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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment 
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The importance of wireless sensor networks (WSNs) in structural health monitoring 

(SHM) is unceasingly growing because of the increasing demand for both safety and 

security in the cities. WSN–based SHM system introduces a promising technology 

with compelling advantages compared to a traditional wired system. Nevertheless, 

the requirements of WSN-based SHM add extra complications and challenges to 

network design and the existing limitations of WSN technology. Some of these 

challenges result from the transmission of huge amounts of data in each data sensing 

period and the complexity of SHM algorithms. Furthermore, in WSNs, the operating 

system (OS) with its network protocol stack and media access control (MAC) layer 

protocol play an essential role in managing the scarce resources, data processing and 

communication. Nonetheless, in Contiki OS, there are constraints found in the actual 

version of Contiki that hinder its broader development, both in general and at the 

specific level of the network stack. Furthermore, there are constraints in 

implementing the provided Contiki carrier sense multiple access/collision avoidance 

(CSMA/CA) protocol. These constraints limit the available bandwidth by delaying 

data delivery and limiting the node's transmission capability along with high-power 

consumption. 

There is a research gap in developing a Contiki MAC layer scheme able to provide 

high throughput and secure an efficient utilization of the radio, which is inevitably 

the most critical part regarding power consumption in WSN for SHM. This motivates 

us to develop and implement a lightweight time division multiple access (L-TDMA) 

scheme to overcome the existing constraints on the networking stack’s 

implementation of MAC layer on Contiki and satisfy SHM requirements. The 

proposed concept is integrated with the Contiki architecture and tested 

experimentally and using the Cooja simulator. Besides, the design concept of the 
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frame structure, slot distribution, scheduling and all associated calculations are 

illustrated. A synchronization model is presented with the aid of the implemented 

Contiki's implicit network time synchronization scheme. Finally, a case study of a 

WSN-based SHM system using developed embedded data filtering and transmission 

algorithms to reduce data communication is performed and taken place on a concrete 

beam at Civil Engineering Structure Laboratory, UPM.  

 

 

Simulation and experiments are performed to validate the design concept of L-

TDMA scheme and evaluate the sensor node's throughput, power consumption and 

the efficiency of the proposed embedded algorithms for SHM applications. The 

maximum number of packets that can be transmitted per second using L-TDMA are 

137 packets (throughput of 139 kbps). In contrast, the default Contiki CSMA and 

TSCH can transmit at a maximum of 8 and 67 packets per second, respectively. The 

overall average channel throughput that can be provided by Contiki using L-TDMA 

is approximately 180 kbps at maximum. L-TDMA shows a significant reduction in 

power consumption compared to the default CSMA/CA, which achieves lower 

power consumption than CSMA/CA by 73% and 71% using simulation and testbed, 

respectively. Likewise, L-TDMA has lower power consumption by 9% than TSCH 

at an offered load of 8 pps. L-TDMA shows a remarkable ability to conserve power 

in comparison to other protocols in different operating systems. Finally, the 

implementation of the developed embedded algorithms for strain-based applications 

resulted in a power consumption reduction of 77% compared to centralized 

processing.  
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Kepentingan rangkaian sensor tanpa wayar (WSN) dalam pemantauan kesihatan 

struktur (SHM) semakin meningkat, disebabkan peningkatan permintaan 

keselamatan dan keselamatan di bandar. Sistem SHM berasaskan WSN 

memperkenalkan teknologi baru dengan kelebihan menarik berbanding sistem kabel 

tradisional. Walaupun begitu, keperluan SHM berasaskan WSN menambah 

komplikasi dan cabaran tambahan pada reka bentuk rangkaian dan batasan teknologi 

WSN yang ada. Beberapa cabaran ini adalah hasil penghantaran sejumlah besar data 

dalam setiap penginderaan data, dan kerumitan algoritma SHM. Selanjutnya, dalam 

WSN, sistem operasi (OS) dengan susunan protokol rangkaiannya dan protokol 

lapisan kawalan akses media (MAC) memainkan peranan penting untuk 

menguruskan sumber daya dan pemprosesan dan komunikasi data. Walaupun 

demikian, dalam Contiki OS, terdapat kekangan dalam versi Contiki khusus yang 

menghalang pembangunan yang lebih luas, baik secara umum dan pada tahap 

rangkaian. Tambahan pula, terdapat kekangan dalam pelaksanaan protokol Contiki 

carrier multi access / collision menghindari (CSMA / CA) yang disediakan yang 

membatasi lebar jalur yang tersedia dengan menunda penghantaran data dan 

membatasi throughput nod bersama dengan penggunaan kuasa tinggi. 

