti realibiliti rangkaian, pengurangan 
beban puncak , sokongan voltan, dan peningkatan kualiti kuasa . Penggunaan 
unit penjanaan yang tidak betul dalam rangkaian pengedaran dapat 
menyebabkan variasi frekuensi, meningkatkan kehilangan kuasa daya sistem, 
penyimpangan voltan, dan mengubah nilai kesalahan arus . Potensi sumber 
tenaga baru boleh dikategorikan berdasarkan;teori,geografi,teknikal,dan 
ekonomi. Potensi geografik  berkaitan untuk kawasan pelaksanaan, yang 
hendaklah berguna, mencukupi, dan stabil ke hos sumber tenaga diperbaharui, 
terutamanya plan solar photovoltaic yang terhad dengan kekangan undang-
undang dan teknikal . 
 
 
Pengendali rangkaian distribusi atau edaran mengamalkan pelbagai topologi 
untuk menyelaraskan kawasan geografik yang optimum dengan titik optimal 
yang  disambungan dalam rangkaian pengedaran. Topologi ini merangkumi loji 
solar photovoltaic pusat, yang menggabungkan kapasiti distribusi penjanaan  
optimum di satu lokasi pusat, sementara kuasa dipindahkan ke beberapa lokasi 
optimum. Walau bagaimanapun, metodologi peruntukan optimum saintifik 
konvensional menampung ukuran generasi agihan optimum secara langsung di 
sebelah lokasi optimum. Walaupun komuniti penyelidikan ilmiah telah 
menyelidiki peruntukan optimum sumber tenaga boleh diperbaharui dari 
pelbagai perspektif yang melibatkan fungsi teori , geografi , teknikal , dan 
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ekonomi yang pelbagai objektif, namun ia tidak mempunyai bukti asas yang 
secara langsung membandingkan topologi khusus bas konvensional dengan 
topologi penjanaan pusat pada rangkaian pengedaran khas menggunakan 
metodologi khas. Topologi penjanaan yag digunakan, memberi kesan langsung 
kepada had penembusan rangkaian, yang mempengaruhi rangkaian had 
operasi seterusnya . Oleh itu, kajian ini mencadangkan  perbandingan antara 
topologi penjanaan edaran bas konvensional khusus  dan topologi penjanaan 
pusat. 
 
 
Saiz yang optimal dan masalah peruntukan penjanaan yang diedarkan  adalah 
berdasarkan pengurangan kehilangan kuasa aktif dan baik pulih  profil voltan. 
Skopnya melibatkan formulasi aliran beban deterministik untuk mendapatkan 
parameter sistem kuasa penting dari peruntukan penjanaan edaran optimum . 
Aliran beban dilaksanakan menggunakan kaedah Newton-Raphson. 
Sebaliknya,untuk menguji had operasi rangkaian apabila ketidaktentuan 
penjanaan photovoltaic dan permintaan beban dimasukkan,kebarangkalian 
aliran beban disimulasikan dengan kaedah Monte Carlo Simulation . Fungsi 
kebarangkalian ketumpatan beta telah digunakan untuk model penjanaan 
photovoltaic, manakala fungsi kebarangkalian ketumpatan normal digunakan 
untuk model permintaan beban. Keberkesanan topologi yang dicadangkan 
adalah sahih dalam rangkaian distribusi IEEE 33 dan 69-bas. Kaedah 
pengoptimuman berasaskan biogeografi telah digubal untuk menyelesaikan 
masalah peruntukan optimum, lalu kaedah manual telah digunakan untuk 
menampung unit pusat . penampungan manual unit pusat bersaiz optimum lebih 
dipilih untuk digunakan , dimana ia mengeluarkan percanggahan-percanggahan 
yang membandingkan dua pengoptimuman  metodologi peruntukan berbeza. 
  
