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As the world population increasing considerably in tandem with the growing 
cities, economies, and businesses, there is a need for effective and efficient 
public transportation. One of the fastest, and most convenient public transport 
is subway. However, it has become a major concern to geotechnical engineers 
as the development and construction of subways are held underground where 
faults exist. Several seismic events such as the earthquakes in Taiwan in 1999, 
China in 2008, and Malaysia (Sabah) in 2015 caused by fault ruptures signify 
the importance of this study. Although many studies have been conducted on 
fault ruptures, most researchers only considered a free field (a field without 
tunnels) and on homogeneous cohesionless soil (sand). In this study, a gigantic 
physical model 1000 mm in height, 3000 mm in length, and 1000 mm in width 
was fabricated in Geotechnical Engineering laboratory, Universiti Putra 
Malaysia (UPM) to evaluate the influence of various soil properties on tunnels 
affected by both normal and reverse faults, as well as the effects of various fault 
angles and tunnel depths. Three different soil cohesion have been selected, 
cohesionless soil , 10 kPa and 20 kPa which due to the reason that 
cohesionless soil has been used in most of previous studies, and other studies 
(in soil stability), cohesion values of less than 23 kPa has been used. Three 
different soil friction angles have been investigated in this study,  

 
 

27°, 33° and 39°. Previous studies have showed that range of soil friction angle 
between 28° and 39° indicated density of up to 80%. Results revealed that 
increasing the soil cohesion and friction angle resulted in reducing tunnel 
displacements by as much as 64% and 39% respectively. Investigation on the 
differences and similarities between normal and reverse faults revealed that 
reverse faults can bring approximately 60% more tunnel displacements 
compared to normal faults because a normal fault released less energy than a 
reverse fault. Another aspect considered is the influence of fault angles in which 
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results showed that vertical movements due to a fault angle of 90° could bring 
major displacements of more than two times the displacements caused by a 
fault angle of 30°. Evaluation of the effects of various distances between a 
tunnel and a fault revealed that tunnel displacements could be reduced by more 
than 22% when the tunnel is located 250 mm away from the fault. In addition, 
finite element analyses were also performed using PLAXIS to simulate and 
compare the results with physical model. The results of the current study could 
be of benefit to society considering the fault ruptures. Many metropolitan cities 
with underground structures are exposed to risks to many lives if fault ruptures 
occurred. This study asserts that besides the structural design of a tunnel, the 
geotechnical design also has a major impact on the safety and robustness of 
the tunnel. It is also shown that geotechnical engineering aspects such as soil 
properties, type of fault, tunnel depth, and fault angle have a strong influence 
on tunnel damages in which those aspects were not considered in previous 
research despite their importance. 
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Peningkatan pesat jumlah penduduk dunia yang berlaku seiring dengan 
pertumbuhan bandar, ekonomi, dan perniagaan mewujudkan keperluan 
kepada pengangkutan awam yang berkesan dan efisien. Salah satu 
pengangkutan awam yang paling pantas, dan mudah ialah kereta api bawah 
tanah. Namun begitu, ia menimbulkan kebimbangan kepada jurutera geoteknik 
berikutan pembangunan dan pembinaan laluan kereta api dibuat di bawah 
tanah di tempat terdapatnya sesar. Beberapa peristiwa seismik seperti gempa 
bumi di Taiwan pada tahun 1999, China pada tahun 2008, dan Malaysia 
(Sabah) pada tahun 2015 yang disebabkan oleh pemecahan sesar 
menunjukkan kepentingan kajian ini. Walaupun banyak kajian telah dijalankan 
terhadap pemecahan sesar, kebanyakan pengkaji hanya mengambil kira 
medan lapang (medan tanpa terowong) dan tanah homogen tanpa jeleket 
(pasir). Dalam kajian ini, model fizikal gergasi berukuran 1000 mm tinggi, 3000 
mm panjang, dan 1000 mm lebar dibina di dalam makmal Kejuruteraan 
Geoteknik, Universiti Putra Malaysia (UPM) untuk menilai pengaruh pelbagai 
sifat tanah terhadap terowong yang mengalami kesan sesar normal dan 
songsang, termasuk kesan pelbagai sudut sesar dan kedalaman terowong di 
bawah tanah. Tiga nilai kejeleketan tanah: tanpa kejeleketan, 10 kPa dan 20 
kPa telah dipilih berikutan tanah tanpa kejelekatan telah digunakan di dalam 
banyak kajian yang lepas, dan kajian lain (kestabilan tanah), nilai kejeleketan 
tanah kurang daripada 23 kPa telah digunakan. Tiga nilai sudut geseran iaitu 
27°, 33° dan 39° telah disiasat di dalam kajian ini. Kajian lepas telah 
menunjukkan bahawa julat sudut geseran tanah antara 28° dan 39° 
menandakan kepadatan sehingga 80%.  Keputusan menunjukkan bahawa 
peningkatan kejeleketan tanah dan sudut geseran menyebabkan pengurangan 
anjakan terowong sebanyak masing-masing 64% dan 39%. Penyiasatan 
terhadap perbezaan dan persamaan antara sesar normal dengan songsang 
menunjukkan bahawa anjakan terowong yang disebabkan oleh sesar 
songsang ialah kira-kira 60% lebih tinggi berbanding sesar normal kerana sesar 
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normal mengeluarkan tenaga yang lebih rendah berbanding sesar songsang. 
Satu lagi aspek yang dipertimbangkan ialah pengaruh sudut sesar dan hasil 
kajian menunjukkan bahawa pergerakan menegak yang disebabkan oleh sudut 
sesar 90° boleh menyebabkan anjakan besar iaitu lebih daripada dua kali 
ganda anjakan yang disebabkan oleh sudut sesar 30°. Penilaian kesan 
pelbagai jarak di antara terowong dan sesar menunjukkan bahawa anjakan 
terowong boleh dikurangkan sebanyak lebih daripada 22% apabila terowong 
terletak 250 mm dari kedudukan sesar. Di samping itu, analisis unsur terhingga 
telah dijalankan menggunakan PLAXIS untuk mensimulasikan dan 
membandingkan situasi yang biasanya tidak diuji terhadap model fizikal. Hasil 
kajian ini boleh memberikan manfaat kepada masyarakat berkaitan pemecahan 
sesar. Banyak bandar raya metropolitan dengan struktur bawah tanah terdedah 
kepada risiko yang mengancam banyak nyawa jika berlaku kejadian 
pemecahan sesar. Kajian ini menekankan yang selain daripada reka bentuk 
struktur terowong, reka bentuk geoteknik juga memberikan kesan yang besar 
terhadap keselamatan dan keteguhan terowong. Ia juga menunjukkan aspek-
aspek kejuruteraan geoteknik seperti sifat tanah, jenis sesar, kedalaman 
terowong, dan sudut sesar memberikan pengaruh yang besar tehadap 
kerosakan terowong di mana aspek-aspek penting ini tidak dipertimbangkan 
dalam kajian terdahulu. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Introduction  