Terdapat jurang penyelidikan dalam mengembangkan skema lapisan Contiki MAC 

yang dapat memberikan keluaran yang tinggi dan menjamin penggunaan radio yang 

cekap, yang pasti merupakan bahagian paling kritikal dalam hal penggunaan tenaga 

di WSN untuk SHM. Ini memotivasi kami untuk mengembangkan dan menerapkan 

skema akses pelbagai pembahagian waktu ringan (L-TDMA) yang dapat mengatasi 

kekangan yang ada pada implementasi lapisan MAC lapisan lapisan di Contiki dan 

memenuhi keperluan SHM. Konsep yang dicadangkan digabungkan dengan seni 

bina Contiki dan diuji secara eksperimen dan menggunakan simulator Cooja. Selain 
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itu, konsep reka bentuk struktur bingkai, pengedaran slot, penjadualan dan semua 

pengiraan yang berkaitan digambarkan. Model penyegerakan disajikan dengan 

bantuan skema penyelarasan masa rangkaian implisit Contiki yang dilaksanakan. 

Kajian kes sistem SHM berasaskan WSN menggunakan algoritma penyaringan 

regangan terdistribusi yang dikembangkan untuk pengurangan komunikasi data 

dilakukan dan dilakukan di makmal UPM pada balok konkrit. 

Simulasi dan eksperimen dilakukan untuk mengesahkan konsep reka bentuk skema 

L-TDMA dan menilai throughput nod sensor, penggunaan kuasa dan kecekapan 

algoritma tertanam yang dicadangkan untuk aplikasi SHM. Bilangan maksimum 

paket yang dapat dikirimkan sesaat menggunakan L-TDMA adalah 137 paket 

(throughput 139 kbps). Rata-rata keseluruhan throughput saluran yang dapat 

disediakan oleh Contiki menggunakan L-TDMA adalah maksimum 180 kbps 

maksimum. L-TDMA menunjukkan pengurangan penggunaan tenaga yang ketara 

berbanding dengan CSMA / CA lalai, yang mencapai penggunaan daya yang lebih 

rendah daripada CSMA / CA masing-masing sebanyak 73% dan 71% menggunakan 

simulasi dan ujian. Lebih-lebih lagi, L-TDMA menunjukkan kemampuan luar biasa 

untuk menjimatkan kuasa dibandingkan dengan protokol lain dalam sistem operasi 

yang berbeza. Akhirnya, pelaksanaan algoritma tertanam yang dikembangkan untuk 

aplikasi berasaskan regangan mengakibatkan pengurangan penggunaan tenaga 

sebanyak 77% berbanding pemprosesan terpusat. 
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CHAPTER 1 

1 INTRODUCTION 

Wireless Sensor Network (WSN) is a promising technology that becomes a more 

adopted and fascinating research domain nowadays. WSNs have extensive 

dimensions in several applications, such as structural health monitoring (SHM), 

visual surveillance, and habitant monitoring to name but a few. However, WSNs 

sensor node has scarce resources, for example, bandwidth, energy and computation. 

In addition to hardware, software such as OS, network or MAC protocols and 

implemented algorithms can also affect node’s power consumption and other 

performance metrics. Moreover, the characteristics and requirements of the applied 

application may add extra complications and issues to the available limitation of 

WSN technology (Noel et al., 2017). Enabling wireless sensor applications through 

sensor technologies brings a range of issues in WSNs that can be categorized into 

three groups (Yick et al., 2008): system, communication protocols, and services. As 

for the system, issues related to the operating system (such as Contiki), platforms, 

storage schemes need to be considered, in addition to the issues related to 

implementation adapting of protocols with operating system architecture. As for the 

communication protocols, there are issues related to enabling protocols (such as 

CSMA, TDMA, and routing protocols) to control access of nodes to the shared 

communication medium efficiently. Finally, for services, different challenges may 

hinder the development of the system services. These services such as 

synchronization, data aggregation and localization are developed to improve 

application and network efficiency as well as to optimize system performance. It is 

noteworthy that the essence of our work in this thesis is centered on Contiki operating 

system, the implementation of a TDMA-based MAC scheme to overcome the 

existing constraints associated with Contiki OS, the implementation of the network 

protocol stack, and the fulfillment of the requirements of the SHM applications. In 

other words, we focus on system issue, propose a solution using communication 

protocols and embedded processing, and adapt it to suit system architecture.  

