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Enzymes as biocatalyst have been engineered to suit the extreme conditions of 
industrial processes. In a previous C-terminal region study to improve 
temperature stability, a single residue substitution enhanced the stability and 
activity of L2 lipase. However, the role of the N-terminal region of L2 towards 
stability and activity remained unexplored. Thus, this study aimed to determine 
the effects of single residue substitution at a critical point of the N-terminal 
region of L2 lipase towards its temperature stability and activity through in silico 
approach and experimental characterisations. Prediction software was 
employed to predict the critical point and stability changes upon residue 
substitution. Position Ala8 was chosen as the critical point and substituted with 
valine (V), proline (P) and glutamic acid (E). Molecular dynamics simulation 
was used to analyse the stability changes in the mutant lipases. The results 
showed mutant lipase A8E was the most stable, followed by lipases A8P, wild-
type L2 (wt-L2) and A8V. Substrate docking of wt-L2 and mutant lipases 
showed only slight differences in binding affinity. Site-directed mutagenesis 
was then employed to construct the mutant lipases, which expressed the 
enzymes, subsequently purified for characterisation. The optimum temperature 
of the mutant lipases remained the same as wt-L2 at 70 °C, but A8V showed 
higher activity compared to wt-L2 lipase. All mutant lipases showed an 
improvement in thermostability, especially A8V that was able to retain 84 % 
residual activity after 30 min pre-incubation at 70 °C compared to 55 % by that 
of wt-L2. A8P showed half-life at 12 h compared to wt-L2 at 8 h at 60 °C. A8E 
(73.59 °C) showed the highest thermal denaturation point followed by A8V 
(70.68 °C) and A8P (70.19 °C). Secondary structure analysis showed wt-L2 
had a higher composition of α-helix compared to mutant lipases. The optimum 
pH had shifted from pH 9.0 in wt-L2 to pH 8.0 in A8V and A8P. A8E was 
optimal at pH 7.0. Similarly, the pH stability of mutants has broadened in range 
(pH 6.0 to 10.0) compared to wt-L2 (pH 8.0 to 10.0). All mutant and wt-L2 
lipases showed a preference in substrate p-nitrophenol decanoate, but with 
different catalytic efficiency. A8V (260.57 s-1/mM) was most efficient, followed 
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by wt-L2 (162.43 s-1/mM), A8P (94.93 s-1/mM) and A8E (27.23 s-1/mM). In 
conclusion, substitution at the N-terminal region enhanced the activity of A8V 
and improved the stability of all mutants compared to wt-L2, suggesting that the 
N-terminal region influences the characteristics of L2 lipase. 
. 
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Enzim sebagai biomangkin telah direka bentuk agar sesuai dengan kondisi 
ekstrem proses industri. Melalui kajian terdahulu di terminal C lipase L2 untuk 
meningkatkan kestabilan suhu, penggantian residu di kawasan tersebut 
berjaya meningkatkan kestabilan dan aktiviti. Walau bagaimanapun, peranan 
kawasan terminal N dalam kestabilan dan aktiviti L2 masih tidak diterokai. Oleh 
itu, kajian ini bertujuan untuk mengkaji kesan penggantian residu tunggal pada 
titik kritikal di kawasan terminal N terhadap kestabilan suhu dan aktiviti lipase 
L2 melalui pendekatan in siliko dan pelbagai pencirian uji kaji. Perisian ramalan 
digunakan untuk meramal titik kritikal dan perubahan kestabilan lipase L2 
selepas peggantian tunggal residu. Posisi Ala8 dipilih sebagai titik kritikal dan 
digantikan dengan residu valina (V), proline (P) dan asid glutamik (E). 
Molekular dinamik telah dijalankan untuk mengkaji perubahan kestabilan lipase 
L2.  Keputusan menunjukkan lipase mutan A8E paling stabil, diikuti lipase 
mutan A8P, jenis liar (wt-L2) dan A8V. Dok substrat menunjukkan perbezaan 
minimal antara wt-L2 dan lipase mutan dalam keafinan dengan substrat. 
Mutagenesis terarah tapak digunakan untuk membuat konstruk yang 
kemudianya diekspreskan dan ditulen untuk pencirian. Suhu optimum semua 
lipase mutan adalah sama dengan wt-L2 iaitu pada 70 °C tetapi, A8V 
menunjukkan aktiviti yang lebih tinggi berbanding lipase wt-L2. Semua lipase 
mutan menunjukkan peningkatan thermostabiliti, terutamanya A8V, mampu 
mengekalkan 84 % aktiviti selepas pre-inkubasi selama 30 min pada 70 °C 
berbanding 55 % untuk wt-L2.  A8P menunjukkan setengah hayat, 12 jam 
apabila di inkubasi pada 60 °C berbanding wt-L2 yang hanya bertahan selama 
8 jam. A8E (73.59 °C) menunjukkan terma denaturasi tertinggi diikuti A8V 
(70.68 °C) dan A8P (70.19 °C). Analisis struktur sekunder menunjukan 
komposisi α-heliks wt-L2 lebih tinggi berbanding semua lipase mutan. pH 
optimum lipase mutan berubah daripada pH 9.0 (wt-L2) ke pH 8.0 (A8V dan 
A8P). Manakala pH optimum A8E adalah di pH 7.0. Julat kestabilan pH lipase 
mutan menjadi lebih luas (pH 6.0 hingga 10.0) berbanding wt-L2 (pH 8.0 
hingga 10.0). Substrat p-nitrophenol decanoate menjadi pilihan semua lipase 
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mutan dan wt-L2 tetapi dengan kecekapan pemangkin yang berbeza. A8V 
(260.57 s-1/mM) menunjukkan kecekapan pemangkin paling tinggi diikuti oleh 
wt-L2 (162.43 s-1/mM), A8P (94.93 s-1/mM) dan A8E (27.23 s-1/mM). 
Kesimpulanya, penggantian residu tunggal di kawasan terminal N 
mempengaruhi kestabilan suhu dan aktiviti lipase, menunjukkan bahawa 
kawasan terminal N memberi pengaruh menyeluruh kepada ciri-ciri lipase L2. 
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CHAPTER 1 
 