Fault ruptures are caused by sudden movement on a fault when stress on the 
edge overcomes the friction and energy in waves are released and travel 
through the soil. In recent years, there has been an increasing amount of 
research on this topic due to several major incidents such as fault ruptures in 
Taiwan in 1999, Turkey in 1999, USA in 2002, Japan in 2004, China in 2008, 
and Iran in 1990. Furthermore, in 2015, an earthquake with a magnitude of 6 
occurred in Sabah, Malaysia, which was recorded as the second largest 
earthquake in the country after the 1991 earthquake in Ranau which was also in 
Sabah. Tectonic map of fault activity revealed that Sabah’s fault was part of a 
200 km-long system of normal fault that crosses the eastern side of the Crocker 
Range parallel to Sabah’s northwest coastline. 

Two types of physical models, namely, centrifuge and 1g models have been 
used in previous studies on fault ruptures. Centrifuge model has the ability to 
change the centrifuge’s acceleration, Ng, where N stands for the scaling factor 
and g stands for the acceleration of gravity. It is involves changing gravity to 
simulate a real situation. However, fault simulations with centrifuge tests were 
mostly used to investigate free fields (fields without any structures) and 
cohesionless soil (Ng & Asce, 2012;). Several studies have examined the 
relationship between shear zone and damages, and the findings show that soil 
experiences the highest stress and strain in the shear zone, which causes 
damages to soil. Lee (2003) used centrifuge model for an experimental 
investigation to explore the shear zone when faults happen in a free field, and 
he showed that soil density can have major influence on ground surface 
displacements. 1g model is more preferred to be used for simulating the effect 
of soil properties on tunnels induced by faults. Firstly, unlike centrifuge model 
which is very sensitive to achieve certain gravity, natural gravity is used in 1g 
model. Secondly, the process of increasing vertical component in 1g model can 
be manipulated and also more gauges can be installed in 1g model due to its 
larger size. Thirdly, the effects of various soil properties can be investigated 
more accurately as it involves greater mass of soil. 

Investigation on the effects of soil properties alone shows that soil friction angles 
are important aspect of soil failure. The shear zone in low-density soil is typically 
more complex than in high-density soil and as the relative density of the ground 
model becomes more significant, the number of rupture planes decrease 
because soil strength does not let more fractures in the soil (this fact also showed 
in this study 4.2.4). Furthermore, soil properties such as cohesion, friction angle, 
particle size, density and soil moisture are very important in any simulation and 
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analysis involving with soil (Ertugrul, 2010). Previous studies revealed that 
changing of soil friction angles and cohesion could affect bearing capacity of soil. 
The results from Khezri (2015) showed cohesion is very important to be 
measured in underground structures because cohesion increases with the depth 
and each layer has different cohesion. Furthermore, soil particle size and 
moisture content have been claimed to have critical impact in designing 
foundation, road and other infrastructure (Sudarsan et al., 2018; Pöhlitz et al., 
2019). Moreover, normal and reverse faults would also have different impacts 
on soil deformations. For instance, normal faults tent to bend over the hanging 
walls and reverse faults tend to bend over the footwalls. When a normal fault 
happens, at least one rupture propagation reaches the ground surface and 
damages building foundations and there could be more impacts on the soil. In 
this study, 1g model has been used for evaluating the effect of faults (normal 
and reverse) on tunnels. Various soil properties including soil moisture content, 
particle size cohesion and friction angle have been used. Furthermore, 
differences and similarity of normal and reverse faults have been tackled. Also, 
the effects of various fault angles and tunnel depth on tunnels have been 
investigated.  

