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Chairman : Norhayati Ramli, PhD 
Faculty  : Biotechnology and Biomolecular Sciences 
 
 
Trichoderma sp. is a fungus capable of producing three categories of cellulase 
for cellulose degradation into glucose; endoglucanase, cellobiohydrolase and β-
glucosidase. However, native production of β-glucosidase from fungi is often at 
low concentrations and takes a longer time. Furthermore, product inhibition 
caused by glucose on β-glucosidase reduces resulting yields, making it the rate 
limiting enzyme and represents an obstacle for commercial cellulose hydrolysis. 
Studies on β-glucosidases produced by Trichoderma sp. have elucidated two 
variants, which have been classified into glycosyl hydrolase (GH) families 1 and 
3, with attention given to GH family 1 (Bgl2), owing to its relatively lower 
sensitivity to glucose inhibition, a desirable character for bioprocess 
development for efficient lignocellulosic biomass saccharification. As such, using 
locally isolated Trichoderma asperellum UPM1, this study has sought to 
characterise the bgl2 gene isolated and following heterologous expression in 
Escherichia coli, characterise the recombinant enzyme for enzyme activity and 
glucose tolerance.  
 
 
Trichoderma asperellum bgl2 (Tabgl2) gene sequence isolated was found to be 
1398 nucleotides in length, encoding a protein of 465 amino acids in length, with 
an estimated molecular weight of 52798.31 Daltons. The identity of Trichoderma 
sp. glycosyl hydrolase family 1 β-glucosidase was affirmed by the presence of 
N-terminal signature of 15 amino acids in length, cis-peptide bonds at A180-P181 
and W417-S418, conserved active site motifs with glutamate (E) residues 
(‘TFNEP’ and ‘VTENG’), 17 corresponding substrate binding and a lone 
conserved stabilising tryptophan (W) residue. Automated protein structure 
homology-modelling revealed the common triosephosphate isomerase (TIM) 
barrel fold, functioning as a monomer while protein phylogeny analyses 
positioned the isolated protein to a clade with known Trichoderma sp. β-
glucosidases. Intracellular protein localisation was confirmed by the absence of 
a signal sequence. Suggestive glucose tolerance was inferred from the presence 
of 14 of 22 consensus residues from known glucose tolerant amino acid residues 



© C
OPYRIG

HT U
PM

ii 
 

as well as the presence of corresponding residues L167 and P172, crucial in the 
retention of the active site’s narrow cavity, found in glucose tolerant Bgl2 from 
Trichoderma reesei.  
 
 
Characterisation thus proceeded by codon optimisation of the gene followed by 
transformation and heterologous expression in Escherichia coli using plasmid 
vector pET-20b(+), targeted for periplasmic expression of recombinant T. 
asperellum Bgl2 (TaBgl2). Protein expression analysis using SDS-PAGE 
showed the presence of a ~52 kDA protein in size while the crude enzyme 
extracts showed a specific activity of 0.0081 U/mg in the periplasmic fraction, 
11.6-fold higher than in the periplasmic fraction of the E. coli host without IPTG 
induction. Glucose tolerance was affirmed with 40% of relative activity retained 
in a concentration of 0.2 M glucose. Thus, the relatively low sensitivity of TaBgl2 
to inhibition by glucose makes this enzyme a potential candidate for further 
analyses in cellulose hydrolysis. 
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Trichoderma sp. adalah kulat yang boleh menghasilkan tiga kategori selulase 
untuk penguraian selulosa kepada glukosa; endoglukanase, selobiohidrolase 
dan β-glukosidasa. Walau bagaimanapun, pengeluaran β-glukosidasa daripada 
kulat secara semula jadi adalah pada kepekatan rendah dan mengambil masa 
yang lebih lama. Tambahan pula, perencatan produk disebabkan oleh glukosa 
ke atas β-glukosidasa merendahkan hasil, menjadikannya enzim pembatas 
kadar dan menjadi halangan kepada hidrolisis selulosa secara komersil. Kajian 
berkenaan  β-glucosidasa yang dihasilkan oleh Trichoderma sp. telah 
menjelaskan dua varian, yang telah diklasifikasikan kepada kumpulan glikosil 
hidrolase (GH) 1 dan 3, dengan banyak perhatian diberikan kepada β-
glucosidasa kumpulan GH 1 (Bgl2), kerana kepekaan yang lebih rendah 
terhadap perencatan glukosa, sifat yang digalakkan untuk perkembangan 
bioproses bagi proses penguraian biojisim lignoselulosa yang berkesan. Oleh 
itu, dengan menggunakan Trichoderma asperellum UPM1 yang dipencilkan 
secara setempat, kajian ini telah berusaha untuk mencirikan gen bgl2 yang 
dipencilkan dan selepas ekspresi heterologus dalam Escherichia coli, enzim 
rekombinan dicirikan untuk aktiviti enzim dan toleransi terhadap glukosa. 
 
