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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

DEVELOPMENT OF OPTIMAL ENERGY MANAGEMENT TOPOLOGY FOR 

BATTERY ELECTRIC VEHICLE WITH LOAD SEGMENTATION 

By 

TENGKU AZMAN TENGKU MOHD 

August 2020 

Chairman : Associate Professor Mohd Khair Hassan, PhD, Ir. 

Faculty : Engineering 

Sustainable transportation has been widely explored as a result of fossil fuels depletion 

and pollution emissions released by conventional vehicles. Among the alternatives, 

hybrid and plug-in hybrid electric vehicles manage to reduce but incompletely remove 

the carbon impacts. Battery electric vehicles (BEVs) instead, offer zero carbon 

footprint solution with outstanding drivetrain performance and energy efficiency, 

however they are confined by the driving range due to constraints in batteries capacity 

and volume. The increase in power requirement and number of electrical loads on-

board, due to the transportation electrification has complicated the situation further. 

Primarily, the challenges in BEV having batteries as the only energy storage but 

multiple loads to be fulfilled lie in eliminating the „range anxiety‟ by developing 

stringent control rules and management strategy that could further extend the driving 

range. In this thesis, an attempt has been made to modularly design a power and energy 

management system (PEMS) for BEV by modelling the plant that comprises the 

modules of energy management system (EMS) and power management system (PMS). 

Several simulation tests performed on BEV model have verified its control robustness, 

effectiveness in satisfying the targeted performances and suggested load distribution 

profiles for the corresponding driving cycles. The area of PEMS in the application field 

of BEV is relatively new and incorporates several different disciplines. Two levels of 

control; low level component control (LLCC) and high level supervisory control 

(HLSC) have been implemented, adapting load segmentation strategy from large scale 

power distribution systems. Four auxiliary load segments have been modelled and 

ranked for prioritization task via energy distribution strategy algorithm, operated within 

three distribution regions of battery state-of-charge (SOC). The incorporation of load 

segmentation into EMS topology has significantly improved the organization of energy 

flow management between supply and load. The simulation tests in New European 

urban and extra urban driving (NEDC) has successfully verified the optimal energy 

consumption with a saving of 18.6% in energy or an increase of 28.5% (17.22 km) in 

driving range cumulatively. Subsequently, the development of three driving modes in 

PMS via power scheme management has successfully represented the diversity in 

driving between the most-comfortable-driving with highest-power-usage (Comfort 
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Mode) and the least-comfort-driving with lowest-power-usage (Economic Mode). The 

combination of PMS-EMS has been proven in satisfying all cost functions during 

simulation tests. An integrated driving mode i-FUZZY has also been proposed using 

fuzzy logic control to overcome the manual mode selection in PMS. The simulation 

tests have verified the robustness of i-FUZZY in making quick decision on selecting 

the best adaptive driving mode while satisfying the predefined cost functions. In 

conclusion, the simulation results with the proposed PEMS strategy have proven the 

effectiveness and potential of BEV as the future sustainable transportation. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMBANGUNAN TOPOLOGI PENGURUSAN TENAGA OPTIMAL UNTUK 

KENDERAAN ELEKTRIK BERBATERI DENGAN SEGMENTASI BEBAN 

Oleh 

TENGKU AZMAN TENGKU MOHD 

Ogos 2020 

Pengerusi : Profesor Madya Mohd Khair Hassan, PhD, Ir. 

Fakulti : Kejuruteraan 

Pengangkutan lestari telah diterokai secara meluas akibat pengurangan bahan api fosil 

dan pelepasan pencemaran yang dikeluarkan oleh kenderaan konvensional. Antara 

kenderaan alternatif yang ada, kenderaan hibrid dan hibrid berpalam-masukan berjaya 

mengurangkan tetapi tidak menghapuskan kesan karbon sepenuhnya. Kenderaan 

elektrik berbateri (BEV) sebaliknya, menawarkan penyelesaian tapak sifar karbon 

dengan prestasi pemacuan dan kecekapan tenaga yang luar biasa, tetapi dihadkan oleh 

jarak pemanduan disebabkan kekangan kapasiti bateri dan isipadu ruang. Peningkatan 

keperluan kuasa dan bilangan beban elektrik di dalam kenderaan, disebabkan oleh 

elektrifikasi pengangkutan turut merumitkan keadaan. Cabaran utama BEV yang 

mempunyai bateri sebagai simpanan tenaga tetapi pelbagai beban yang perlu dipenuhi, 

terletak pada menghapuskan 'kebimbangan jarak' dengan membangunkan peraturan 

kawalan ketat dan strategi pengurusan yang dapat memanjangkan jarak perjalanan. 