Two types of software are often used in this field, namely PLAXIS and ABAQUS, 
both of which are based on the finite element model (FEM). PLAXIS is a useful 
tool for analyzing two- and three-dimensional models and has been used for 
different circumstances such as modeling rock mass parameters, tunnels, 
foundations and many more. Likewise, ABAQUS has ability to model tunneling 
in dynamic and slopped zones. In this study PLAXIS software had been used for 
simulating and comparing the results of physical model with the software. 

1.2 Problem statement  

Fault rupture studies have been receiving more attention after the occurrence of 
severe disasters globally, particularly in metropolitan areas as they caused 
casualties and damages to large-scale structures. For instance, Chi–Chi reverse 
fault in Taiwan in 1999 (Figure 1.1), Kocaeli strike fault in Turkey in 1999, Central 
Alaska reverse fault in the USA in 2002, and Mid Niigata reverse fault in Japan 
in 2004. It has been suggested not to build any structure on a fault trace to avoid 
severe damages (Stanton, 2013). However, it is very unlikely to avoid any 
constructions including underground structures where fault existed. This is due 
to rising population in cities that cause the need for more public transportation 
especially subways which have been required as the first choice in megacities. 

Tunnels and subways would be the first structure to experience damages when 
any movements happened before the forces caused by faults reach the ground 
surface. Hence, the stability of tunnel structures should be given more 
consideration by designers and engineers. Millions of people use underground 
public transportation every day, and hence, fault ruptures could pose a major 
hazard to their lives. Restoration of structures is another challenge because it 
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would be very costly and sometimes impossible. Thus, more research in this 
area is needed to reduce the damages to tunnels and buildings. Besides fault 
characteristics, soil properties also have major influence and need particular 
attention. Several studies have previously been conducted in fault ruptures in 
which none have considered soil properties as one of the major aspects of tunnel 
displacement. For instance, cohesion is known to has a major influence on 
forces nevertheless most studies have only been conducted on cohesionless 
soil. In this study, an experimental investigation was conducted to explore the 
effects of various soil properties such as cohesion, friction angle and various 
fault properties such as fault types, angles and tunnel depth by using a 1g model. 
Furthermore, unlike other studies that only investigated free fields, this research 
focus on field with tunnel. The outcome of this study can help engineers in 
understanding the level of damage that might be imposed on tunnels at the area 
of fault with various properties of soil and faults.  

 

Figure 1.1 : Damages caused by 6m displacements reverse fault in 1999 
Chi-Chi Taiwan (after Stanton, 2013) 

 
 
1.3 Objectives of study  

This study aims to evaluate the important factors that influence tunnel 
deformations due to dip-slip faults (normal and reverse) using a physical model 
and simulation in computer software. The following objectives have been 
identified for the successful completion of the aim of this research: 

 To analyze the effects of various soil properties (cohesion and friction 
angle) on soil deformation and hence tunnel displacement due to fault 
ruptures.  

 To assess the differences and similarities of the effects of dip-slip faults 
(normal and reverse) on soil deformation and tunnel displacement. 
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 To identify the influence of various fault angles and tunnel depth on 
displacements and the forces induced, which will then be transferred to 
tunnels.  

 To perform 3D finite element analysis on deformation of tunnel 
considering factors such as soil properties, fault angles and tunnel depth.  

 
 
1.4 Scope and limitations  

This study focused on four important aspects. Firstly, the study investigated the 
effects of various soil properties on soil deformation due to fault ruptures. Soil 
properties such as cohesion and friction angle were assessed in this study. To 
achieve this goal, each property was changed in three different proportions. Rain 
method which involves filling strong box with a certain distance of unloading soil 
was chosen for compacting soil due to large amount of soil required. Secondly, 
normal and reverse faults and their differences and similarities were investigated 
under the same conditions, i.e., the same soil properties and displacements by 
a vertical component. Other important aspects that have been undertaken in 
experimental investigation in this study are fault angles and tunnel depth, which 
were evaluated by choosing three different fault angles (30°, 60°, and 90°) and 
two different tunnel depths from the ground surface (250 and 500 mm) for both 
normal and reverse faults. Different displacements by vertical component (20, 
40, and 60 mm) were used for all the tests. Maximum displacement and 
boundary conditions for fabrication of the physical model were suggested to be 
8% and B=4H respectively (Anastasopoulos et al., 2007). Tunnel thickness was 
maintain at 10mm and tunnel diameter of 80mm in all the tests, similar to SMART 
tunnel in Kuala Lumpur, Malaysia because some parts of the tunnel had to be 
constructed in soil deposit similar to soil used in this study. In addition, PLAXIS 
software was used to analyze tunnel displacement due to faults in rock that could 
not be simulated in physical model. Moreover, the effects of foundation on 
tunnels were also evaluated. Mohr-Columns theory was used for software 
analysis. 