 
Kaedah pengoptimuman berdasarkan biogeografi telah terbukti untuk 
mempunyai prestasi yang lebih baik berbanding koloni lebah buatan ,algoritma 
genetik, pengoptimuman kawanan zarah,kacukan pengoptimuman kawanan 
zarah dan pendekatan faktor penyempitan, dan kacukan pengoptimuman koloni 
semut dan kaedah koloni lebah tiruan dari segi pengurangan kehilangan kuasa 
aktif.Sementara itu , unit topologi penjanaan edaran pusat terbukti mempunyai 
prestasi yang lebih baik berbanding topologi penjanaan edaran khas yang 
didedikasikan oleh bas dan hasilnya menunjukkan pengurangan kehilangan 
daya aktif 6.25% dan 14.7% lebih tinggi dalam topologi pusat IEEE 33 dan 69 
rangkaian pengedaran bas. Profil voltan , kapasiti penjanaan distribusi yang 
diperlukan, dan had penembusan telah menunjukkan hasil yang lebih baik pada 
topologi penjanaan distribusi pusat lebih daripada topologi penjanaan 
pengedaran bas. Tambahan pula, had probabilistik pada pengurangan 
kehilangan kuasa minimum, min, dan maksimum, tahap penembusan, dan profil 
voltan telah menunjukkan prestasi yang lebih baik dalam topologi penjanaan 
pusat yang diedarkan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Research Background 
 
 
The major role of electric power system is to provide reliable electric power 
supply to meet customer demand. This supply shall be within specific operational 
limits in an economical and technical manner. The major functional stages in 
electric power system are power generation stage, power transmission stage, 
and distribution stage [1]. Recently, distributed generation (DG) has become one 
of the major electric power system stages. Defining the DG by the context of its 
location, DG is defined as electric power generation units installed and operate 
directly at the distribution network stage, or installed at the network on the side 
of load centres where the network X/R ratio is lower than the transmission stage 
[2]. The impacts of DG utilization can be analysed from several aspects such as, 
DG rating, purpose, power delivery area, DG technology, environmental impact, 
mode of operation and penetration level [2].  
 
 
The advantages of utilizing distributed generations in power systems include 
economic, environmental, and technical benefits [3]. More importantly, the need 
for additional power plants and transmission lines are reduced, DG units are 
easier to assign, unlike huge generation plants. DG units can produce electricity 
with high efficiency, reliability, and lower transmission losses [3]. The optimum 
utilization of DG units offers potential benefits to the electric systems which 
include network reliability, reduce peak loads, voltage support, and improve 
power quality [4]. Improper utilization of DG units in distribution networks could 
lead to frequency variations, raise system power losses, voltage deviation, and 
altering the fault current value [4]. 
 
 
1.2 Problem Statement 
 
 
The optimal allocation of DG units is analyzed from several perspectives which 
involve DG rating, purpose, power delivery area, DG technology, environmental 
impact, mode of operation, and penetration level [1]. The potentials of renewable 
energy sources (RES) are categorized based on; theoretical, geographic, 
technical, and economic potentials [5]. The geographic potentials are related to 
the implementation area, which shall be usable, sufficient, and stable to host the 
RES, particularly photovoltaic (PV) solar plants are restricted with legal and 
technical constraints [6]. The geographic potentials assessment outcomes are 
directly proportional with the technical and economic potentials [7]. Although the 
earlier research contributions of finding the optimal size and locations of DG units 
have developed a comprehensive objective functions using sophisticated 
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methodologies, however all the contributions are based on singular topology 
[8,9,10]. This topology has become the conventional scientific topology, which 
integrates the optimal size of DG units directly to the optimum location as bus 
dedicated DG topology [10]. Meanwhile, the distribution network operators are 
practicing various topologies to incorporate RES into the distribution networks 
[11,12]. For instance, due to the required space restrictions of photovoltaic 
distributed generation (PVDG), distribution network operators are consolidating 
the optimum sizes at central location, then transfer the power to various multiple 
locations [11]. Therefore, scientific research community lacks a fundamental 
evidence that directly compares the conventional bus dedicated topology versus 
the central DG topology on a typical distribution network using typical 
methodology. 
 
 
On the other hand, the penetration level of DG units incorporated into distribution 
networks affect the system operational limits in a technical and economic 
manners [13]. The definition of penetration level of DG units in distribution 
networks varies widely among researchers [13], few of whom have considered it 
based on transformer capacity, which is more relevant to power flows in or out 
of the network during operation [14]. Some have defined it as the ratio of DG 
peak capacity to the peak load consumption, which determined using 
deterministic values [15]. Others have considered the penetration at a certain 
point of time as ratio of DG output to the actual power consumption, which needs 
real time monitoring [16]. However, the penetration limit in distribution networks 
is described as the point where the distribution network has no more optimally 
host the DG capacities, whereas the penetration level is the ratio of the DG 
injected power into the network to the network load amount [17]. Thus, at the 
planning stage, the penetration limit is ordinarily determined using probabilistic 
simulations to test the system's operational boundaries [18].    
 