Dalam tesis ini, satu rekabentuk sistem pengurusan kuasa dan tenaga (PEMS) 

dibangunkan secara modular untuk BEV dengan memodelkan loji yang merangkumi 

modul sistem pengurusan tenaga (EMS) dan sistem pengurusan kuasa (PMS). Beberapa 

ujian simulasi yang dilakukan pada model BEV mengesahkan keteguhan kawalan dan 

keberkesanannya mencapai prestasi sasaran serta mencadangkan profil pengagihan 

beban untuk kitaran memandu sepadan. Ruang lingkup PEMS dalam bidang aplikasi 

BEV agak baru dan menggabungkan beberapa disiplin berbeza. Dua peringkat 

kawalan; kawalan komponen peringkat rendah (LLCC) dan kawalan penyeliaan 

peringkat tinggi (HLSC) dilaksanakan, dengan mengadaptasi strategi segmentasi beban 

dari sistem pengagihan kuasa berskala besar. Empat segmen beban tambahan 

dimodelkan dan disenaraikan mengikut keutamaan melalui algoritma strategi 

pengedaran tenaga, yang dikendalikan dalam tiga kawasan tahap-pengecasan bateri 

(SOC). Penggabungan segmen beban ke dalam topologi EMS meningkatkan organisasi 

pengurusan aliran tenaga antara bekalan dan beban dengan lebih baik. Ujian simulasi 

semasa kitaran pemanduan Eropah baru bandar raya dan bandar raya tambahan 

(NEDC) mengesahkan penggunaan tenaga optimum dengan penjimatan sebanyak 

18.6% dalam tenaga atau peningkatan 28.5% (17.22 km) dalam jarak memandu secara 

kumulatif. Selepas itu, pembangunan tiga mod pemanduan PMS melalui pengurusan 
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skim kuasa berjaya menunjukkan kepelbagaian pemanduan daripada paling selesa 

dengan penggunaan kuasa tertinggi (Mod Selesa) kepada kurang selesa dengan 

penggunaan kuasa terendah (Mod Jimat). Kombinasi PMS-EMS terbukti dapat 

memenuhi semua fungsi kos semasa ujian simulasi. Mod pemanduan bersepadu i-

FUZZY juga dicadangkan menggunakan kawalan logik kabur untuk mengatasi 

pemilihan mod manual dalam PMS. Ujian simulasi telah mengesahkan keteguhan i-

FUZZY membuat keputusan pantas dalam memilih mod pemanduan adaptif terbaik 

sambil memenuhi fungsi kos yang ditetapkan. Kesimpulannya, keputusan simulasi 

dengan cadangan strategi PEMS telah membuktikan keberkesanan dan potensi BEV 

sebagai pengangkutan lestari pada masa depan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Preface 

Two major concerns in transportation sector nowadays are the energy conservation and 

environmental protection. Both concerns are resulted from massive production of 

conventional internal combustion engine vehicles (ICEV) in worldwide vehicle 

population. The former is related to the depletion fear of world number one energy 

supplier (fossil fuels) whereas the latter, fears against the consequences of pollution 

emissions released by ICEV such as, extreme global warming and harmful air 

pollution.  

Energy consumption in industrialized countries has projected a continuous growth in 

transportation due to increase in the world vehicle population. Based on Ward‟s Auto 

report in [1], as presented in Figure 1.1 (a), the number of vehicles reached 

approximately 250 million units in 1970, before it rapidly increased to 500 million 

units in 1986. The number surpassed the one-billion-unit mark in 2010. Considering 

the current trends, researchers and industry experts generally agree that, the number of 

vehicles in operation is expected to reach two billion units worldwide in the next 20 

years. Regarding this huge increased numbers of vehicles, the impact to the total 

energy demand in transportation is anticipated to be dramatically amplified. However, 

based on the study on energy demand and availability for the 21st century conducted 

by World Energy Council in [2, 3], the increasing in demand only matched the energy 

consumption of oil until around 1980 as shown in Figure 1.1 (b). The trend of oil 

consumption is estimated to decline after 1980 which reflects the reduction in 

worldwide oil reserves. This is conflicting to the growth in transportation demand, 

which means the transportation sector needs to search for new alternatives to replace 

oil. 
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(a) 