1.5 Thesis organization   

This thesis consists of five chapters which present the flow of the research 
involved. The outline of the thesis is as follows: 

 Chapter One provides a brief introduction to the research background. 
The research requirements as well as the problem statement are stated 
to define the key research aspects used. The objectives and aims of the 
study are listed to set the focus of the research. Subsequently, the scope 
of the study is highlighted.  

 Chapter Two is a literature review of past studies. In this chapter, the 
author explains the history of tunnels affected by fault ruptures and 
discusses previous works in this area. Moreover, an explanation of the 
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fault process and fault protection is provided in this chapter. 
 Chapter Three describes the methodology in designing a tunnel 

influenced by fault ruptures. In addition, the processes of designing in 
software and fabricating the physical model that can simulate normal 
and reverse fault are explained. Also, the details of the tests are 
mentioned in this chapter.  

 Chapter Four forms the major part of this thesis, in which the 
experimental results and the data for each objective are explained in 
details. Also, data comparison with previous researchers and software 
analyses are discussed. 

 Chapter Five presents the conclusion of the research in terms of the 
design process and analysis of the results of the physical model. Also, 
this chapter includes several recommendations for future researchers 
who are interested in this field. 
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7 APPENDICES 

APPENDIX A 

 
ETABS results 

 

 
(a) 
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(a) Frame properties in elevation view (b) in 3D 
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Results of steel angle column after load induced 

 

 

Dead statistic load results
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APPENDIX B 

 
Composition limits of Portland cement based on ASTM C 150 – 

type Ι, ΙΙΙ or BS EN 197-1 
 

Oxide Content 
(%) 

CaO 60-67 
SiO2 17-25 
Al2O3 3-8 
Fe2O3 0.5-6 
MgO 0.1-4 

Alkalis 0.2-1.3 
SO3 1-3 
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APPENDIX C 

 
The graph from the compression test 

 

 
 

Maximum load and strength compression 

 
 

Results from the compression test 

R1 R2   (MPa) 
28396 35563 7167 16.4  

 

                                                                                   

2.13=  = 0.009  
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APPENDIX D 

Different soil cohesion  

 

 
(a) 

 
(b) 

 
(c)  

 
Cohesionless (a), 10kPa (b) and 20kPa (c) results from direct shear 

box test 
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Extraction of model development databases from shear box (cohesion of 
20kPa) 

 
Time,s Vert. 

Disp.,mm 
Hori. 

Load,N 
Hori. 

Disp.,mm 
N Shear 

Stress,kPa 
Vert. Disp. 
Chan.,mm. 

Shear 
Force,N 

0 0.003 45.6 -0.001 4.55622 0.002 45.5622 
3 0.001 60.1 0.044 6.0136 0 60.13596 
6 0 103.6 0.082 10.35504 -0.001 103.5504 
9 0 132.8 0.104 13.27746 -0.001 132.7746 
12 0 143.4 0.116 14.33598 -0.001 143.3598 
15 0 157.3 0.131 15.73199 -0.001 157.3199 
18 0 174.7 0.159 17.47317 -0.001 174.7317 
21 0.001 192.5 0.196 19.24504 0 192.4504 
24 0 218 0.25 21.79928 -0.001 217.9928 
27 0.001 233 0.335 23.30268 0 233.0268 
30 0 246.7 0.423 24.66801 -0.001 246.6801 
33 0 262.4 0.499 26.24044 -0.001 262.4044 
36 0.001 271.1 0.58 27.11486 0 271.1487 
39 0.001 282.3 0.686 28.22708 0 282.2708 
42 0.001 289.3 0.766 28.93275 0 289.3275 
45 0 294.1 0.848 29.40832 -0.001 294.0832 
48 0.001 301.4 0.934 30.14467 0 301.4467 
51 0.001 305.1 1.038 30.50518 0 305.0518 
54 0.001 310.2 1.123 31.0191 0 310.191 
57 0 317.8 1.23 31.77847 -0.001 317.7847 
60 0 323.8 1.315 32.37676 -0.001 323.7676 
63 0.001 329.7 1.401 32.96738 0 329.6738 
66 0.001 334.3 1.513 33.4276 0 334.2761 
69 0 339.6 1.6 33.96453 -0.001 339.6453 
72 0 345.1 1.684 34.50913 -0.001 345.0913 
75 0.001 348.1 1.794 34.80828 0 348.0828 
78 0.001 353.9 1.879 35.39123 0 353.9123 
81 0.001 356.1 1.963 35.606 0 356.06 
84 0.001 358.2 2.069 35.82077 0 358.2077 
87 0 362 2.154 36.19662 -0.001 361.9662 
90 0.001 365 2.236 36.50344 0 365.0344 
93 0.001 368.9 2.335 36.89463 0 368.9463 
96 0 372 2.425 37.20144 -0.001 372.0144 
99 0.001 375 2.515 37.50059 0 375.0059 