 
Jujukan gen Trichoderma asperellum bgl2 (Tabgl2) yang dipencilkan didapati 
sepanjang 1398 nukleotida, diterjemahkan kepada protein sepanjang 465 asid 
amino, dengan anggaran berat molekul sekitar 52798.31 Daltons. Pengesahan 
identiti β-glukosidasa kumpulan glikosil hidrolase (GH) 1 daripada Trichoderma 
sp. diperolehi dengan adanya pengenalan N-terminal sepanjang 15 asid amino, 
ikatan cis-peptida pada A180-P181 dan W417-S418, dua motif yang dipelihara 
dengan tapak aktif residu glutamate (E) (‘TFNEP’ dan ‘VTENG’), 17 residu 
pengikat substrat dan satu residu triptofan (W) untuk mengekalkan kestabilan. 
Pemodelan struktur protein secara automatik berdasarkan homologi 
mendedahkan model trifosfat isomerase (TIM) yang lazim, berfungsi sebagai 
monomer dengan pokok filogeni meletakkan protein yang dipencilkan kepada 
klad merangkumi β-glukosidasa yang dikenalpasti daripada Trichoderma sp. 
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Penempatan protein secara intrasel telah disahkan dengan ketiadaan jujukan 
isyarat. Toleransi glukosa juga telah dicadangkan berdasarkan kehadiran 14 
daripada 22 residu konsensus asid amino β-glukosidasa toleran glukosa beserta 
dengan kehadiran residu L167 dan P172, penting dalam pengekalan kesempitan 
rongga tapak aktif, yang terdapat dalam Bgl2 toleran glukosa daripada 
Trichoderma reesei. 
 
 
Bagi pencirian enzim, pengoptimuman kodon gen diikuti dengan transformasi 
dan ekspresi dalam Escherichia coli menggunakan vektor plasmid pET-20b(+), 
yang disasarkan untuk ekspresi protein rekombinan T. asperellum Bgl2 (TaBgl2) 
ke periplasma. Pengesahan ekspresi protein melalui SDS-PAGE menunjukkan 
kehadiran jalur protein ~52 kDA sementara ekstrak enzim mentah menunjukkan 
aktiviti spesifik tertinggi 0.0081 U/mg dalam pecahan periplasmik, 11.6 kali 
ganda lebih tinggi daripada pecahan periplasmik perumah E. coli tanpa induksi 
IPTG. Toleransi glukosa disahkan dengan 40% aktiviti relatif dikekalkan dalam 
kepekatan 0.2 M glukosa. Maka, kepekaan relatif TaBgl2 yang rendah terhadap 
glukosa menjadikan enzim ini calon berpotensi untuk analisis lanjutan dalam 
penguraian selulosa.
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CHAPTER 1 
 
 

INTRODUCTION 
 
 
Trichoderma sp. is a genus of fungi that plays a significant role to the 
environment within its vicinity (Błaszczyk et al., 2014). As such, over the years, 
Trichoderma sp. has been the subject of several studies, ranging from 
phylogeny, distribution, defence mechanism, host interaction, production and 
secretion of enzymes, sexual development and also responses to changes in the 
environment. Thus, given the extensive interest placed, Trichoderma has been 
one of the most studied fungi, with numerous qualities highlighted for purpose of 
application (Schuster and Schmoll, 2010). These include its usage as biocontrol 
agents (Benítez et al., 2004), bioremediation agents (Rhodes, 2014) and as 
cellulase producers (Strakowska et al., 2014). 
 
 
Beginning from the Second World War, studies into cellulase production has 
grown with further support given during the 1970s as interest in microbial 
cellulases and their possible application in conversion of biofuel production from 
biomass increased (Montenecourt, 1983). Since then, numerous fungi species 
within the genus have been studied such as Trichoderma atroviride, Trichoderma 
virens, Trichoderma asperellum and Trichoderma virens (Strakowska et al., 
2014). Over time, growth in the bioethanol market and research into textile and 
feed production has positioned Trichoderma reesei in particular as a significant 
production platform within industries and thus will continue to be the focus of 
researches in the future (Brotman et al., 2010; Paloheimo et al., 2016). 
 