(b) 

Figure 1.1: (a) World vehicle population between 1970 to 2030 (personal and 

commercial vehicles) [1] (b) Energy consumption between 1850 to 2050 [3] 

According to World Energy Outlook 2011, International Energy Agency (IEA) 

forecasts an average annual increase in global transport energy demand of 1.6% 

between 2007 and 2030 [4], or by one-third between 2010 and 2035 [5]. The world 

Total Primary Energy Supply (TPES) which consist of nearly 87% of fossil fuels in 

2009 has to satisfy this demand. However, only 69% of TPES is available for 

consumption while the rest was spent during energy transformation. If the trend 

continues, sooner or later, this will result to deficiency of energy supply in the world. 

The following Figure 1.2 illustrates the percentage of oil demand worldwide as 

calculated by Organization of the Petroleum Exporting Countries (OPEC) secretariat 

[6]. The chart points out, transportation is the largest oil energy consumer which 

accounts for 59% in 2011 and expected of 4% rise in 2040. This increasingly fuel 

consumption and conflicts in the Middle East, crude oil supplier countries have led to 

oil shortage fear and price escalation as during 2008 economic crisis [5]. 
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Figure 1.2: Percentage of oil demand worldwide by sector in 2011 and 2040 [6] 

 

 

Another issue in transportation sector is the environmental consequences due to 

massive deployment of ICE vehicles. The combustion of fuel to provide mechanical 

energy produces pollution emissions; (1) greenhouse gases (CO2, NOX, CH4) and (2) 

harmful smog (particulate matters, NOX, SO, SO2). Transportation has been one of the 

top contributors in the GHG emission globally. Greenhouse gases trap heat in the 

atmosphere due to greenhouse effect, leading to climate change, particularly global 

warming. Melting glaciers, rising sea levels, flood, gully erosion, desertification, and 

extreme weather conditions can happen in worse situation [7] which must be strictly 

prevented. The increasing in emission restriction is established worldwide, for instance, 

European Council has targeted to reduce GHG emission by 20%, to increase renewable 

energy by 20% and to improve energy efficiency by 20% by 2020. In December 2011, 

European Commission in its Energy Roadmap 2050 has targeted to reduce carbon 

emission on transport by 60% by 2050 [5].  

 

 

In urban area, transportation is one of the major sources of traffic congestion, 

disturbing noise, air pollution, and closely related to health problem such as respiratory 

problems, allergies, asthmatics and some cancers. Based on a study in [5, 8] to estimate 

the impact of traffic-related and outdoor air pollution, it has concluded that 6% of total 

mortality (40,000 cases per year) is caused by air pollution, whereby half is due to 

motorized traffic. Other cases are; beyond 25,000 new cases of chronic adults 

bronchitis, beyond 290,000 series of children bronchitis, beyond 0.5 million asthma 

attacks, and beyond than 16 million person-days of restrictive activities.  

 

 

The aforementioned issues have raise a general public awareness on the importance of 

heading towards a sustainable alternative transportation in term of; (1) reducing 

emissions, and (2) reducing dependency on fossil fuels. Both the first and the latter 

require comprehensive actions from automakers and researchers to gradually improve 

the vehicle drivetrain efficiency and fuel economy; shifting from conventional high 

emission vehicle to low emission vehicle (i.e. hybrid electric vehicle (HEV) and plug-

in hybrid (PHEV)) and finally zero emission vehicle (i.e. battery electric vehicle 

(BEV)). The study by C. P. Lawrence in 2007 in [9], has agreed that; in order to 

moving forward, automotive industry needs to achieve three main goals; (1) reducing 



© C
OPYRIG

HT U
PM

4 

 

energy consumption, (2) finding alternative energy sources, and (3) reducing 

environmental impact.  

 

 

At present state, the viable energy sources for EV applications are batteries, fuel cells 

(FCs), super-capacitors (SCs) or ultra-capacitors (UCs) and ultrahigh-speed flywheels 

[5, 7, 10]. Relatively, batteries are the most dominant electrical energy source in BEV 

due to their technologies is maturing and developing with acceptable performance cost. 

