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In recent years, high-temperature superconductor YBCO has been recognized for 
developing secondary generation of coated superconductor for various technological 
applications due to its high transition temperature, Tc. YBa2Cu4O8 (Y124) with 
stoichiometric oxygen content is able to maintain Y124 phase before decomposing to 
YBa2Cu3O7-x (Y123) and CuO phases at temperature above 850 oC. This ascendancy of 
thermal stability overtook Y123 in practical applications. To date, a relatively pure 
YBa2Cu4O8 sample had been successfully prepared by heat treatment in high-oxygen-
pressure [1-4] or using wet methods [5-9] with heat treatment at ambient pressure. For 
YBa2Cu4O8 samples prepared by solid state reaction method at ambient pressure, either 
multiple grindings with repeated heat treatment [10] or usage of additional technique is 
required to improve the synthesis condition [11-18]. It was reported that YBa2Cu4O8
could be synthesized within hours at temperature around 1000 oC and pressure above 50 
bar [1-4]. The equipment for high pressure technique is expensive and could bring about 
safety issues. Although the wet methods do not rely on high pressure, several processes 
before heat treatments is required and the sintering time is about 3-5 days with few 
intermittent grinding [5-9]. Solid state reaction methods offer relatively lower cost and 
simpler procedure as compared with the high pressure techniques and the wet methods. 
However, synthesis of YBa2Cu4O8 without using special treatment requires very long 
sintering time [10]. With the help of alkali enhancer, the sintering time of solid state 
reaction method is reduced to almost that of the wet methods [11,16]. Nonetheless, the 
sintering time and the fraction of YBa2Cu4O8 phase and impurities within the samples 
obtained for those solid state reaction methods are still ambiguous. Moreover, limited 
studies have been conducted to synthesize YBa2Cu4O8 by starting materials of 
YBa2Cu3O7-x and CuO [14]. On the other hand, the electronic properties of the two 
similar structures of Y123 and Y124 are diverse in certain situation. For example, their 
superconducting properties are diverse when they are doped with calcium. With calcium 
substitution, the Y0.9Ca0.1Ba2Cu3O7- improved the superconducting current density limit 
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but suppressed the superconducting transition temperature [19-21]. On the contrary, the 
Tc of Y0.9Ca0.1Ba2Cu4O8 was improved to 90 K by 10.0% of calcium doped on the yttrium 
site [22-28]. The dependency of Tc on hole densities was observed in cuprate 
superconductor [29-32]. However, to determine hole densities of YBCO is non-trivial. 
Tallon et al. [32] used rather complicated bond-valence-sum (BVS) method to calculate 
the hole densities for Y123. Hence, it is urged to calculate the hole densities based on 
density functional theory and investigate the electronic band structure of YBCO family 
compound and obtain its relation to the superconducting transition temperature. This 
thesis was focused on the synthesis and electronic properties of Y124 phase with 
comparison to other YBCO family compounds. This thesis began with the study of 
preparation of Y124 phase by solid state reaction method with heat treatment at 1 atm 
oxygen pressure. X-ray diffraction technique was used to identify the phases formed and 
the crystal structure of Y124. Scanning electron microscope was used in order to 
investigate grain morphology of the samples. Thermogravimetric analysis was 
performed to study the thermal stability of the sample. Electrical properties of the 
samples were measured using the four-point probe technique.  
 