 
Consequently, the earlier contributions of DG optimal allocations have 
investigated the DG allocation directly next to the optimum location as bus 
dedicated DG topology [10], while distribution network operators are practicing 
various topologies to align the potentials of RES [11,12]. In addition, the applied 
topology affects the associated penetration level of the distribution network, 
which is reflected on the system operational limits [13]. Hence, the study 
proposes a new aspect of comparison by implementing different topologies to 
incorporate DG units into distribution networks. The central DG unit topology is 
proposed to distribute the consolidated optimum sizes to the optimum locations, 
while the penetration limit of the proposed topology is to be compared with the 
conventional bus dedicated topology. 
 
 
1.3 Objectives of the Study 
 
 
The main objective of the study is to analyse the impact of applying central DG 
topology into the distribution networks in terms of active power loss reduction, 
and voltage profiles improvement. The specific objectives are: 
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i. To formulate the objective function of determining the optimal size and 
location of central DG unit into the distribution networks based on active 
power loss reduction and voltage profiles improvement using 
biogeography based optimization method. 

 
ii. To compare the deterministic impact of utilizing central DG topology and 

bus dedicated DG topology on distribution networks, in terms of active 
power loss reduction and voltage profiles improvement. 

 
iii. To determine the probabilistic penetration limit of the central DG 

topology and bus dedicated DG topology when load demand and solar 
generation uncertainties are considered.   

 
 
1.4 Scope of the Study 
 
 
The scope of the study work is given in the following: 
 
i. The study focuses in the evaluation of the effectiveness of the proposed 

central DG topology in comparison with the results obtained from bus 
dedicated DG topology. 

  
ii. Cost, installation, and efficiency of PVDG modules are not considered in 

this research.  
 

iii. Technical aspects of PVDG power plant and quality of PV power before 
inverter is not the subject of this study. 

 
iii. Evaluation of the short-term prediction horizon less than one hour is not 

considered in this research. 
 
 
1.5 Thesis Organization 
 
 
Chapter 1, introduces an overview of the research background as fundamentals 
of DG roles in power systems. The problem statement has been presented by 
clarifying the relation of penetration level with the associated DG topology. The 
objectives and scope of this research are proposed in this chapter. 
 
Chapter 2, presents a review of DG applications in power systems. As well as, 
it covers the latest conventional optimization techniques of finding the optimal 
size and location of DG units in distribution networks.  
 
Chapter 3, discusses the approaches employed in this work such as the load 
flow analysis using Newton-Raphson method, the use of biogeography based 
optimization to find optimal size and locations of DG units, and the uncertainty 
modeling of load demand and renewable power generation using probability 
density functions.  
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Chapter 4, presents and discusses the results obtained from the specified 
topologies on 33 and 69 bus IEEE test distribution networks. 
 
Chapter 5, is the final chapter that concluding the findings and discussions of 
the research objectives. 
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APPENDICES 

APPENDIX-A  

IEEE 33-bus radial distribution network [66] 

Table A-1: Bus Data of IEEE 33-bus radial distribution network 

Bus 
No. 

From To 
 R 

(ohms) 
 X 

(ohms) 

Nominal load Cable 
Length 

(m) 
P 

(kW) 
Q(kVAr) 