This chapter presents a general overview of the essential challenges and trends that 

encompass such challenges of WSNs for SHM. It explores the challenges associated 

with Contiki OS and the implementation of a network protocol stack. It also 

addresses the questions related to designing and implementing the MAC layer 

scheme through the proposed solutions in this work. Furthermore, the study problem, 

objectives, and scope are stated, as well as the contributions and publications arising 

from this thesis are adduced. 

1.1 Background  

In recent years, WSNs have gained worldwide attention and have demonstrated their 

usability with the increasing demand for monitoring applications and rapid 

development in Micro-Electro-Mechanical Systems (MEMS) technology that has 

facilitated the development of smart sensors. In comparison to conventional sensors, 
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wireless sensors are small, with limited computation resources, and inexpensive. A 

sensor node can sense, gather data from the environment, and according to some 

local decision process, the measured data is transferred to the destination. WSNs 

have demonstrated their usability with the increasing demand for monitoring 

applications, which are now considered suitable for applications such as structural 

health monitoring (SHM), air pollution sensing, and agricultural monitoring. In this 

section, before stating the research problem, we provide a brief about WSNs for 

SHM, key challenges of WSNs for SHM, MAC layer protocols, challenges 

associated with Contiki OS and implementation of a network protocol stack, and 

suitability of the IEEE 802.15.4 Carrier Sensing Multiple Access with Collision 

Avoidance (CSMA/CA) MAC layer for Real-Time Applications. 

1.1.1 WSNs for SHM 

The importance of wireless sensor networks (WSNs) in structural health monitoring 

is unceasingly growing because of the increasing demand for both safety and security 

in the cities. The speedy growth of wireless technologies has considerably developed 

the progress of structural monitoring systems with WSN technology. WSN-based 

SHM system introduces a novel technology with compelling advantages compared 

to the traditional wired system, which has the benefits of reducing installation and 

maintenance costs of SHM systems. SHM is a process of estimating the integrity of 

the civil structures based on suitable analysis of in-situ measured data. This 

technique is performed in various kinds of structures through detection, localization, 

and assessment of the damage at earlier stages, which in turn results in increasing 

safety and decreasing maintenance costs.  

A typical WSN-based SHM system contains three main elements: a sensor system, 

a data processing system, and a health evaluation system (Yi & Li, 2012). Firstly, 

the aim of sensors used for SHM is to measure the required parameters data of a 

structure (e.g. acceleration, displacement, and stress) and those effective 

environmental parameters, such as humidity, temperature, and wind speed. Here, the 

accuracy and precision of the collected data are fundamental for the correct diagnosis 

of the structure. Secondly, a data processing system consists of data acquisition, 

transmission, aggregation, processing, and storage. Wireless sensor networks 

(WSNs) were studied as data processing systems for SHM and applied to replace 

traditional wired systems (Ceylan et al., 2016). WSNs contain sensor nodes deployed 

over a structure, and each node can collaborate with the other nodes to transmit data 

through the network toward a base station. Because of the availability of the 

traditional wired system in the market before the existence of the wireless system, it 

was utilized in SHM applications. The difference between using traditional wired 

sensor and wireless system in SHM is that the latter has sensor nodes that need a 

little bit of maintenance and no cables to be installed, and thus they can be installed 

in remote locations which used to be impractical or inaccessible (Avci et al., 2018; 

Ji et al., 2017). In WSNs for SHM, data acquisition is achieved by sensor nodes that 

collect data from SHM sensors. Then, according to communication network type 

(single-hop and multi-hop), sensor nodes can transmit the measured data, either 

directly or by forwarding data packets of each other to the base station. Data 
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aggregation and processing, which are essential for extracting features of SHM 

algorithms, can take place in various positions (such as, sensor nodes, cluster heads, 

and/or base station) and can occur before or after data transmission depending on the 

data processing strategy and network topology. Thirdly, the health evaluation system 

is devised to evaluate a structure's overall safety and/or stability when the monitoring 

criteria are exceeded (Aygün & Gungor, 2011). The architecture of the SHM system 

using WSN is illustrated in Figure 1.1. 