 
Six samples were prepared using nitrate precursors and one sample was prepared by 
carbonate precursor. This study was to understand the Y124 phase formation and its 
formation rate. From the study, it could be summarized that; Y124 phase could form if 
the oxide precursors underwent the heat treatment environment in favour of Y124 and 
the secondary oxides would persist in sample, hence clean single phase Y124 was 
difficult to produce. Next, starting powders tetragonal-Y123 and CuO were used to 
prepare Y124. Tetragonal-Y123 is obtained by heat treatment on Y123 power at 850 oC 
in argon gas flow for 12 hours. However, the results indicate that getting tetragonal-Y123 
first is an unnecessary step. Following, Y124 was prepared directly from starting 
powders Y123 and CuO. By this way, significant Y124 phase was obtained after 2nd 
heat treatment. The lattice parameters of the synthesized Y124 were then adopted in the 
simulation study to analyse the electronic band structure of Y124 using density 
functional theory. The simulation works employed the Quantum Espresso computation 
package. The Y124 together with YBCO family compounds Y1236 (YBa2Cu3O6), 
Y12365 (YBa2Cu3O6.5), Y1237 (YBa2Cu3O7) and Ca-doped YBCO compounds YCa123 
(Y0.875Ca0.125Ba2Cu3O7), YCa124 (Y0.875Ca0.125Ba2Cu4O8) were investigated. Structural 
optimization was obtained for all compounds using Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) algorithm. The orthorhombicity of Y124 and Y123 compounds (Y1236, Y12365, 
and Y1237) agreed with the trend of Tc, where compounds with higher Tc in practice 
have higher orthorhombicity, however, this is not so for Ca-doped compounds. By 
analysing the atoms in Cu-O2 plane, Cu(2) and O(3) are moved further away from the 
yttrium (Y) atom for compounds with higher Tc. For Y12365 and Y1237, O(2) remained 
on the same level. Ca with about the same atomic radius as Y did not affect much the 
lattice constant and volume of the compounds. However, Ca2+ with less electronegative 
as compared with Y3+ modified the electronic properties of the region within the bilayers 
Cu-O2 plane. The calculations including band structure, density of state and charge 
density of the Y124 and other YBCO family compounds were then performed 
accordingly. The density of state at Fermi level, N(EF) and number of holes of Cu(2) and 
Cu-O2 showed tendency of increment consistent with the Tc of the compounds except for 
YCa123. Y124 with double Cu-O chains has 4.80 holes per unit cell that is higher than 
the Y1237 which has 3.52 holes per unit cell, but the number of holes at its Cu(2) and 
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Cu-O2 plane are lower than the Y1237. For example, the number of holes at Cu(2) and 
Cu-O2 plane of Y124 are 0.60 and 1.07 respectively that is lower than Y1237 that have 
0.66 holes per Cu(2) and 1.19 holes per Cu-O2 plane. Y1237 and YCa124 with Tc of
around 90 K have the same number of holes in Cu(2) and Cu-O2 which are 0.66 and 1.19 
respectively. The hole densities in Cu-O2 plane showed good agreement with the results 
of the N(EF), number of holes per Cu(2) and number of holes per Cu-O2, except for 
YCa124 and Y1237. Y124 and YCa124 have highest hole densities in the unit cell which 
are 2.33 and 2.37 respectively. However, the hole densities in Cu-O2 plane of Y124 is 
less than that of Y1237 which are 4.07 and 4.50 respectively. For YCa124 that has about 
the same Tc with Y1237, their hole densities in Cu-O2 plane is very close which are 4.56 
and 4.50 respectively. In summary, the simulation studies showed that the coordinates 
of atoms at Cu-O2 plane and orthorhombicity could not be really related to the 
superconducting transition temperature of the compounds. However, the hole values on 