1 1 2 0.0922 0.0470 0 0 100 

2 2 3 0.4930 0.2511 100 60 500 

3 3 4 0.3660 0.1864 90 40 350 

4 4 5 0.3811 0.1941 120 80 350 

5 5 6 0.8190 0.7070 60 30 800 

6 6 7 0.1872 0.6188 60 20 200 

7 7 8 0.7114 0.2351 200 100 700 

8 8 9 1.0300 0.7400 200 100 1000 

9 9 10 1.0440 0.7400 60 20 1000 

10 10 11 0.1966 0.0650 60 20 200 

11 11 12 0.3744 0.1298 45 30 350 

12 12 13 1.4680 1.1550 60 35 1500 

13 13 14 0.5416 0.7129 60 35 550 

14 14 15 0.5910 0.5260 120 80 600 

15 15 16 0.7463 0.5450 60 10 750 

16 16 17 1.2890 1.7210 60 20 1300 

17 17 18 0.7320 0.5740 60 20 700 

18 2 19 0.1640 0.1565 90 40 150 

19 19 20 1.5042 1.3554 90 40 1500 

20 20 21 0.4095 0.4784 90 40 400 

21 21 22 0.7089 0.9373 90 40 700 

22 3 23 0.4512 0.3083 90 40 450 

23 23 24 0.8980 0.7091 90 50 900 

24 24 25 0.8960 0.7011 420 200 900 

25 6 26 0.2030 0.1034 420 200 200 

26 26 27 0.2842 0.1447 60 25 300 

27 27 28 1.0590 0.9337 60 25 1000 

28 28 29 0.8042 0.7006 60 20 800 

29 29 30 0.5075 0.2585 120 70 500 

30 30 31 0.9744 0.9630 200 600 950 

31 31 32 0.3105 0.3619 150 70 300 

32 32 33 0.3410 0.5302 210 100 350 

33 0 0 0 0 60 40 0 
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APPENDIX-B  

IEEE 69-bus radial distribution network [67] 

Table B-1: Bus Data of IEEE 69-bus radial distribution network. 

Bus  
No. 

From
  

To  
Resistance 

(ohms)  
Reactance 

(ohms)  

Nominal load  
Cable  

Length(m) P 
(kW) 

Q 
(kVAr) 

1 1 2 0.0005 0.0012 0 0 800 

2 2 3 0.0005 0.0012 0 0 700 

3 3 4 0.0015 0.0036 0 0 600 

4 4 5 0.0251 0.0294 0 0 700 

5 5 6 0.3660 0.1864 0 0 600 

6 6 7 0.3811 0.1941 2.6 2.2 600 

7 7 8 0.0922 0.0470 40.4 30 600 

8 8 9 0.0493 0.0251 75 54 800 

9 9 10 0.8190 0.2707 30 22 600 

10 10 11 0.1872 0.0619 28 19 800 

11 11 12 0.7114 0.2351 145 104 800 

12 12 13 1.0300 0.3400 145 104 700 

13 13 14 1.0440 0.3450 8 5 700 

14 14 15 1.0580 0.3496 8 5.5 600 

15 15 16 0.1966 0.0650 0 0 800 

16 16 17 0.3744 0.1238 45.5 30 600 

17 17 18 0.0047 0.0016 60 35 600 

18 18 19 0.3276 0.1083 60 35 700 

19 19 20 0.2106 0.0690 0 0 600 

20 20 21 0.3416 0.1129 1 0.6 700 

21 21 22 0.0140 0.0046 114 81 600 

22 22 23 0.1591 0.0526 5 3.5 800 

23 23 24 0.3463 0.1145 0 0 600 

24 24 25 0.7488 0.2475 28 20 600 

25 25 26 0.3089 0.1021 0 0 800 

26 26 27 0.1732 0.0572 14 10 700 

27 3 28 0.0044 0.0108 14 10 600 

28 28 29 0.0640 0.1565 26 18.6 600 

29 29 30 0.3978 0.1315 26 18.6 800 

30 30 31 0.0702 0.0232 0 0 700 

31 31 32 0.3510 0.1160 0 0 700 

32 32 33 0.8390 0.2816 0 0 700 

33 33 34 1.7080 0.5646 14 10 600 
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34 34 35 1.4740 0.4873 9.5 14 800 