Figure 1.3 demonstrates three stages development in battery technologies subject to the 

increases in performance [11]. Among newly introduced technology, Lithium-ion is the 

most preferable option for EV battery due to its high power or energy density 

characteristics. However, it is still high in cost. 

 

 

 

Figure 1.3: Battery technologies roadmap (adapted from [11]) 

 

 

According to data from U.S. Department of Energy (U.S. DOE), battery costs are 

coming down rapidly, surpassing halve in four years; from USD 1,000 per kilowatt 

hour (kWh) in 2008 to USD 485/kWh at end of 2012. It is very much expected that 

based on IEA, U.S. DOE, and Deutsche Bank data in Figure 1.4, the EV cost will 

achieve ICE vehicle parity by 2020 [12]. The World Resources Institute in [13] has 

also agreed that the EVs will be cost competitive with conventional vehicles in 2020. 

  



© C
OPYRIG

HT U
PM

5 

 

 
 

Figure 1.4: Projected costs of EV batteries (adapted from [12]) 

 

 

The decreasing in battery cost is one of the achievements from vast research and 

development efforts in EV technology. The results will be; lower in initial cost, and 

extend of driving range by marginally increase the size of the battery. However, it is 

unwise to simply increase the battery size in order to extend the range due to the 

constraint in vehicle weight and volume. A promising way is by implementing PEMS 

to manage the power and energy efficiently [14]. Figure 1.5 summarizes of the issues, 

the EV development, the advantages and drawbacks in EV, and the problem that needs 

attention. 

 

 

  
 

Figure 1.5: Summary of the issues, the EV development, the advantages and 

drawbacks in EV, and the problem that needs attention. 
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In search of sustainable transportation; new alternative, high efficiency and 

environmentally friendly propulsion have been widely explored. These include electric, 

hybrid, natural gas, liquid petroleum gas, bio-diesel and hydrogen fuel-cell 

technologies. Alternative fuels such as natural gas, liquid petroleum gas (propane and 

butane), biodiesel, and hydrogen have the potential to reduce fossil fuel dependency 

and emissions. However, the vehicles operating costs are cost-effective only in some 

territories, especially where their price is largely determined by government policies on 

the price and tax. In addition, alternative fuels possessed common drawbacks such as 

limitation in design technology, fuel availability, storage, fuel infrastructure, lower 

energy content and driving range [7]. Pereirinha and Trovão [5] in their study 

emphasized that the problem is not the replacement of fossil fuels by biofuels, but the 

replacement of inefficient ICE by efficient electric motors. Electric propulsion by 

electrical motor is much more efficient (70-90% efficiency) than the internal 

combustion engine (10-30%). Although electrical preparation for battery electric 

vehicle (BEV) imposed lower well-to-tank efficiency (~38%) than petroleum 

preparation for ICE vehicle (~83%), however BEV (~30%) is still superior on a well-

to-wheel basis as compared to ICEV (~17%) [15] as illustrated in Figure 1.6. 

 

 

 

Figure 1.6: Well-to-wheel efficiency between BEV and ICEV (adapted from [15]) 
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As a future key sustainable transportation, electric vehicle technology has been 

massively explored, hence paving way to the development of hybrid electric vehicle 

(HEV), plug-in hybrid electric vehicle (PHEV) and battery powered electric vehicle 

(BEV) or pure EV. Tie and Tan (2013) in [16] have classified vehicles into three 

groups; (1) internal combustion engine vehicle (ICEV), (2) hybrid electric vehicle 

(HEV) and (3) all electric vehicles (AEV) as shown in Figure 1.7. Considering the 

hybridization factor (HF) to calculate the ratio of hybrid or electric vehicle, HEV is 

divided into mild-HEV and full-HEV, while AEV consists of BEV and fuel cell EV 

(FCEV). Another type of classification is by emissions level; (1) low emissions vehicle 

(LEV) comprise of HEV and PHEV, and (2) zero emissions vehicle (ZEV) include of 

BEV and FCEV [5].  

 

 

 

Figure 1.7: Classification of vehicles (adapted from [16]) 

 

 

Figure 1.8 illustrates the typical drivetrain for HEV, PHEV and BEV [17]. HEV 

consists of a battery pack and a small internal combustion engine (ICE). The battery 

pack is typically smaller and lighter since most of power supply for the EV comes from 

the ICE. The battery pack is important so as to store recuperated energy from braking. 