the Cu(2) atom and Cu-O2 plane did show a satisfactory relationship with the 
superconducting transition temperature.
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Dalam tahun-tahun kebelakangan ini, superkonduktor suhu tinggi YBCO telah diakui 
untuk mengembangkan generasi kedua superkonduktor bersalut untuk pelbagai aplikasi 
teknologi kerana suhu peralihannya, Tc yang tinggi. YBa2Cu4O8 (Y124) dengan 
kandungan oksigen stoikoimetrik mampu mengekalkan fasa Y124 sebelum terurai 
kepada fasa YBa2Cu3O7-x (Y123) dan CuO pada suhu melebihi 850 oC. Peningkatan 
kestabilan terma ini mengatasi Y123 dalam aplikasi praktikal. Sehingga kini, sampel 
YBa2Cu4O8 yang agak tulen berjaya disiapkan dengan rawatan haba dalam tekanan 
oksigen tinggi [1-4] atau menggunakan kaedah basah [5-9] dengan rawatan haba pada 
tekanan ambien. Untuk sampel YBa2Cu4O8 yang disediakan dengan kaedah tindak balas 
keadaan pepejal pada tekanan ambien, baik beberapa penggilingan dengan rawatan haba 
berulang [10] atau penggunaan teknik tambahan diperlukan untuk memperbaiki keadaan 
sintesis [11-18]. Dilaporkan bahawa YBa2Cu4O8 dapat disintesis dalam beberapa jam 
pada suhu sekitar 1000 oC dan tekanan di atas 50 bar [1-4]. Peralatan untuk teknik 
tekanan tinggi itu mahal dan boleh menimbulkan masalah keselamatan. Walaupun 
kaedah basah tidak bergantung pada tekanan tinggi, beberapa proses sebelum rawatan 
haba diperlukan dan masa pensinteran adalah sekitar 3-5 hari dengan beberapa 
penggilingan berselang [5-9]. Kaedah tindak balas keadaan pepejal menawarkan kos 
yang lebih rendah dan prosedur yang lebih sederhana berbanding dengan teknik tekanan 
tinggi dan kaedah basah. Walau bagaimanapun, sintesis YBa2Cu4O8 tanpa menggunakan 
rawatan khas memerlukan masa pensinteran yang sangat lama [10]. Dengan bantuan 
penambah alkali, masa tindak balas kaedah tindak balas keadaan pepejal dikurangkan 
menjadi hampir sama dengan kaedah basah [11,16]. Walaupun begitu, masa pensinteran 
dan pecahan fasa YBa2Cu4O8 dan kekotoran dalam sampel yang diperoleh untuk kaedah 
tindak balas keadaan pepejal itu masih tidak jelas. Lebih-lebih lagi, kajian terhad telah 
dilakukan untuk mensintesis YBa2Cu4O8 dengan memulakan bahan YBa2Cu3O7-x dan 
CuO [14]. Selain itu, sifat elektronik dari dua struktur serupa Y123 dan Y124 berbeza 
dalam keadaan tertentu. Sebagai contoh, sifat superkonduktornya adalah berbeza apabila 
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didoping dengan kalsium. Dengan penggantian kalsium, Y0.9Ca0.1Ba2Cu3O7-
meningkatkan had ketumpatan arus superkonduktor tetapi menekan suhu peralihan 
superkonduktor [19-21]. Sebaliknya, Tc Y0.9Ca0.1Ba2Cu4O8 ditingkatkan kepada 90 K 
dengan 10.0% kalsium yang didop pada laman yttrium [22-28]. Ketergantungan Tc pada 
ketumpatan lubang diperhatikan dalam superkonduktor cuprate [29-32]. Walau 
bagaimanapun untuk menentukan ketumpatan lubang YBCO tidak sederhana. Tallon et 
al. [32] menggunakan kaedah bond-valence-sum (BVS) yang agak rumit untuk mengira 
ketumpatan lubang bagi Y123. Oleh itu, digesa untuk mengira ketumpatan lubang 
berdasarkan teori fungsian ketumpatan dan untuk menyelidiki struktur jalur elektronik 
kompaun keluarga YBCO dan mendapatkan kaitannya dengan suhu peralihan 
superkonduktor. Tesis ini difokuskan pada sintesis dan sifat elektronik fasa Y124 dengan 
perbandingan dengan sebatian keluarga YBCO yang lain. Tesis ini dimulakan dengan 
kajian penyediaan fasa Y124 dengan kaedah tindak balas keadaan pepejal dengan 
rawatan haba pada tekanan oksigen 1 atm. Teknik difraksi sinar-X digunakan untuk 
mengenal pasti fasa yang terbentuk dan struktur kristal Y124. Mikroskop elektron 
imbasan digunakan untuk menyiasat morfologi sampel. Analisis termogravimetri 
dilakukan untuk mengkaji kestabilan terma sampel. Sifat elektrik sampel diukur dengan 
menggunakan teknik probe empat titik.