35 3 36 0.0044 0.0108 6 4 600 

36 36 37 0.0640 0.1565 26 18.55 700 

37 37 38 0.1053 0.1230 26 18.55 600 

38 38 39 0.0304 0.0355 0 0 700 

39 39 40 0.0018 0.0021 24 17 800 

40 40 41 0.7283 0.8509 24 17 800 

41 41 42 0.3100 0.3623 1.2 1 600 

42 42 43 0.0410 0.0478 0 0 800 

43 43 44 0.0092 0.0116 6 4.3 700 

44 44 45 0.1089 0.1373 0 0 800 

45 45 46 0.0009 0.0012 39.22 26.3 600 

46 4 47 0.0034 0.0084 39.22 26.3 600 

47 47 48 0.0851 0.2083 0 0 700 

48 48 49 0.2898 0.7091 79 56.4 600 

49 49 50 0.0822 0.2011 384.7 274.5 800 

50 8 51 0.0928 0.0473 384.7 274.5 800 

51 51 52 0.3319 0.1114 40.5 28.3 600 

52 52 53 0.1740 0.0886 3.6 2.7 800 

53 53 54 0.2030 0.1034 4.35 3.5 800 

54 54 55 0.2842 0.1447 26.4 19 700 

55 55 56 0.2813 0.1433 24 17.2 600 

56 56 57 1.5900 0.5337 0 0 800 

57 57 58 0.7837 0.2630 0 0 600 

58 58 59 0.3042 0.1006 0 0 800 

59 59 60 0.3861 0.1172 100 72 700 

60 60 61 0.5075 0.2585 0 0 600 

61 61 62 0.0974 0.0496 1244 888 800 

62 62 63 0.1450 0.0738 32 23 600 

63 63 64 0.7105 0.3619 0 0 600 

64 64 65 1.0410 0.5302 227 162 700 

65 11 66 0.2012 0.0611 59 42 700 

66 66 67 0.0047 0.0014 18 13 600 

67 12 68 0.7394 0.2444 18 13 600 

68 68 69 0.0047 0.0016 28 20 700 

69 0 0 0 0 28 20 0 
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APPENDIX-C  

IEC 60287 Cable Derating Factors From Supplier Catalogue [70]  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX-D 

 Cables Electrical Data From Supplier Data Sheet [70]  
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APPENDIX-F  

MATLAB Coding 

• Admittance Matrix 

%  This program obtains th Bus Admittance Matrix for 

power flow solution 

j=sqrt(-1); i = sqrt(-1); 

nl = linedata(:,1); nr = linedata(:,2); R = 

linedata(:,3); 

X = linedata(:,4); Bc = j*linedata(:,5); a = 

linedata(:, 6); 

nbr=length(linedata(:,1)); nbus = max(max(nl), 

max(nr)); 

basemva=100; 

KVb=12.66; 

Zb=(KVb^2)/basemva; 

Zo = R + j*X; 

Z=Zo./Zb; 

y= ones(nbr,1)./Z;  

for n = 1:nbr 

if a(n) <= 0  a(n) = 1; else end 

Ybus=zeros(nbus,nbus);     % initialize Ybus to zero 

               % formation of the off diagonal elements 

for k=1:nbr; 

       Ybus(nl(k),nr(k))=Ybus(nl(k),nr(k))-y(k)/a(k); 

       Ybus(nr(k),nl(k))=Ybus(nl(k),nr(k)); 

    end 

end 

              % formation of the diagonal elements 

for  n=1:nbus 

     for k=1:nbr 

         if nl(k)==n 

         Ybus(n,n) = Ybus(n,n)+y(k)/(a(k)^2) + Bc(k); 

         elseif nr(k)==n 

         Ybus(n,n) = Ybus(n,n)+y(k) +Bc(k); 

         else, end 

     end 

end 

clear Pgg 

Ybus; 

 

 

• Newton Raphson  

%   Power flow solution by Newton-Raphson method 

accuracy=0.000001; 

basemva=100000; 

maxiter=100; 

ns=0; ng=0; Vm=0; delta=0; yload=0; deltad=0; 

nbus = length(busdata(:,1)); 
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for k=1:nbus 

n=busdata(k,1); 

kb(n)=busdata(k,2); Vm(n)=busdata(k,3); 

delta(n)=busdata(k, 4); 

Pd(n)=busdata(k,5); Qd(n)=busdata(k,6); 

Pg(n)=busdata(k,7); Qg(n) = busdata(k,8); 

Qmin(n)=busdata(k, 9); Qmax(n)=busdata(k, 10); 

Qsh(n)=busdata(k, 11); 

    if Vm(n) <= 0  Vm(n) = 1.0; V(n) = 1 + j*0; 

    else delta(n) = pi/180*delta(n); 

         V(n) = Vm(n)*(cos(delta(n)) + 

j*sin(delta(n))); 

         P(n)=(Pg(n)-Pd(n))/basemva; 

         Q(n)=(Qg(n)-Qd(n)+ Qsh(n))/basemva; 

         S(n) = P(n) + j*Q(n); 

    end 

end 

for k=1:nbus 

if kb(k) == 1, ns = ns+1; else, end 

if kb(k) == 2 ng = ng+1; else, end 

ngs(k) = ng; 

nss(k) = ns; 

end 

Ym=abs(Ybus); t = angle(Ybus); 

m=2*nbus-ng-2*ns; 

maxerror = 1; converge=1; 

iter = 0; 