 

INTRODUCTION 
 
 

1.1 Background of study 
 
 
Lipases have diverse applications in industrial processes that demand 
enzymes that are highly stable and tolerant at extreme conditions. 
Thermostability and catalytic efficiency are favourable characteristics of 
enzymes, as many industrial processes occur at high temperatures to facilitate 
the processes and reduce the risk of biological contamination (Sangeetha et 
al., 2011). The stability and robustness of thermostable lipases make the 
enzyme appealing to industries such as leather tanning and in the processes of 
removing pitch in pulp and paper industry (Kapoor and Gupta, 2012; Verma et 
al., 2012a; Jaeger and Reetz, 1998; Hardwood, 1989). Lipases are also known 
to catalyse reactions such as hydrolysis and esterification, making them 
valuable in the oleochemical industry and fats and oil modifications (Javed et 
al., 2018; Verma et al., 2012a). The ability of lipases to have a broad range of 
preference toward fatty acid chain length makes them advantageous in 
wastewater treatment and detergent formulation (Javed et al., 2018). 
Therefore, significant interest exists in using thermostable lipases as these 
enzymes are more resistant towards high temperatures in addition to a broad 
catalytic capacity. 
 
 
Thermostability in enzymes is contributed by several factors such as atomic 
packing of the protein core, hydrophobic residues that encourage compactness 
and rigidity of structure, and inclination of α-helix forming residues. A high 
number of ion pair interaction and hydrogen bonds contribute to the globular 
compactness of the structure thus increasing stability at high temperature 
(Verma et al., 2012a; Shih and Pan, 2011; Bhardwaj et al., 2010; Kumar et al., 
2000; Jaeger and Reetz, 1998). These factors can be engineered through 
rational design to satisfy the increasing need for producing more stable lipases. 
Typical target regions are the ones directly involved in the catalytic function and 
stability, but some studies have shown that the terminal region may also have 
an influence. Despite many studies performed to understand the relationship 
between the characteristics of a thermophilic lipase and the impacts on stability 
and activity, the contribution of the terminal region remained mostly 
unexplored.  
 
 
In this study, thermostable lipase, namely L2 lipase was used. L2 lipase from 
thermophilic Bacillus sp. L2 isolated from a hot spring in Slim River, Perak was 
discovered able to remain active between 55 to 80 °C with pH stability range 
from pH 6.0 to 10.0 (Shariff et al., 2011). Structure of L2 lipase was solved 
using X-ray crystallography and showed a globular α/β hydrolase fold. 
Temperature stability of L2 lipase could be further improved. However, the 
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relationship between the lipase structure and its characteristics with 
temperature and substrate must be taken into consideration. 
 
 
To explore the relationship between the lipase characteristics and 
thermostability, a study by Sani et al. (2017) substituted a single residue at a 
critical point in the C-terminal region of L2 lipase. It was shown that the 
substitution increased the optimum temperature of L2 lipase by 10 °C, 
elongated the half-life at 60 °C and increased the thermal denaturation point by 
19 °C. To date, little is known about the effect of residue substitution in the N-
terminal region of L2 lipase. Hence, the study on characteristics of single 
residue substitution at a critical point in the N-terminal region of L2 lipase can 
be the starting point to understand the role of the terminal region towards 
improving stability and activity.  
 
 
1.2 Problem statement 
 
 
The temperature stability of L2 lipase could potentially be improved without the 
cost of its catalytic efficiency. In a previous study, it was reported that the C-
terminal region of L2 lipase has an influence on the overall stability of the lipase 
(Sani et al., 2017). Single residue substitution at the C-terminal region 
improved activity and stability of L2 lipase at elevated temperatures.  
 
 
A separate study on SML lipase conducted a single residue substitution at the 
N-terminal region which resulted in improvement of half-life without affecting its 
catalytic activity (Mohammadi et al., 2016). However, the impact of residue 
substitution at the N-terminal region of L2 lipase towards temperature stability 
and catalytic activity remained unexplored.  
 
 
1.3 Objectives  
 
 
The main objective of this study is to determine the effect of single amino acid 
residue substitution at a critical point of the N-terminal region of L2 lipase 
towards its temperature stability and activity. 
 
 
The specific objectives of this research are:  
 

1. To predict the critical point and analyse the effects of the single amino 
acid residue substitution via in silico studies. 

 
2. To validate the effects of single amino acid residue substitution at the 

predicted critical point through site-directed mutagenesis and 
characterisation of the temperature stability and activity. 
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