Enam sampel disediakan menggunakan prekursor nitrat dan satu sampel disediakan oleh 
prekursor karbonat. Kajian ini adalah untuk memahami pembentukan fasa Y124 dan 
kadar pembentukannya. Dari kajian tersebut, kita dapat merumuskan bahawa; Fasa Y124 
dapat terbentuk jika prekursor oksida menjalani persekitaran perlakuan panas yang 
memihak kepada Y124 dan oksida sekunder akan bertahan dalam sampel, oleh itu fasa 
tunggal bersih Y124 sukar dihasilkan. Seterusnya, serbuk permulaan tetragonal-Y123 
dan CuO digunakan untuk menyiapkan Y124. Tetragonal-Y123 diperoleh dengan 
rawatan haba pada kuasa Y123 pada suhu 850 oC dalam aliran gas argon selama 12 jam. 
Walau bagaimanapun, hasilnya menunjukkan bahawa mendapatkan tetragonal-Y123 
terlebih dahulu adalah langkah yang tidak perlu. Berikutan, Y124 disiapkan secara 
langsung dari serbuk permulaan Y123 dan CuO. Dengan cara ini, fasa Y124 yang 
signifikan diperolehi selepas rawatan panas ke-2 Parameter kisi dari Y124 yang 
disintesis kemudian diadopsi dalam kajian simulasi untuk menganalisis struktur jalur 
elektronik Y124 menggunakan teori fungsian ketumpatan. Kerja-kerja simulasi 
menggunakan pakej pengiraan Quantum Espresso. Sebatian Y124 bersama keluarga 
YBCO Y1236 (YBa2Cu3O6), Y12365 (YBa2Cu3O6.5), Y1237 (YBa2Cu3O7) dan sebatian 
YBCO Ca-doped YCa123 (Y0.875Ca0.125Ba2Cu3O7), YCa124 (Y0.875Ca0.125Ba2Cu4O8)
telah disiasat. Pengoptimuman struktur diperoleh untuk semua sebatian menggunakan 
algoritma Broyden-Fletcher-Goldfarb-Shanno (BFGS). Orthorhombisiti sebatian Y124 
dan Y123 (Y1236, Y12365, dan Y1237) bersetuju dengan trend Tc, di mana sebatian 
dengan Tc yang lebih tinggi dalam praktiknya mempunyai orthorhombisiti yang lebih 
tinggi, namun, ini tidak berlaku pada sebatian Ca-doped. Dengan menganalisis atom-
atom dalam satah Cu-O2, Cu(2) dan O(3) dipindahkan lebih jauh dari atom yttrium (Y) 
untuk sebatian dengan Tc yang lebih tinggi. Untuk Y12365 dan Y1237, O(2) kekal pada 
tahap yang sama. Ca dengan jejari atom yang hampir sama dengan Y tidak banyak 
mempengaruhi pemalar kisi dan isipadu sebatian. Walau bagaimanapun, Ca2+ dengan 
elektronegatif yang lebih rendah dibandingkan dengan Y3+ mengubah sifat elektronik 
dalam sekeliling dwi-lapisan Cu-O2. Pengiraan termasuk struktur jalur, ketumpatan 
keadaan dan ketumpatan cas Y124 dan sebatian keluarga YBCO yang lain kemudian 
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dilakukan dengan sewajarnya. Ketumpatan keadaan pada tahap Fermi, N(EF) dan 
bilangan lohong Cu(2) dan Cu-O2 menunjukkan kecenderungan kenaikan yang konsisten 
dengan Tc sebatian kecuali untuk YCa123. Y124 dengan rantai Cu-O berganda 
mempunyai 4.80 lohong per sel unit iaitu lebih tinggi daripada Y1237 yang mempunyai 
3.52 lohong per sel unit, tetapi jumlah lohong pada satah Cu(2) dan Cu-O2nya lebih 
rendah daripada Y1237. Contohnya, bilangan lohong pada satah Cu(2) dan Cu-O2 Y124 
adalah 0.60 dan 1.07 masing-masing iaitu lebih rendah daripada Y1237 yang mempunyai 
0.66 lohong per Cu(2) dan 1.19 lohong per satah Cu-O2. Y1237 dan YCa124 dengan Tc 
sekitar 90 K mempunyai bilangan lohong yang sama di Cu(2) dan Cu-O2 dengan 0.66 
dan 1.19 masing-masing. Ketumpatan lohong di satah Cu-O2 menunjukkan persetujuan 
yang baik dengan hasil N(EF), bilangan lohong per Cu(2) dan jumlah lohong per Cu-O2, 
kecuali untuk YCa124 dan Y1237. Y124 dan YCa124 mempunyai ketumpatan lohong 
tertinggi di sel unit yang masing-masing adalah 2.33 dan 2.37. Walau bagaimanapun, 
ketumpatan lohong pada satah Cu-O2 Y124 adalah kurang daripada Y1237 yang masing-
masing 4.07 dan 4.50. Untuk YCa124 yang mempunyai Tc yang hampir sama dengan 
Y1237, ketumpatan lohong mereka di satah Cu-O2 sangat dekat iaitu masing-masing 
4.56 dan 4.50. Ringkasnya, kajian simulasi menunjukkan bahawa koordinat atom pada 
satah Cu-O2 dan orthorhombisiti tidak dapat benar-benar berkaitan dengan suhu 
peralihan superkonduktor sebatian. Walau bagaimanapun, nilai lohong pada atom Cu(2) 
dan atom Cu-O2 menunjukkan hubungan yang memuaskan dengan suhu peralihan 
superkonduktor. 
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CHAPTER 1