 

Figure 1.1 : Architecture of SHM system using WSN 

 

 

1.1.2 Key Challenges of WSNs for SHM 

There existed many constraints related to WSN in terms of resource and design, such 

as low bandwidth, short range of communication, limited processing, limited 

storage, and a limited amount of energy in each node. What complicates it more is 

that SHM characteristics and requirements added extra complications and issues to 

the available limitation of WSN technology. Some of these issues are results of the 

location, a harsh environment of civil infrastructure, large sensing scope of the 

wireless monitoring system, a generation and transmission of a huge amount of data 

in each data sensing period, and complexity of SHM algorithms, which were also 

developed to be processed at a centralized station. The existing challenges associated 

with WSNs for SHM in the rest of this section include high data rate and throughput, 

power efficiency, and SHM algorithms and embedded data processing. 

1.1.2.1 High Data Rate and Throughput 

The data rate is vital as it provides information about the network throughput 

requirements for near real-time performance. Additionally, it depends on the 

sampling frequency, which relies on the structure's essential modes of vibration. In 

numerous monitoring applications, the traditional uses of WSNs are cases with low 

data rate, small data size, low duty cycle, and low consumption of power. However, 

recent SHM for data-intensive applications requires a high data rate, large data size, 

and a comparatively high duty cycle. In SHM, various types of sensors are used to 
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collect information about their surroundings like acceleration, displacement, strain, 

and stress that differ with the environmental conditions, for example, temperature 

and moisture. Hence, a high data rate guarantees acquiring a lot of data samples 

before completing mitigation of the seismic response of a structure and the disclosure 

of high-frequency accelerations (Pentaris et al., 2014). 

On the other hand, having a reliable network for high-throughput data is a serious 

topic in WSNs for SHM. Applications of WSNs for SHM concerning throughput 

requirements can be categorized into two types, low and high throughput 

applications (R. E. Kim et al., 2016). As for the category of low throughput 

applications, the data may consist of many packets. Nevertheless, in such a data-

intensive application, data generation takes place much faster than it can be 

transmitted. Also, failures, which take place while data is in transmission, usually 

cause data loss, considerably declining the performance and accuracy of monitoring 

that can be implemented (Bocca et al., 2011; R. E. Kim et al., 2016; Pentaris et al., 

2014). 

1.1.2.2 Power Efficiency 

Power efficiency is a primary crucial aspect in the development of WSNs. In most 

cases, a battery is used to power the sensor nodes, and there is an extreme limitation 

in the available energy amount. Relying on the frequency of making a diagnosis, a 

wireless SHM system once deployed is anticipated to be effective for months or even 

years. Therefore, reducing power consumption is a major issue in WSNs for SHM, 

particularly in resource-constrained sensor networks. Hence, the impacting factors, 

which make the power efficiency of sensor nodes an essential consideration in WSNs 

for SHM, are location and environment, working principle and mode, complex SHM 

algorithms, network protocols, and data processing. Moreover, a variety of 

techniques have been proposed to solve this problem. Such techniques are as follows: 

Radio optimization, data reduction, sleep/wake up approaches, power-efficient 

routing, and battery repletion, as they can be used for extending the WSNs lifespan 

(Anastasi, Conti, et al., 2009; Rault et al., 2014). Thus, all these factors will be 

explored and discussed in Chapter 2 and the available mechanisms to address this 

challenge using hardware or software (OS and MAC protocols).   