 
Degradation of the β-1,4 linkages present within cellulose are done by enzymes 
known as cellulase. In nature, complete hydrolysis is obtained by the synergistic 
action of three separate types (1) endoglucanases, (2) cellobiohydrolases and 
(3) β-glucosidases (Zhang and Zhang, 2013; Zhang et al., 2006). Beginning at 
the surface of solid substrates, primary hydrolysis is undertaken by 
endoglucanase and exoglucanase for release of soluble cellodextrins. 
Secondary hydrolysis then involves the breakdown of cellodextrins such as 
cellobiose into glucose by β-glucosidases (Zhang et al., 2006). It is noted 
however that in commercial cellulase producer such as T. reesei, β-glucosidase 
production is at much lower concentrations than endoglucanases and 
cellobiohydrolases (Rani et al., 2014). 
 
 
Throughout the process of cellulose saccharification, both substrate and product 
inhibition were found to occur. In substrate inhibition, this occurs on a two-domain 
structure found on the exoglucanase, known as cellobiohydrolase, of which for a 
given fixed enzyme load, increase in substrate concentration results in increase 
of time/distance necessary for cellobiohydrolases to bind via lateral diffusion to 
the chain ends resulting from endoglucanase activity (Väljamäe et al., 2001). 
Product inhibition instead can be attributed to the presence of cellobiose and 
monosaccharides liberated. Cellobiose affects by steric hindrance at the active 
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site of cellobiohydrolases (Yue et al., 2004) while β-glucosidases are affected by 
the presence of glucose (Hsieh et al., 2014). Glucose inhibition on β-glucosidase 
in particular has made it the rate-limiting enzyme, with impaired yields being one 
of the main obstacles for commercialisation of cellulose hydrolysis (Sørensen et 
al., 2013).  
 
 
Within biotechnology industries, utilisation of β-glucosidases with glucose 
tolerance and stimulation can improve efficiency of substrate degradation and 
result in reduction of production costs. Thus, interest towards the use of glucose-
tolerant β-glucosidases has increased in recent years. While the majority of β-
glucosidases are sensitive to glucose, tolerance coupled with stimulatory effect 
of the carbohydrate have been observed exclusively among glycosyl hydrolase 
(GH) family 1 β-glucosidases  (Y. Yang et al., 2015). With relative tolerance 
ranging from tenfold to 1000-times fold higher than GH family 3 (GH3) β-
glucosidases, it is thus suggested that GH family 1 (GH1) β-glucosidases are 
more suitable for plant cell-wall saccharification in biotechnological applications  
(Giuseppe et al., 2014). 
 
 
Based on the work by Marx et al. (2013), comparative secretome analysis of T. 
asperellum to that of T. reesei following solid-state fermentation on sugarcane 
bagasse have shown higher hemicellulase and β-glucosidase enzyme activities, 
along with higher diversity and increased abundance of main and side chain 
hemicellulases and β-glucosidases. In addition to demonstrated production of 
cellulase on oil palm empty fruit bunch (Ibrahim et al., 2013) and sago pith 
residue (Linggang et al., 2012) specific to local isolate T. asperellum UPM1, T. 
asperellum therefore presents an enticing alternative for cellulase production. 
 
 
Given the low expression of native β-glucosidase from fungi as well as severity 
of glucose inhibition on β-glucosidase activity and subsequent hydrolysis yield, it 
is therefore hypothesised that isolation of glucose tolerant β-glucosidase from 
GH family 1 and expression in recombinant E. coli would reduce or circumvent 
the problems altogether. Thus, this research work aims to clone and characterise 
a GH1 β-glucosidase isolated from the local strain Trichoderma asperellum 
UPM1, thereafter designated as TaBgl2. Subsequent heterologous expression 
of the enzyme in Escherichia coli would allow for glucose tolerance to be 
determined experimentally, thereby initiating an exploration of an alternative 
enzyme for use in cellulose hydrolysis. 
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The objectives of this research are: 
 
 

1. To clone the gene encoding glycosyl hydrolase family 1 β-glucosidase 
derived from Trichoderma asperellum UPM1 (Tabgl2) and characterise 
Tabgl2 and its corresponding enzyme via in silico analyses. 
 
 

2. To express the recombinant β-glucosidase (TaBgl2) in Escherichia coli 
and biochemically characterise the enzyme’s specificity and resistance 
to glucose inhibition.
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