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Magnaporthe oryzae is important fungal pathogen that caused serious rice blast 
disease worldwide. The disease cycle of M. oryzae is unique, required 
appressorium in order to penetrate the host cells. Appressorium is critical 
structure to cause disease but metabolites produced during appressorium 
development is poorly understood. To date, there is limited information on fungal 
metabolites and their functions produced by M. oryzae during appressoria 
development. Therefore, the aim of this study was to determine metabolites 
produced by M. oryzae during appressorium development in vitro and revealed 
important metabolic pathways involved. Untargeted metabolomics of Proton 
Nuclear Magnetic Resonance (1H NMR) was used to determine metabolites from 
M. oryzae extracts and any metabolite changes was observed during 0 h, 8 h 
and 24 h development stage. Spectra of 1H NMR were analyzed using 
multivariate data analysis (MVDA) and model validation was studied. Rich 
numbers of primary metabolites were detected from 1H NMR spectra and there 
were 43 metabolites identified putatively based on metabolomics library and 
previous reports. Partial least square discriminant analysis (PLS-DA) disclosed 
metabolites pattern among 0 h, 8 h, 24 h and mycelia. Metabolites that showed 
significant changes (p < 0.05) among groups of 0 h, 8 h, 24 h and mycelia 
including butyrate, leucine, isoleucine, valine, isobutyrate, ethanol, 
methylmalonate, threonine, lactate, alanine, lysine, arginine, 4-aminobutyrate, 
glutamate, homoserine, isocitrate, glutamine, choline, glucose, xylose, 
mannose, glycerol, mannitol, glucitol, tyrosine, sucrose and tryptophan. 
Orthogonal projections to latent structures discriminant analysis (OPLS-DA) 
revealed metabolites produced during each time-point of 0 h, 8 h, 24 h. Number 
of metabolites at 8 h and 24 h were produced the highest compared to 0 h. Then, 
metabolomics pathway analysis (MetPa 4.0) from Metaboanalyst.ca was used 
to illustrate metabolic pathways involved during appressorium development. 
There were eight key metabolic pathways that highly involved during 
appressorium development including amino acids, carbohydrates and lipid 
metabolisms. Fungal metabolites produced by M. oryzae have potential for 
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targeted metabolomics to target specific metabolite or pathways required for 
pathogenicity thus provide opportunity in developing inhibitors for rice blast 
disease. 
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Magnaporthe oryzae ialah sejenis kulat patogen penyebab penyakit karah padi 
yang menjangkiti padi di seluruh dunia. Kitaran penyakit karah yang disebabkan 
oleh Magnaporthe oryzae ini unik, di mana ia memerlukan appressorium untuk 
menembusi sel perumah. Appressorium ialah struktur kritikal yang diperlukan 
untuk terjadinya penyakit, namun dari sudut penghasilan metabolit semasa 
perkembangan appressorium, ianya sangat kurang diketahui. Sehingga kini, 
maklumat mengenai metabolit kulat M. oryzae serta fungsi-fungsi 
penghasilannya semasa perkembangan appressoria amat terhad. Oleh itu, 
tujuan penyelidikan ini adalah untuk menentukan metabolit yang dihasilkan oleh 
M. oryzae semasa perkembangan appressoria secara in vitro dan menerokai 
laluan metabolik yang terlibat. Kaedah metabolomik tidak sasar daripada Proton 
Nuklear Magnetik Resonan (1H NMR) telah digunakan untuk menentukan 
metabolit yang dihasilkan dari ekstrak M. oryzae dan sebarang perubahan 
metabolit telah dikenalpasti pada setiap peringkat perkembangan iaitu 0 jam, 8 
jam dan 24 jam. Spektra 1H NMR telah dianalisis menggunakan analisa 
multivariat (MVDA) dan model validasi telah dikaji. Terdapat banyak metabolit 
“primary” berdasarkan dari spektra 1H NMR dan sebanyak 43 metabolit telah 
dikenaplasti secara “putative” hasil carian rujukan metabolomik dan kajian 
terdahulu. Analisa separa persegi diskriminan (PLS-DA) menunjukkan pola 
metabolit pada 0 jam, 8 jam, 24 jam dan miselia. Di antara metabolit yang 
menunjukkan perubahan yang signifikan (p < 0.05) antara kumpulan 0 jam, 8 
jam, 24 jam dan miselia ialah butirat, leusina, isoleusina, valina, isobutirat, 
etanol, metilmalonat, treonina, laktat, alanina, lisina, arginina, 4-aminobutirat, 
glutamat, homoserina, isositrat, glutamina, kolina, glukosa, xilosa, manosa, 
gliserol, manitol, glusitol, tirosina, sukrosa dan triptofan. Analisa unjuran 
orthogonal kepada struktur laten diskriminan (OPLS-DA) memberikan gambaran 
metabolit yang dihasilkan pada setiap masa perkembangan iaitu 0 jam, 8 jam 
dan 24 jam. Banyak penghasilan metabolit dilihat berlaku pada 8 jam dan 24 jam 
berbanding 0 jam. Analisa laluan metabolomik (MetPa 4.0) daripada 
Metaboanalyst.ca digunakan untuk menerangkan laluan metabolik yang terlibat 
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semasa perkembangan appressoria. Terdapat lapan laluan metabolik penting 
dikenalpasti terlibat semasa perkembangan appressoria termasuk metabolisme 
asid amino, metabolisme karbohidrat dan metabolisme lipid. Metabolit-metabolit 
yang dihasilkan oleh kulat M. oryzae ini berpotensi untuk kajian sasaran 
metabolomik dalam menyasarkan metabolit atau laluan metabolik tertentu yang 
penting terlibat dalam perkembangan penyakit karah padi sekaligus memberi 
peluang ke arah perkembangan menghasilkan perencat kepada penyakit karah 
padi.  
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