Later the energy is used for quick acceleration. The HEVs system has two 

configurations; parallel and series. The former uses ICE coupled to an electric motor in 

a pre-transmission configuration. The summation of power generated from ICE and 

motor generated from batteries will turn the vehicle wheels. The ICE will be the main 

contributor of this power ratio. The batteries also act as storage for energy generated 

from braking, when the motor becomes generator [18]. In the latter topology, ICE does 

not directly power up the vehicle. The power summation is an electrical summation 

because it is obtained from the electric motor. ICE acts as generator and battery as 

storage. 
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Figure 1.8: Typical drivetrain of HEV, PHEV and BEV (adapted from [17]) 

 

 

A PHEV is similar to the HEV except for; it has a larger battery size but smaller ICE as 

shown in Figure 1.8. The battery pack is charged by the ICE and from plugging into a 

standard 110/120 V electrical outlet. Thus, PHEVs require on-board/off-board charger 

which involve a large battery size, heavy and costly. Nevertheless, it offers better 

mileage [19]. Due to the removal of mechanical ICE components, a BEV completely 

depends on the battery capacity, the selection of traction motors as well as the weight 

distribution ratio of the vehicle.  

 

 

HEV and PHEV are the first two important steps in reducing emissions and 

dependency of fossil fuels. Although PHEV offers a better mileage, efficiency and 

produces lower emission than HEV, these two options however unable to completely 

solve emissions problem. Eventually, BEV relies on battery as the only energy source 

[14] possesses the best in efficiency and produces absolutely zero tail pipe emission. In 

addition to transportation sector, BEV adoptions is the answer to the drawbacks of 

mechanical ICE-driven vehicle, in terms of performance, energy efficiency, noise, 

maintenance and can be regulated by the power grid operator [5, 20]. However, the 

main concern in BEV are battery-related issues; the high initial cost, limited driving 

range, and long charging time of its battery [11, 21-23].  

 

 

1.2 Problem statements 

 

 

Researchers put numerous efforts on power electronics in developing advanced 

batteries. The efforts have resulted to the increased in energy and power capability, 

prolonged the life, and reduced the battery costs. The declining of battery cost is one of 

the achievements that will reduce vehicle initial cost, and extend of driving range by 

marginally increasing the battery size. However, the battery must contain sufficient 

energy to drive in certain range, provide enough power during accelerations and supply 

all loads; propulsion and auxiliary loads. The increasing number of electrical auxiliary 

loads in vehicles due to the transportation electrification has led to further increase 

(from about 1 kW to 5 kW) in auxiliary on-board power requirement, and propulsion 



© C
OPYRIG

HT U
PM

9 

 

loads will exceed 100 kW [1, 7, 23]. The massive capacity of vehicle power 

requirement further complicates the concern for suitable power and energy 

management. Enlarging the energy capacity by simply increasing the battery size will 

only imply a penalty to the vehicle weight and volume. Therefore, employing power 

and energy management system (PEMS) is perceived to be a promising way to 

appropriately manage and distribute the power and energy in BEV. 

 

 

Power management and energy management are two different terms that often been 

inaccurately applied interchangeably. Fundamentally, the energy management refers to 

the accumulation of power over a given time period, dealing with energy consumption 

and recuperation over a trip. Instead, power management refers to instantaneous power 

distribution and power flow control between electrical and mechanical powertrain 

components to satisfy the power demands [7, 23]. The development of control 

strategies to achieve the optimal energy management system (EMS) and appropriate 

power management system (PMS) for BEV is one of the biggest challenges among 

automakers because it has been disclosed (as a trade secret) and always commercially 

known as a black box. 

 

 

Currently, PEMS plays an important role in HEV, as it has several degree-of-freedoms 

that provide room for optimizations. This is due to the existing of multiple or hybrid 

energy and power generation sources onboard. Similarly, for a single source BEV with 

numerous loads, PEMS can be very much favorable. However, typical PEMS topology 

for BEV still preserves the PEMS trend of HEV, such as adopting super-capacitor (SC) 

as secondary energy storage device. This configuration has been well implemented in 

various state-of-the-art strategies in PEMS by previous researchers and was remarkably 

proven to improve the vehicle energy efficiency as well as the lifetime of the battery.  