102 0.001 378.6 2.602 37.8611 0 378.611 
105 0.001 381.7 2.705 38.16792 0 381.6791 
108 0.001 384.9 2.784 38.49007 0 384.9007 
111 0 387.6 2.895 38.75853 -0.001 387.5853 
114 0.001 389.2 2.983 38.91961 0 389.1961 
117 0 389.8 3.065 38.98098 -0.001 389.8098 
120 0.001 392.8 3.173 39.28012 0 392.8012 
123 0.001 394.5 3.265 39.44887 0 394.4887 
126 0 398.5 3.352 39.84773 -0.001 398.4773 
129 0 399.7 3.445 39.97046 -0.001 399.7046 
132 0 399.7 3.56 39.97046 -0.001 399.7046 
135 0.001 402.6 3.648 40.26193 0 402.6193 
138 0 404.2 3.735 40.41534 -0.001 404.1534 
141 0 404.9 3.843 40.49204 -0.001 404.9204 
144 0 405.2 3.932 40.51505 -0.001 405.1505 
147 0 407.8 4.02 40.77585 -0.001 407.7585 
150 0 406.4 4.126 40.63778 -0.001 406.3778 
153 0.001 408.8 4.216 40.88323 0 408.8323 
156 0 408.4 4.307 40.84488 -0.001 408.4488 
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159 0 407.9 4.414 40.79119 -0.001 407.9119
162 0 409.3 4.499 40.92926 -0.001 409.2926
165 0 408.7 4.613 40.86789 -0.001 408.6789
168 0 409.3 4.705 40.92926 -0.001 409.2926
171 0.001 408.6 4.792 40.86022 0 408.6022
174 0.001 408.8 4.9 40.87556 0 408.7556
177 0.001 410.8 4.988 41.08266 0 410.8267
180 0.001 408.1 5.072 40.8142 0 408.142
183 0 410.7 5.184 41.06733 -0.001 410.6732
186 0 408.5 5.268 40.85255 -0.001 408.5255
189 0 409.1 5.373 40.91392 -0.001 409.1392
192 0 408.1 5.46 40.8142 -0.001 408.142
195 0.001 408.2 5.548 40.82187 0 408.2187
198 0.001 408.4 5.653 40.84488 0 408.4488
201 0 406.1 5.739 40.61477 -0.001 406.1477
204 0 404.8 5.825 40.4767 -0.001 404.767
207 0.001 402 5.931 40.20057 0 402.0057
210 0.001 401.8 6.017 40.17756 0 401.7756
213 0.001 401.2 6.119 40.1162 0 401.162
216 0.001 398.1 6.207 39.80938 0 398.0938
219 0.001 400.1 6.297 40.00881 0 400.0881
222 0 399.8 6.39 39.97813 -0.001 399.7813
225 0.001 398.7 6.504 39.87074 0 398.7074
228 0.001 399.4 6.586 39.93978 0 399.3978
231 0.001 399.2 6.68 39.91676 0 399.1676
234 0.001 399.1 6.79 39.9091 0 399.0909
237 0.001 397.9 6.879 39.78637 0 397.8637
240 0 395.6 6.97 39.56393 -0.001 395.6393
243 0.001 396.6 7.074 39.65597 0 396.5597
246 0.001 392.2 7.164 39.21876 0 392.1876
249 0.001 393.3 7.252 39.33381 0 393.3381
252 0.001 390.3 7.345 39.03467 0 390.3467
255 0.001 388.5 7.461 38.85058 0 388.5058
258 0.001 389 7.55 38.8966 0 388.966
261 0.001 388 7.636 38.79688 0 387.9688
264 0 387.2 7.724 38.72018 -0.001 387.2018
267 0.001 384.1 7.829 38.40569 0 384.0569
270 0 381.9 7.916 38.19093 -0.001 381.9092
273 0.001 383.4 8.019 38.33666 0 383.3666
276 0 372.2 8.107 37.22445 -0.001 372.2445
279 0.001 372.8 8.213 37.27814 0 372.7815
282 0.001 373.5 8.301 37.35485 0 373.5485
285 0 370.9 8.394 37.08639 -0.001 370.8639
288 0.001 373.7 8.485 37.37019 0 373.7019
291 0 373.9 8.597 37.3932 -0.001 373.932
294 0.001 374.5 8.676 37.45457 0 374.5457
297 0.001 375.7 8.78 37.56962 0 375.6962
300 0.001 373.4 8.865 37.33951 0 373.3951
303 0.001 376.7 8.972 37.66933 0 376.6934
306 0.001 379.4 9.061 37.9378 0 379.378
309 0.001 378.3 9.148 37.83041 0 378.3041
312 0.001 378.2 9.256 37.82275 0 378.2274
315 0 375.8 9.342 37.58496 -0.001 375.8496
318 0 374.2 9.429 37.41621 -0.001 374.1621
321 0.001 369.1 9.54 36.90997 0 369.0997
324 0.001 369.3 9.619 36.92531 0 369.2531
327 0.001 363.7 9.707 36.37304 0 363.7304
330 0.001 361.8 9.815 36.18128 0 361.8128
333 0 360.2 9.902 36.0202 -0.001 360.202
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336 0.001 355.7 10.012 35.56765 0 355.6765 
339 0.001 356.4 10.098 35.63668 0 356.3668 
342 0.001 354.4 10.187 35.44492 0 354.4492 
345 0 356.9 10.268 35.69038 -0.001 356.9037 
348 0 359 10.386 35.89747 -0.001 358.9747 
351 0 358.3 10.478 35.82844 -0.001 358.2844 
354 0.001 359.7 10.569 35.96651 0 359.6651 
357 0.001 358.8 10.656 35.88213 0 358.8214 
360 0.001 361.7 10.764 36.16594 0 361.6594 
363 0 358.2 10.853 35.82077 -0.001 358.2077 
366 0.001 358.8 10.94 35.88213 0 358.8214 
369 0 362 11.05 36.20429 -0.001 362.0429 
372 0.001 360.6 11.136 36.05856 0 360.5855 
375 0.001 362 11.243 36.19662 0 361.9662 
378 0.001 362 11.32 36.20429 0 362.0429 
381 0.001 363.7 11.413 36.37304 0 363.7304 
384 0.001 362.6 11.526 36.25798 0 362.5798 
387 0.001 364.3 11.624 36.4344 0 364.344 
390 0.001 362.3 11.709 36.23497 0 362.3497 
393 0.001 356.6 11.792 35.65969 0 356.5969 
396 0.001 358.5 11.901 35.85145 0 358.5145 
399 0.001 357.7 11.988 35.77475 0 357.7475 
402 0.001 359.1 12.077 35.91282 0 359.1281 
405 0.001 357.6 12.185 35.75941 0 357.5941 
408 0.001 359.2 12.274 35.92049 0 359.2049 
411 0.001 357 12.38 35.69804 0 356.9804 
414 0.001 351.9 12.467 35.1918 0 351.918 
417 0.001 345.2 12.55 34.5168 0 345.168 
420 0 341.2 12.55 34.11794 -0.001 341.1794 
423 0 339.4 12.55 33.94152 -0.001 339.4152 
426 0 338.8 12.549 33.88016 -0.001 338.8016 
429 0.001 337 12.55 33.70374 0 337.0374 
432 0 338.2 12.55 33.81879 -0.001 338.188 
435 0.001 336.3 12.55 33.62704 0 336.2704 
438 0 335.7 12.55 33.56567 -0.001 335.6567 
441 0.001 335.3 12.551 33.52732 0 335.2732 
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APPENDIX E 