INTRODUCTION

1.1  Background of superconductor

Superconductivity is a remarkable property of a substance. Superconductor with its 
immense capabilities would greatly enhance the advancement of science and technology, 
from consumer level to high-tech industries. 

Superconductivity can be used in many aspects. Gupta et al. [33] and Silver et al. [34] 
comprehensively reviewed the application of superconductor in various fields including 
in power generator, electronics and communications, digital storage, and medical 
applications.  The most direct sense from superconductor is its DC zero resistivity can 
be used in the electrical power industries. For example, the “supercable” - a
superconducting cable used for conducting electricity. Using the supercable as 
transmission line in electric power transmission system can reduce power loss and 
overall cost for the system. At present, AC transmission system operates at high voltage 
for effectively power transmission, and required a couple of transformers to step down 
the voltage level before the usage by end user. These transformers are costly in 
converting hundred-thousands of volts to consumer voltage level. A transmission system 
based on supercable can operate at relatively lower voltage level, in which DC 
transmission system could be used instead of AC system. This would greatly reduce the 
construction and operation cost for the current transmission system. The other potential 
application of superconductor in power industry is power station. Unlike supercable 
using its ‘perfect conductivity’, power station uses large magnetic field generated by 
superconducting coil. Superconducting wire allows the flow of much higher current than 
the normal conductor; therefore, high magnetic field intensity can be generated from the 
superconducting coil. In fact, most of the current applications of superconductor are to 
generate high magnetic field intensity, for instance, magnetic resonance imaging, nuclear 
magnetic resonance, and particle accelerator.

Another property of superconductor is Meissner effect. A superconductor in
superconducting state exhibits perfect diamagnetism where the interior of the material 
expulses external magnetic field. This phenomenon is deviated from the classical theory 
of ‘prefect conductor’ and is totally unexpected before the discovery of 
superconductivity. With this Meissner effect, a superconductor can be levitated by 
magnetic field through flux pinning phenomenon. Therefore, a safe and reliable maglev 
train can then be designed accordingly. 

Superconductor is also a material that manifests quantum mechanical behaviour, in 
which supercurrent from one superconductor is able to tunnel to another superconductor 
when they are placed closely but without any electrical contact. This phenomenon is 
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called Josephson Effect. Josephson Effect is employed in fast switching electronic 
systems and high magneto-sensitivity devices like SQUID.  

 
 

The potentials of superconductor are still yet to be fully materialized. With continued 
advances in research, superconductivity can lead to a new era of revolution in science 
and technology.  
 
 
1.2       Problem statement  
 
 
Since the discovery of yttrium-barium-copper-oxide superconductor, enormous research 
has been focused on investigating the compound YBa2Cu3O7- . It is the material which 
has been recognized for its ease of sample preparation and with adequate temperature 
margin over the boiling point of liquid nitrogen. YBa2Cu4O8 has higher thermal stability 
may serve as a better candidate for applications, yet little attention has been paid to this 
compound. The limitation of YBa2Cu4O8 compared with YBa2Cu3O7-  is clear – the 
former does not have adequate temperature margin over the boiling point of liquid 
nitrogen. However, Ca doping has proven to be able to improve the superconducting 
transition temperature of YBa2Cu4O8 to 90 K [22-28].  