 

 

Nevertheless from different angle of view, PEMS itself can be employed to eliminate 

the presence of SC which in effect, reduces the cost and complexity of the BEV 

system. The nature of BEV topology with single energy source and numerous loads are 

very similar to the electrical power distribution network. This study will put an effort to 

venture on PEMS topology for BEV with battery only storage and electrical propulsion 

and auxiliary loads in reverse approach.  

 

 

There are three key issues being investigated and discussed throughout this study; (1) 

characterizing the energy distribution and power flow between powertrain components 

of electric vehicle architecture, (2) develop an optimal energy management system for 

BEV, and (3) strategize an integrated driving mode which able to automatically adapt 

with the deviations in external (environment) and internal (battery state of charge, 

performance and comfort) parameters changing during the trip. These three issues are 

the main concern of this study since many of technical reports related to BEV only 

described the surface level of information; specifically on the application features, 

without development data. Although current trend in PEMS studies for EV are showing 

a prominent increase, most of the studies however focus on the hybrids (HEV and 

PHEV) rather than BEV. This is based on smaller number of research publications and 

reading materials available on PEMS application in BEV.  
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The fundamental study of power flow and energy distribution will provide a better 

insight in characterizing supply-load topology model of BEV that able to satisfy pre-set 

performances of speed, acceleration and range. Batteries are the only energy source in 

BEV, but they have multiple loads to satisfy. Hence, reverse management strategy will 

be implemented by considering two levels of controls; low level component control 

(LLCC) and high level supervisory control (HLSC). The distribution strategy will be 

strictly equipped with the most economical rules due to the constraint in available 

energy source, adapting load segmentation management based on large scale power 

distribution, demand management strategy and smart grid systems.  

 

 

EV driving modes are basically designed based on 4 aspects; appropriate driving 

environments, driver driving styles, vehicle types and its power management strategy. 

HEV benefits a wide option in driving mode from high performance to high efficiency, 

as it possesses secondary propulsion power source. Unlike HEV, the priority in BEV is 

given to energy sustainability for a better range; conflicting between standard driving 

mode (high comfort, low efficiency) to aggressively energy recuperative braking mode 

(low comfort, high efficiency). For instance, three driving modes are available in BMW 

i3; comfort, eco pro, and eco pro+ [24]. During any trip, it is imperative for the driver 

to manually switch into the best driving mode at the right time, condition and place. 

Improper handling of the modes will prevent the driving from fully utilizing its driving 

potential at highest efficiency (optimized driving). Therefore, an adaptive integrated 

driving mode is proposed as a solution to above problem using fuzzy-rule-based 

control which able to automatically decide the best driving based on internal and 

external inputs.  

 

 

1.3 Research objectives 

 

 

This research aims to develop an optimal energy management system (EMS) and an 

adaptive power management system (PMS) for BEV using low level component 

control (LLCC) and high level supervisory control (HLSC). In order to achieve these 

aims, four research objectives are specifically formulated as follows: 

 

 

1. To develop mathematical model of BEV drivetrain and auxiliary loads 

topology using white-box modelling. 

 

2. To validate the BEV model with the performances of speed, acceleration and 

range of commercial‟s BEV and proposes the energy distribution profiles. 

 

3. To design energy management system (EMS) for BEV, using low level 

component control via load segmentation strategy and high level supervisory 

control via energy distribution strategy for optimized driving. 

 

4. To verify power management system (PMS) for BEV, using high level 

supervisory control via power scheme management strategy and fuzzy logic 

for adaptive integrated driving mode. 
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1.4 Scopes of research 

 

 

The scopes of the research are listed as below; 

 

 

1. This work only considers battery powered electric vehicle (BEV) as the 

subject plant, whereby battery is the only energy source on-board of vehicle.  

 

2. The BEV technical specifications are adopted from a Malaysian local car, 

Proton IRIZ manufactured by Proton, classified as a B-segment car 

(subcompact/super-mini).  

 

3. The modelling is specifically based on Malaysia environmental and social 

requirements. The effect of different weather setting will be excluded in the 

study. A constant tropical weather is retained for all simulation tests; normal 

temperature, day driving and clear (not raining).  

 

4. The effect of incline angle of the road to the vehicle model is also excluded in 

the study. The road incline angle is set to zero throughout the study. 