% Start of iterations 

clear A  DC   J  DX 

while maxerror >= accuracy & iter <= maxiter % Test for 

max. power mismatch 

for i=1:m 

for k=1:m 

   A(i,k)=0;      %Initializing Jacobian matrix 

end, end 

iter = iter+1; 

for n=1:nbus 

nn=n-nss(n); 

lm=nbus+n-ngs(n)-nss(n)-ns; 

J11=0; J22=0; J33=0; J44=0; 

   for i=1:nbr 

     if nl(i) == n | nr(i) == n 

        if nl(i) == n,  l = nr(i); end 

        if nr(i) == n,  l = nl(i); end 

        J11=J11+ Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- 

delta(n) + delta(l)); 

        J33=J33+ Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- 

delta(n) + delta(l)); 

        if kb(n)~=1 

        J22=J22+ Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n) + 

delta(l)); 
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        J44=J44+ Vm(l)*Ym(n,l)*sin(t(n,l)- delta(n) + 

delta(l)); 

        else, end 

        if kb(n) ~= 1  & kb(l) ~=1 

        lk = nbus+l-ngs(l)-nss(l)-ns; 

        ll = l -nss(l); 

      % off diagonalelements of J1 

        A(nn, ll) =-Vm(n)*Vm(l)*Ym(n,l)*sin(t(n,l)- 

delta(n) + delta(l)); 

              if kb(l) == 0  % off diagonal elements of 

J2 

              A(nn, lk) =Vm(n)*Ym(n,l)*cos(t(n,l)- 

delta(n) + delta(l));end 

              if kb(n) == 0  % off diagonal elements of 

J3 

              A(lm, ll) =-

Vm(n)*Vm(l)*Ym(n,l)*cos(t(n,l)- delta(n)+delta(l)); end 

              if kb(n) == 0 & kb(l) == 0  % off 

diagonal elements of  J4 

              A(lm, lk) =-Vm(n)*Ym(n,l)*sin(t(n,l)- 

delta(n) + delta(l));end 

        else end 

     else , end 

   end 

   Pk = Vm(n)^2*Ym(n,n)*cos(t(n,n))+J33; 

   Qk = -Vm(n)^2*Ym(n,n)*sin(t(n,n))-J11; 

   if kb(n) == 1 P(n)=Pk; Q(n) = Qk; end   % Swing bus 

P 

     if kb(n) == 2  Q(n)=Qk; 

         if Qmax(n) ~= 0 

           Qgc = Q(n)*basemva + Qd(n) - Qsh(n); 

           if iter <= 7                  % Between the 

2th & 6th iterations 

              if iter > 2                % the Mvar of 

generator buses are 

                if Qgc  < Qmin(n),       % tested. If 

not within limits Vm(n) 

                Vm(n) = Vm(n) + 0.01;    % is changed 

in steps of 0.01 pu to 

                elseif Qgc  > Qmax(n),   % bring the 

generator Mvar within 

                Vm(n) = Vm(n) - 0.01;end % the 

specified limits. 

              else, end 

           else,end 

         else,end 

     end 

   if kb(n) ~= 1 

     A(nn,nn) = J11;  %diagonal elements of J1 

     DC(nn) = P(n)-Pk; 

   end 
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   if kb(n) == 0 

     A(nn,lm) = 2*Vm(n)*Ym(n,n)*cos(t(n,n))+J22;  

%diagonal elements of J2 

     A(lm,nn)= J33;        %diagonal elements of J3 

     A(lm,lm) =-2*Vm(n)*Ym(n,n)*sin(t(n,n))-J44;  

%diagonal of elements of J4 

     DC(lm) = Q(n)-Qk; 

   end 

end 

DX=A\DC'; 

for n=1:nbus 

  nn=n-nss(n); 

  lm=nbus+n-ngs(n)-nss(n)-ns; 

    if kb(n) ~= 1 

    delta(n) = delta(n)+DX(nn); end 

    if kb(n) == 0 

    Vm(n)=Vm(n)+DX(lm); end 

 end 

  maxerror=max(abs(DC)); 

     if iter == maxiter & maxerror > accuracy  

   fprintf('\nWARNING: Iterative solution did not 

converged after ') 

   fprintf('%g', iter), fprintf(' iterations.\n\n') 

   fprintf('Press Enter to terminate the iterations and 

print the results \n') 

   converge = 0; pause, else, end 

    

end 

•  

 