 
Soil friction angles  

 

 
(a) 

 

 
(b) 
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(c)  

Friction angles 27º (a), 33º (b) and 39º (c) results from direct shear box 
 

Extraction of model development databases from shear box (friction 
angle of 33º) 

 
Time,s Vert. 

Disp.,mm 
Hori. 
Load,N 

Hori. 
Disp.,mm 

N Shear 
Stress,kPa 

Vert. Disp. 
Chan.,mm. 

Shear 
Force,N 

0 0.003 44.6 24.064 4.46418 0.003 44.64175 
3 0.003 66.8 24.064 6.68092 0.003 66.80921 
6 0.003 102.9 24.064 10.28601 0.003 102.8601 
9 0.003 131.4 24.064 13.1394 0.003 131.394 
12 0.003 152.3 24.064 15.22575 0.003 152.2575 
15 0.003 163.6 24.064 16.36097 0.003 163.6096 
18 0.003 173.3 24.064 17.32743 0.003 173.2744 
21 0.003 182.5 24.064 18.24788 0.003 182.4788 
24 0.003 188.4 24.064 18.8385 0.003 188.3851 
27 0.003 193.5 24.064 19.35242 0.003 193.5242 
30 0.003 197 24.064 19.69759 0.003 196.9759 
33 0.003 198.7 24.064 19.86634 0.003 198.6634 
36 0.003 204 24.064 20.40327 0.003 204.0327 
39 0.003 207.9 24.064 20.78679 0.003 207.8679 
42 0.003 209.1 24.064 20.90951 0.003 209.0951 
45 0.003 209.5 24.064 20.94786 0.003 209.4787 
48 0.003 211.9 24.064 21.19332 0.003 211.9332 
51 0.003 215.3 24.064 21.53082 0.003 215.3082 
54 0.003 216.5 24.064 21.65354 0.003 216.5354 
57 0.003 217.5 24.064 21.75326 0.003 217.5326 
60 0.003 218.9 24.064 21.89132 0.003 218.9132 
63 0.003 222.3 24.064 22.22882 0.003 222.2882 
66 0.003 222.4 24.064 22.23649 0.003 222.3649 
69 0.003 222.6 24.064 22.2595 0.003 222.595 
72 0.003 223.6 24.064 22.35922 0.003 223.5922 
75 0.003 226.3 24.064 22.62768 0.003 226.2768 
78 0.003 226.8 24.064 22.68138 0.003 226.8138 
81 0.003 226.4 24.064 22.64302 0.003 226.4302 
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84 0.003 227.9 24.064 22.78876 0.003 227.8876 
87 0.003 229 24.064 22.90382 0.003 229.0382 
90 0.003 229.4 24.064 22.94217 0.003 229.4217 
93 0.003 230.6 24.064 23.0649 0.003 230.649 
96 0.003 230.6 24.064 23.0649 0.003 230.649 
99 0.003 230.8 24.064 23.08023 0.003 230.8024 