Rice blast disease is one of the devastating diseases in agriculture caused by 
fungal pathogen, Magnaporthe oryzae. The rice yield loss about 10-30% 
worldwide because of rice blast every year with estimation about US$6 billion 
sufficient to feed another 60 million people (Pennisi, 2010; Talbot, 2003). As rice 
is a staple food, the impact of rice blast to human signify a threat to food security 
considering increase of rice production demands consumed by approximately 
23% human population (Wilson and Talbot, 2009). In Malaysia, 10% of Muda 
Agricultural Development Authority (MADA) crop area approximately more than 
60,000 tons of rice was attacked by rice blast in 2016-2017 season and rice price 
was cut-down by 50% which brought huge losses to the rice production. 
Susceptible rice crop now at risk as it could be affected easily by this disease 
(Berita Harian, 2017). Interestingly, the fungus has become intense research 
subject in years to obtain in-depth understanding of Magnaporthe oryzae 
infection stage, from early infection until it took over the host entirely. Knowledge 
of how this pathogen could survive in harsh environment and successfully invade 
host can help in developing reliable disease countermeasure or finding inhibitors 
to combat fungal disease (Skamnioti and Gurr, 2009; Dunn et al., 2009).  

 
 

Magnaporthe oryzae formed essential infection structure called appressorium. 
The appressorium can be induced away from rice leaf (in vitro) (Soanes et al., 
2012) by providing hydrophobic, hard surface and nutrient-free condition. 
Conidium undergoes germination to form germ tube and once the germ tube has 
met its required physical signals, it becomes swollen and differentiates to 
become appressorium (Wilson and Talbot, 2009). The appressorium 
accumulates high glycerol level so that enormous turgor pressure can be driven 
by osmosis (water moves into the appressorium) and presses down the base of 
appressorium by forming small penetration peg hence develops invasive hyphae 
from inside host (Fernandez and Orth, 2018). Complex infection mechanisms of 
M. oryzae were controlled by various specific genes, proteins, metabolites, 
regulators and enzymes activities (Fernandez and Orth, 2018; Jones et al., 2011; 
Aliferis and Jabaji, 2010; Foster et al., 2003). 

 
 

Integrated control measures have been implemented to decrease the severity of 
rice blast but complete eradication is still unachievable. Methods like developing 
resistant cultivar, chemical control, biological control, nutritional management 
have been introduced to control the disease (Miah et al., 2017) but 
comprehensive study is also highly needed for better understanding of M. oryzae 
physiological processes. In addition, metabolites produced by M. oryzae during 
appressorium development and their functions in pathogenicity are still unclear. 
So, this study focused on metabolites produced by M. oryzae to provide 
information on possible metabolites activated during each time of development 
stage hence could reveal underlying biochemical mechanisms of M. oryzae and 
allow development of effective control measures. Metabolites production levels 
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were influenced by time of appressoria development whereby early appressoria 
development stage produced low number of metabolites compared to 
appressoria maturation stage. Previous study of M. oryzae metabolites unveil 
several metabolites such as alanine, malate, glutamine and unknown sugar 
exhibited high levels after 24 h post inoculation (Jones et al., 2011). Targeted 
gene studies of M. oryzae indicated amino acids like arginine, isoleucine, valine 
and lysine (Zhang et al., 2015; Chen et al., 2014; Du et al., 2013) were essential 
for appressoria formation, conidia development and pathogenicity. 
 
 
Fungal metabolites could be identified using a robust technique of NMR-based 
metabolomics. A combination of advanced instrumentation and analytical 
software have allowed metabolomics emerged as powerful tools and unbiased 
for determination of endogenous metabolites derived from living samples such 
as urine, serum, microbes or biological tissue extract in response to genetic 
modification or developmental stimuli (Clark and Haselden, 2008). In this study, 
M. oryzae was germinated on artificial surface to produce appressoria under 0 
h, 8 h, 24 h time-point development to assess metabolites production and 
changes of metabolites within 0 h, 8 h and 24 h compared with mycelia. Our 
study provided new insight of metabolites analytical analysis and possible 
mechanisms involved during appressoria development in Magnaporthe oryzae 

in hope for better understanding regarding fungal pathogen metabolites. 
 
 
Hence, the research objectives were to: 
 
1. identify metabolites produced by Magnaporthe oryzae during appressoria 

development stage. 
 

2. determine metabolites associated changes during each development time-
point and propose metabolic pathways involved in Magnaporthe oryzae 
during appressoria development stage. 
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