 

5. Vehicle supply-load topology comprises; (1) the high voltage battery and low 

voltage battery, (2) the DC-DC boost converter, DC-DC buck converter and 

DC-AC inverter, (3) the high voltage power bus and low voltage power bus, 

(4) the permanent magnet AC motor (PMAC) as propulsion load connected to 

high voltage power bus, (5) the comfort load connected to high voltage power 

bus, and (6) the initial load, safety load and luxury load connected to low 

voltage power bus through low voltage battery. 

 

6. The size of single cell high voltage battery is 183 mm x 116 mm x 46 mm 

(length x width x height). The effect of physical size of battery is excluded in 

the study. 

 

7. All modelling and simulation works are performed in MATLAB/Simulink 

workspace environment. 
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1.5 Research contributions 

 

 

This study implements EMS and PMS into BEV and is carried out as an effort to 

inspire the automakers and encourage potential consumers to continuously improve and 

choose pure electric vehicle as the way to support and promote green vehicle for 

sustainable environment. The original contributions of this thesis can be notified as 

follows; 

 

 

1. A new design of BEV supply-load topology in simulation environment 

considering battery only storage, both propulsion and auxiliary loads with 

analysis of their power and energy impacts on vehicle range efficiency.  

 

2. A new segmentation of electrical auxiliary loads using LLCC that has 

improved the organization of loads.  

 

3. A new EMS algorithm for energy distribution strategy using HLSC that has 

ensured optimal energy distribution. Applying such techniques has 

successfully optimized the energy consumption as much as 6.4% (18.1% 

driving range increment) during comfort limit distribution and another 12.2% 

(10.4% driving range increment) during safety limit. For a full cycle of battery 

usage, the energy saving would be as much as 18.6%, with total increase in 

driving range of 28.5% (17.22 km).  

 

4. A new PMS algorithm for power scheme management using HLSC that has 

satisfied all driving mode cost functions. 

 

 

1.6 Thesis outline 

 

 

The thesis writing scheme has been outlined based on the steps taken in the 

development of the vehicle model, energy management and power management 

strategies for battery electric vehicle. It consists of six chapters; (1) Introduction, (2) 

Literature Review, (3) Methodology, (4) Results and Discussion, and finally (5) 

Conclusion and Recommendations.  

  

 

Chapter 1 is the background and overview of this research. This chapter highlights 

numerous efforts by researchers and automakers regarding worldwide concerns of 

energy conservation and environmental protection in transportation sector. The 

advantages and limitations of BEV as potential sustainable transportation have been 

briefly described. A promising solution to BEV drawbacks has been proposed by 

implementing power and energy management strategies. On top of that, the aims, 

objectives, scopes and research contribution are also included in the chapter. 
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Chapter 2 presents a review on the energy management and power management 

strategies related to BEV. The gaps and techniques proposed from past researchers 

were investigated. A few control layers of energy management system based from 

previous researches are also presented and discussed.  

 

 

Chapter 3 comprises three key sections of the research methodology. The first section 

describes a comprehensive modelling of battery electric vehicle and its auxiliary loads. 

Each component was modelled based on its mathematical equations and the actual 

components data to construct the vehicle entire model. The second section elaborates 

the utilization of two level control strategies; low level component control (LLCC) and 

high level supervisory control (HLSC) in the development of BEV energy management 

system. The energy in auxiliary loads has been managed via load segmentation strategy 

in LLCC, while new EMS algorithm was defined in HLSC via energy distribution 

strategy. The third section presents the development of three PMS driving modes for 

BEV via power scheme management strategy. Subsequently, fuzzy logic was employed 

to develop an additional mode by integrating previous driving modes into a single 

adaptive mode.  

 

 

Chapter 4 presents the simulation results and discussion according to sections in 

previous chapter. Initially, the proposed BEV model was tested in a few speed 

conditions to verify the control robustness and the effectiveness in accomplishing the 

targeted performances. The data from energy validation was then utilized to form the 

energy distribution profiles for each driving cycle. In EMS simulation test during 

NEDC (New European urban and extra urban driving), the coordination between 

LLCC and HLSC has ensured optimal energy consumption up to 28.5% cumulative 

increase in driving range. The collective work between PMS driving modes and EMS 

has effectively satisfied the individual driving cost function. Further development of 

integrated driving mode using fuzzy logic rule-based has enabled an adaptive driving 

mode which has been verified in simulation test. 

 

 

Chapter 5 consists of the review of research achievement (objectives and aim) and 

overall conclusion. The chapter also includes future work directions and some 

suggestions for further development. 
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