 
 

So far, a relatively pure YBa2Cu4O8 sample had been successfully prepared by heat 
treatment in high-oxygen-pressure [1-4] or using wet methods [5-9] with heat treatment 
at ambient pressure. For YBa2Cu4O8 samples prepared by solid state reaction method at 
ambient pressure, either multiple grindings with repeated heat treatment [10] or usage of 
additional technique is required to improve the synthesis condition [11-18]. It was 
reported that YBa2Cu4O8 with an extra Cu-O chain compared with YBa2Cu3O7 could be 
synthesized within hours at temperature around 1000 oC and oxygen pressure above 50 
bar [1-4]. The equipment for high pressure technique is expensive and could bring about 
safety issues. Although the wet methods do not rely on high pressure, several processes 
before heat treatments is required and the sintering time is about 3-5 days with few 
intermittent grinding [5-9]. Solid state reaction methods offer relatively lower cost and 
simpler procedure as compared with the high pressure techniques and the wet methods. 
However, synthesis of YBa2Cu4O8 without using special treatment requires very long 
sintering time [10]. With the help of alkali enhancer, the sintering time of solid state 
reaction method is reduced to almost that of the wet methods [11,16]. Solid state reaction 
method is usually performed by mixing the related metal carbonate oxides or metal 
nitrogen oxides as starting materials [11-13, 16-18]. Moreover, limited study has been 
conducted to synthesize YBa2Cu4O8 by starting materials of YBa2Cu3O7-x and Cu-O2 
[14]. The preparation of YBa2Cu4O8 by YBa2Cu3O7-x and Cu-O2 as starting materials is 
relatively simpler and shorter sintering time is required. Nonetheless, the sintering time 
and the fraction of YBa2Cu4O8 phase and impurities within the samples obtained for 
those solid state reaction methods are still ambiguous. 
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YBa2Cu3O7- and YBa2Cu4O8 have a similar lattice structure; hence they have a similar 
electronic band structure. However, their superconducting properties are diverse when 
they are doped with calcium. It was reported that the substitution of calcium on yttrium 
site of Y0.9Ca0.1Ba2Cu3O7- improved the superconducting current density limit but 
suppressed the superconducting transition temperature [19-21]. On the contrary, the Tc
of Y0.9Ca0.1Ba2Cu4O8 was improved to 90 K by 10% of calcium doped on the yttrium site 
[22-28]. Hence, to understand these contrary behaviour of superconducting, it is 
interested to investigate the electronic band structure of Ca-doped YBa2Cu3O7- and Ca-
doped YBa2Cu4O8 and to compare with other YBCO members like YBa2Cu4O8,
YBa2Cu3O7, YBa2Cu3O6.5, and YBa2Cu3O6.

1.3  Objectives of the study

The purpose of this research project is (i) to synthesize YBa2Cu4O8 with different 
approach using solid state reaction method and (ii) to undertake simulation study on the 
electronic band structure of YBa2Cu4O8 and other YBCO family members.

Properties of the synthesized samples are studied through characterization using X-ray 
diffraction, thermogravimetric analyser, scanning electron microscope and temperature 
dependence of resistance. Due to the structural similarity of YBa2Cu4O8 and YBCO 
family compounds, this project will compare the electronic properties among a few of 
the YBCO family superconductors by simulation using the software Quantum Espresso. 
The relationship between superconductivity and its electronic band structure at normal 
state will be studied through the simulation. Another aspect of the simulation is Ca-doped
YBa2Cu4O8. This investigation carried out to better understand the Tc increment in the 
10% Ca-doped YBa2Cu4O8. In this regard, simulation study including crystal lattice and 
electronic band structure on the vicinity atoms near the Y/Ca is embarked. 