1.1.2.3 SHM Algorithms and Data Processing 

The algorithms used in WSNs for SHM (e.g. modal analysis, damage detection, and 

system identification.) are more sophisticated computationally than those used in 

other WSNs application, which may lessen or even neutralize the obtained benefits 

(Xuefeng Liu et al., 2009). Data processing in WSNs for SHM usually indicates the 

implementation of SHM algorithms within sensor nodes or base station. In that way, 

raw data, processed data, or decision will be received by the base station according 

to the data processing strategy used. A general classification for data processing can 

be divided into two primary categories: centralized and distributed data processing.  
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The primary challenge here is the way of adapting the existing SHM algorithms 

within the mote's OS for decentralized embedded processing architecture with low 

power consumption and minimum data communications between sensor nodes for 

data-intensive SHM (Avci et al., 2018; G.-D. Zhou & Yi, 2013). 

1.1.3 MAC Layer Protocols  

The IEEE 802.15.4 MAC protocols can provide low duty cycles and provide 

mechanisms that control access to the shared communication medium in WSN by 

ensuring that the data transmissions of different sensor nodes do not collide with 

each other. In the context of WSNs, another responsibility assigned to MAC protocol 

is to secure an efficient utilization of the radio, which is inevitably the most critical 

part regarding power consumption. Therefore, MAC layer usually gives the priority 

for power efficiency, and then reliability and throughput take place. Generally, MAC 

layer protocols can be classified to fall into one of the two broad categories 

(Mouzehkesh et al., 2015); contention-based and contention-free (schedule-based). 

In contention-based protocols, such as CSMA, each sensor node competes for 

channel access when there is a need for data transmission without any guarantee of 

success. In contention-free MAC protocols, such as TDMA, a predefined schedule 

is required, and only one sensor node is assigned to access the channel at any given 

time. Besides, IEEE802.15.4 MAC layer protocol supports two medium access 

modes: the slotted mode (beacon-enable mode) and unslotted mode (non-beacon- 

enable mode) (Tall et al., 2015). The former utilized a slotted CSMA/CA scheme 

with a superframe structure, whereas the latter utilized unslotted CSMA/CA. In this 

work, schedule-based protocol (TDMA) is our focus with comparing the 

performance with CSMA/CA protocol in Contiki.  

1.1.4 Challenges Associated with Contiki OS and Implementation of 

Network Protocol Stack  

This section illustrates the constraints associated with the basic design of Contiki 

network stack, which can be a barrier to implementing a MAC layer protocol and 

affect its performance. 

1.1.4.1 Complexity of Network Stack 

The Contiki network stack (Netstack) suffers from excessive layerization, as it 

adopts a five-layer network stack, which is slightly different from the five layers of 

TCP/IP model. In-between the Physical (Radio) and the Network layers, where the 

data link layer is usually located, Contiki has three layers which are Framer, Radio 

Duty Cycling (RDC), and MAC layers (Pedro, 2014; Roussel & Song, 2015).  

While the design of Netstack can theoretically afford more flexibility in the 

implementation, it truly adds complexity to the development of a MAC protocol 

(Roussel & Song, 2015). As a part of this excessive layerization and separation, there 
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is a distinction between the RDC layer, which is supposed to manage the way that 

the radio transceiver is turned on or off, and the MAC layer, which is responsible for 

ordering and sequencing packet transmissions. Furthermore, to dynamically adapt 

network efficiency and power consumption to the ongoing traffic, managing both 

layers in practice is taking place by most modern MAC protocols (e.g.: (Nefzi & 

Song, 2012)). Therefore, this separation is at best difficult and becomes artificial, 

which only adds unnecessary complexity to the implementation of MAC protocol. 

For instance, ContikiMAC, which is the default Contiki RDC protocol, has to be 

utilized with a MAC protocol such as CSMA/CA or nullMAC protocol that adds 

more testing scenarios for analyzing the best selection of MAC driver in order to 

achieve optimal performance. Moreover, the lack of documentation about network 

stack implementation makes it difficult to understand the design concepts behind 

various network stack implementations. 

1.1.4.2 Unique Packet Buffer 

One of the features of the design of Contiki Netstack to save memory is that it is 

centered on a unique packet buffer that is internally called packetbuf; thus, all layers 

of the stack operate on this packetbuf (Halkes & Langendoen, 2007). However, this 

design has undesirable consequences such as potential packet loss when accessing 

the buffer while a packet arrives or the disability to properly handle queues. Another 

disadvantage of this design is the inability to efficiently handle packet queues buffer 

queuebuf, as the centered design of the unique packet buffer means unceasing copies 

between the packet buffer and the queues, which consequently leads to a waste of 

processing power, time, and even memory. 