• Biogeography Based Optimization  

% Project Title: Biogeography-Based Optimization (BBO) in 

MATLAB 

clc; 

clear; 

close all; 

  

%% Problem Definition 

  

CostFunction=@(OPT) CalculationFunction4(OPT);        % 

Cost Function 

  

nVar=8;             % Number of Decision Variables 

  

nVarsize=nVar/2; 

  

VarSize=[1 nVarsize];   % Decision Variables Matrix Size 

  

VarMin=0;         % Decision Variables Lower Bound 

VarMax= 2000;         % Decision Variables Upper Bound 
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LocMin=2; 

LocMax=33; 

%% BBO Parameters 

  

MaxIt=100;          % Maximum Number of Iterations 

  

nPop=50;            % Number of Habitats (Population Size) 

  

KeepRate=0.2;                   % Keep Rate 

nKeep=round(KeepRate*nPop);     % Number of Kept Habitats 

  

nNew=nPop-nKeep;                % Number of New Habitats 

  

% Migration Rates 

mu=linspace(1,0,nPop);          % Emmigration Rates 

lambda=1-mu;                    % Immigration Rates 

  

alpha=0.9; 

  

pMutation=0.1; 

  

sigma1=0.02*(VarMax-VarMin); 

sigma2=0.02*(LocMax-LocMin); 

  

%% Initialization 

  

% Empty Habitat 

habitat.Position=[]; 

habitat.Cost=[]; 

  

% Create Habitats Array 

pop=repmat(habitat,nPop,1); 

  

% Initialize Habitats 

for i=1:nPop 

    

pop(i).Position=[(unifrnd(VarMin,VarMax,VarSize)),(randi([

LocMin,LocMax],VarSize))]; 

    pop(i).Cost=CostFunction(pop(i).Position); 

end 

  

% Sort Population 

[~, SortOrder]=sort([pop.Cost]); 

pop=pop(SortOrder); 

  

% Best Solution Ever Found 

BestSol=pop(1); 

  

% Array to Hold Best Costs 

BestCost=zeros(MaxIt,1); 
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%% BBO Main Loop 

  

for it=1:MaxIt 

     

    newpop=pop; 

    for i=1:nPop 

        for k=1:nVar 

            % Migration 

            if rand<=lambda(i) 

                % Emmigration Probabilities 

                EP=mu; 

                EP(i)=0; 

                EP=EP/sum(EP); 

                 

                % Select Source Habitat 

                j=RouletteWheelSelection4(EP); 

                % Migration 

                if k>4 

                    

newpop(i).Position(k)=round(pop(i).Position(k)+alpha*(pop(

j).Position(k)-pop(i).Position(k))); 

                elseif k<=4 

                    

newpop(i).Position(k)=pop(i).Position(k)+alpha*(pop(j).Pos

ition(k)-pop(i).Position(k)); 

                end 

                 

            end 

             

            % Mutation 

            if rand<=pMutation 

                if k>4 

                    

newpop(i).Position(k)=newpop(i).Position(k)+sigma2*randn; 

                elseif k<=4 

                    

newpop(i).Position(k)=newpop(i).Position(k)+sigma1*randn; 

                end             

            end 

        end 

         

        % Apply Lower and Upper Bound Limits 

        newpop(i).Position([1 2 3 4]) = 

max(newpop(i).Position([1 2 3 4]), VarMin); 

        newpop(i).Position([1 2 3 4]) = 

min(newpop(i).Position([1 2 3 4]), VarMax); 

        newpop(i).Position([5 6 7 8]) = 

round(newpop(i).Position([5 6 7 8])); 

         

        % Evaluation 

        newpop(i).Cost=CostFunction(newpop(i).Position); 
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    end 

     

    % Sort New Population 

    [~, SortOrder]=sort([newpop.Cost]); 

    newpop=newpop(SortOrder); 

     

    % Select Next Iteration Population 

    pop=[pop(1:nKeep) 

         newpop(1:nNew)]; 

      

    % Sort Population 

    [~, SortOrder]=sort([pop.Cost]); 

    pop=pop(SortOrder); 

     

    % Update Best Solution Ever Found 

    BestSol=pop(1); 

     

    % Store Best Cost Ever Found 

    BestCost(it)=BestSol.Cost; 

     

    % Show Iteration Information 

   % disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))]); 

     

end 
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APPENDIX-G  

BBO Matlab Output Interface for 4 DG Units 
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