Accordingly, the objectives of this project are:

a) To optimize formation of weigh percentage of YBa2Cu4O8 phase by solid state
reaction method at ambient pressure.

b) To investigate the effect of different synthesis approach within solid state
reaction method on phase formation, lattice structure and Tc of YBa2Cu4O8.

c) To study the electronic properties of YBa2Cu4O8 and its relation to
superconducting properties by density functional theory.

d) To compare the lattice parameters, electronic properties of YBa2Cu4O8 and
other YBCO family compounds.
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1.4       Scope and limitation of the study 
 
 
This project is divided into two parts. The first part begins with the synthesis of 
YBa2Cu4O8 using different approach by solid state reaction method. The preparation 
approaches are (1) Synthesis of YBa2Cu4O8 by nitrate precursors, (2) Synthesis of 
YBa2Cu4O8 by tetragonal-YBa2Cu3O6 and CuO, and (3) Synthesis of YBa2Cu4O8 by 
YBa2Cu3O7-  and CuO. Due to unavailability of high gas pressure furnace in Universiti 
Putra Malaysia, all the heat treatment was conducted at 1 atm. This method of 
synthesizing samples at 1 atm is more cost effective without relying on expensive high 
pressure sintering equipment and practical from the point of view of large scale 
applications. Evolution of the YBa2Cu4O8 phase and formation of impurity phases will 
then be investigated using X-ray diffraction (XRD) technique. The same technique will 
be used to identify the crystal structure of YBa2Cu4O8. Scanning electron microscope 
will be used for morphology study. Electrical properties of the samples were measured 
using the four-point probe technique. Thermogravimetric analysis will be performed to 
check the thermal behaviour of the samples upon subjected to heat treatment. The lattice 
parameters of YBa2Cu4O8 identified in experiment will then be adopted in simulation to 
analyse the electronic band structure of YBa2Cu4O8 by density functional theory using 
the Quantum Espresso computation package. The first principle calculation including 
band structure, density of state, Fermi surface, and charge density of YBa2Cu4O8 will 
then be performed. Finally, the simulation results comprising of a series of YBa2Cu3O7 
compounds, YBa2Cu4O8 and Ca-doped YBa2Cu4O8 will then be compared and 
summarized. 
 
 
1.5       Organization of thesis 
 
 
Chapter 1 starts with a general introduction of superconductivity including a brief 
background of superconductor and its applications. Problem statement and objectives as 
well as scope and limitation of the study are presented.  
 
 
Chapter 2 provides literature review of the area of study. First of all, this chapter 
introduces the cuprate superconductors, then background of YBa2Cu4O8 including the 
synthesis processes. It is then followed by ordered reviews of the effects of various 
doping and particle additions into YBa2Cu3O7-x and YBa2Cu4O8. Chapter 2 also covers 
some reviews on the transport properties of the cuprate superconductors. Lastly, review 
on first principle calculation on YBCO is given.  
 
 
Chapter 3 describes the sample preparation processes as well as the key equipment 
including four points probe, thermogravimetric analyser, X-ray diffractometer, and 
scanning electron microscope. Due to the similarity in the structure of YBa2Cu4O8 and 
YBa2Cu3O7, a highlight is given to differentiate these two compounds from the XRD 
patterns. Finally, the methods and principles used in the simulation works are described. 
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Chapter 4 presents the results and discussion for the YBa2Cu4O8. In the first section, 
YBa2Cu4O8 samples were prepared using nitrate precursors by conventional solid state
reaction method with NaNO3 as an enhancer. The results obtained is then summarized 
and used to infer the improvement for the sample preparation in the following sections. 
Successively, starting powers tetragonal-Y123 and CuO were used to prepare Y124. 
However, the results indicate that getting tetragonal-Y123 first is an unnecessary step,
thus, Y124 was instead prepared directly from starting powders Y123 and CuO. All 
results from different preparing procedures are then summarized and related insights are
given. 

Chapter 5 presents the simulation works based on density functional theory. The 
simulation results on crystal lattice and of YBa2Cu4O8 and the YBCO family compounds 
are first addressed and then followed by the electronic band structure analysis of the 
compounds. Results of Ca-doped YBa2Cu4O8 and YBa2Cu3O7 are then elaborated and 
explained. 

Chapter 6 concludes the thesis based on the results obtained in this project and future 
works are proposed.
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