102 0.003 230.5 24.064 23.04955 0.003 230.4955 
105 0.003 230.7 24.064 23.07257 0.003 230.7257 
108 0.003 231.6 24.064 23.16461 0.003 231.6461 
111 0.003 232.4 24.064 23.24131 0.003 232.4131 
114 0.003 231.9 24.064 23.18762 0.003 231.8762 
117 0.003 231.5 24.064 23.14927 0.003 231.4927 
120 0.003 233.5 24.064 23.3487 0.003 233.487 
123 0.003 232.7 24.064 23.272 0.003 232.72 
126 0.003 231.8 24.064 23.17995 0.003 231.7995 
129 0.003 229.9 24.064 22.98819 0.003 229.8819 
132 0.003 232 24.064 23.20296 0.003 232.0296 
135 0.003 233.7 24.064 23.37171 0.003 233.7171 
138 0.003 232 24.064 23.19529 0.003 231.9529 
141 0.003 232 24.064 23.20296 0.003 232.0296 
144 0.003 234.9 24.064 23.49444 0.003 234.9444 
147 0.003 234.5 24.064 23.44841 0.003 234.4841 
150 0.003 233.7 24.064 23.37171 0.003 233.7171 
153 0.003 230.3 24.064 23.03421 0.003 230.3421 
156 0.003 230.6 24.064 23.0649 0.003 230.649 
159 0.003 229.9 24.064 22.98819 0.003 229.8819 
162 0.003 230.3 24.064 23.03421 0.003 230.3421 
165 0.003 230.2 24.064 23.01887 0.003 230.1887 
168 0.003 230.6 24.064 23.0649 0.003 230.649 
171 0.003 231.3 24.064 23.12626 0.003 231.2626 
174 0.003 230 24.064 22.99586 0.003 229.9586 
177 0.003 229.2 24.064 22.91916 0.003 229.1916 
180 0.003 229.1 24.064 22.91149 0.003 229.1149 
183 0.003 229.4 24.064 22.94217 0.003 229.4217 
186 0.003 228.9 24.064 22.88848 0.003 228.8848 
189 0.003 228.4 24.064 22.84245 0.003 228.4245 
192 0.003 227.8 24.064 22.78109 0.003 227.8109 
195 0.003 227.7 24.064 22.77342 0.003 227.7342 
198 0.003 228.3 24.064 22.83478 0.003 228.3478 
201 0.003 227.9 24.064 22.78876 0.003 227.8876 
204 0.003 228.7 24.064 22.87313 0.003 228.7314 
207 0.003 228.6 24.064 22.85779 0.003 228.5779 
210 0.003 228.2 24.064 22.81944 0.003 228.1944 
213 0.003 228.4 24.064 22.84245 0.003 228.4245 
216 0.003 226.3 24.064 22.62768 0.003 226.2768 
219 0.003 226 24.064 22.60467 0.003 226.0467 
222 0.003 227.1 24.064 22.71206 0.003 227.1206 
225 0.003 226.4 24.064 22.64302 0.003 226.4302 
228 0.003 226.2 24.064 22.62001 0.003 226.2001 
231 0.003 225.3 24.064 22.52797 0.003 225.2797 
234 0.003 225.6 24.064 22.55865 0.003 225.5865 
237 0.003 225.1 24.064 22.51263 0.003 225.1263 
240 0.003 225.2 24.064 22.5203 0.003 225.203 
243 0.003 225.7 24.064 22.56632 0.003 225.6632 
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APPENDIX F 

 
LVDTs results for normal fault with D50 0.2mm 

 
 
 

M5.11\Spm 1\Stage\Schedule      
 Value Peak Trough Initial Final   
Elapsed Time 00:06:43   00:00:00 00:06:43   
Logs Record 
Count 

13 13 0 0 13   

        
Common Data       
lvdt m3 CH1 60.82 61.48 0 60.89 61.26   
lvdt m3 Ch2 51.36 73.28 0 73.26 57.09   
lvdt m3 Ch3 39.53 87.23 0 87.23 49.19   
lvdt m3 Ch4 63.3 86.34 0 86.32 69.43   
lvdt m3 Ch 5 0 51.88 0 0 51.87   
lvdt m3 CH7 29.94 30.04 0 30.03 29.98   
        
Schedule        
lvdt m3 CH1 lvdt m3 

Ch2 
lvdt m3 

Ch3 
lvdt m3 

Ch4 
lvdt m3 
Ch 5 

lvdt m3 
CH7 

Elapsed 
Time 

Logs Record 
Count 

60.89 73.26 87.23 86.32 0 30.03 0 0 
61.06 71.52 83.39 85.11 0 30.02 32 1 
61.2 69.26 78.52 83.4 0 29.97 81 2 

61.26 69.26 78.52 83.4 0 30 83 3 
61.09 66.58 73.45 81.49 0 29.95 137 4 
61.09 66.58 73.45 81.49 0 29.95 137 5 
61.19 63.86 68.39 79.33 0 29.98 168 6 
61.19 63.86 68.39 79.33 0 29.98 168 7 
61.18 59.95 62 76.23 0 29.98 232 8 
61.18 59.95 62 76.23 0 29.98 232 9 
60.88 56.3 55.86 73.09 0 29.97 264 10 
60.88 56.3 55.86 73.09 0 29.97 264 11 
60.96 57.09 49.19 69.43 51.87 29.98 404 12 
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APPENDIX G 

 
LVDTs results for reverse fault with soil cohesion 10 kPa (C10R60) 
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APPENDIX H 

 
LVDTs results for reverse fault with friction angle of 39° (F39R60) 

 

 
 

M5.11\Spm 1\Stage\Schedule     
 Value Peak Trough Initial Final  
Elapsed Time 00:06:14 --:--:-- --:--:-- 00:00:00 00:04:25  
Logs Record 
Count 

11 11 0 0 10  

       
Common Data      
lvdt m3 CH1 60.9 61.61 0 61.05 61.39  
lvdt m3 Ch2 17.68 18.48 0 18.25 17.68  
lvdt m3 Ch3 18.23 63.86 0 18.23 63.78  
lvdt m3 Ch4 26.75 27 0 26.78 27  
lvdt m3 Ch 5 0 51.89 0 51.88 0  
lvdt m3 CH7 29.94 30.04 0 29.98 30.03  
       
Schedule       
lvdt m3 CH1 lvdt m3 Ch2 lvdt m3 Ch3 lvdt m3 Ch4 lvdt m3 Ch 5 lvdt m3 CH7 Elapsed 

Time 
61.05 18.25 18.23 26.78 51.88 29.98 0 
61.05 18.41 22.43 26.82 0 29.98 28 
61.21 18.46 31.34 26.87 0 29.98 87 
61.21 18.46 31.34 26.87 0 29.98 87 
61.24 18.48 36.69 26.9 0 29.99 146 
61.24 18.48 36.69 26.9 0 29.99 146 
61.18 18.48 36.69 26.9 0 29.99 148 
61.12 18.46 46.67 26.94 0 29.99 208 
61.12 18.46 46.67 26.94 0 29.99 208 
61.17 17.68 63.75 27 0 30.02 263 
61.39 17.68 63.78 27 0 30.03 265 



© C
OPYRIG

HT U
PM

124

8 BIODATA OF STUDENT 

Mehdi Ghafari was born in Abadan, IRAN, in 1987. He studied civil engineering 
course in 2005 and graduated in 2010. He worked as structure engineer in one 
of the project in Tehran but realized the study was more important for him. He 
started his master in geotechnical engineering in 2011 and three years after 
graduated with a distinct result from his viva. He has accepted as a full time 
student in University Putra Malaysia (UPM) in 2015 and continued his study in 
geotechnical engineering field. His research interest includes tunneling, 
excavation, faulting, soil stability and seismic design.    



© C
OPYRIG

HT U
PM

 
125 

9 LIST OF PUBLICATIONS 

Ghafari, M., Nahazanan, H., Yusoff, Z.M & Nik, N., (2020). A novel experimental 
study on the effects of soil and faults’ properties on tunnels induced by 
normal and reverse faults. Applied Sciences, 10 (11), 3969, (Published). 

 
Ghafari, M., Nahazanan, H., Yusoff, Z.M & Ghiasi, V., (2019). The effect of soil 

cohesion and friction angles on reverse faults. Earthquake Engineering 
& Engineering Vibration. (Accepted)  

 
Ghafari, M., Nahazanan, H., Rostami, V & Ibrahim, A., (2016). The behaviour of 

peat soil on tunnels against large tectonic deformation. In proceedings 
of the 3th GEGEU International Research Seminar. Putrajaya, Malaysia. 

 
Ghafari, M., Nahazanan, H., Rostami, V & Salajegheh, A., (2017). Physical 

models of tunnels and effects of fault ruptures. Global Civil 
Engineering Conference (GCEC2017). Kuala Lumpur, Malaysia.  

 
Ghafari, M., Nahazanan, H., Rostami, V & Ghafari, M.J., (2017). Difference 

behavior of shallow and deep foundation induced by fault ruptures. In 
proceedings of the 4th GEGEU International Research Seminar. 
Putrajaya, Malaysia. 

 
Ghafari, M., Nahazanan, H., Yusoff, Z.M & Rostami, V., (2018). The effect of 

soil properties on tunnels against large tectonic deformation. In 
proceedings of the 5th GEGEU International Research Seminar. Bangi, 
Malaysia. 

 
Ghafari, M., Nahazanan, H., Ghiasi, V & Rostami, V., (2019). Soil properties 

impact on normal and reverse faults. Acta Geotechnica. (under review) 
 
Ghafari, M., Nahazanan, H., Ghiasi, V & Rostami, V., (2020). Experimental 

study on normal and reverse faults through different soil properties.  Soil 
Mechanics and Foundation Engineering. (under review) 

 

 

 

 

 

 

 

 
 