1.1.4.3 Delay from Callback Timer 

For data transmission, Contiki utilizes a callback timer that gets its arguments as 

expiry time and a pointer to a defined function that performs as an event handler, 

which is called eventually after saving the event in the event queue and timer expires. 

Since events are released in a First-In, First-Out (FIFO) method, there is a possibility 

not to carry out the events handler immediately in case of the availability of multiple 

pending events, which restricts the ability of node to transmit data packets (Farooq 

& Kunz, 2015).  

1.1.5 Analytical Studies of MAC Layer 

In the WSNs community, MAC layer protocols have taken great attention and 

explored thoroughly with respect to development or adaption to suit different 

applications’ requirements. However, most of these studies were analytically 

evaluated and proved or did not implemented experimentally in real WSN platform 

and did not consider the constraints associated with the OS that have effects on the 

performance of a sensor node. Thus, several researchers highlighted that analytical 

studies often fail to foretell the quality of service (QoS) parameters of a sensor node 
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from an application's perspective or the inability to apply those protocols to practical. 

There are several reasons for that allegation: first, the generated overheads due to 

OS’s architecture and network protocol stack have effects on a node's power 

consumption and performance; second, practical protocols rely on empirical 

parameter settings (Farooq & Kunz, 2015). While these parameters have a 

substantial influence on the system performance, they are not comprehensively 

addressed and analyzed in the analytical studies (Djenouri & Bagaa, 2014); third, it 

is still very difficult to apply those existing analytical models. One of the reasons for 

the difficultly of applying those existing analytical models is that most of them don’t 

consist of the network’s parameters such as capture effect and actual channel model. 

The details of actual implementations of the operating system, limit and 

optimizations are frequently ignored. Otherwise, the model could be too complicated 

to be analytically resolvable (Despaux et al., 2014). Finally, heavy or centralized 

computation and global information are required to enhance the system’s 

performance by several available protocols (J. Wang et al., 2016).  

On the other hand, there are some simulators that emulate the OS and the network. 

For instance, Contiki has a simulator named Cooja uses for the rapid development 

of sensor networks (Tong et al., 2016). One of the important differences from other 

network emulators like OMNeT++, OPNET, and NS-2/3 is that Cooja carries out 

simulations according to Contiki OS and entirely emulate hardware platforms. In 

other words, the codes simulated in Cooja can be uploaded to real mote even without 

any modification that makes establishing realistic node networks tremendously 

easier. 

Therefore, evaluation of the real implementation, testbed, and OS’s emulators (e.g. 

Cooja for Contiki and TOSSIM for TinyOS) plays an important role to provide an 

accurate evaluation of MAC Layer protocols’ performance as well as to be able to 

consider the constraints associated with the OS that have effects on the performance 

of a sensor node.  

1.1.6 Suitability of Contiki CSMA for Real Time Applications 

Contiki OS provides unslotted IEEE 802.15.4 CSMA/CA MAC protocol, which 

takes care of the organization of medium access in the WSN, when each sensor node 

has packets to be transmitted or received. In the MAC layer, when null radio duty 

cycling (nullRDC) scheme is used and before transmitting every packet, a delay is 

imposed by the carrier sensing mechanism (Farooq & Kunz, 2015; Tall et al., 2016). 

Then, carrier sensing is performed, and if the channel is found to be idle, the packet 

is transmitted immediately. Nevertheless, sensor node backs off for a random amount 

of time as soon as the clear channel assessment (CCA) detects a busy channel. The 

random backoff interval relies on the channel check interval (CCI) utilized by the 

RDC protocols, which is 125 ms for nullRDC and ContikiMAC protocols. It is 

noteworthy that ContikiMAC is a default implemented RDC mechanism that allows 

nodes to keep their radio off most of the time. However, nullRDC is a null RDC 
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layer, which never turns off the radio; thus, it is usually implemented for testing or 

comparing it with other mechanisms of RDC.  

Furthermore, the Contiki CSMA/CA MAC protocol can work in two modes reliable 

and unreliable. When a reliable mode is utilized, acknowledgement (ACK) is 

activated to guarantee the reliability; each received packet will be acknowledged, 

and MAC layer waits for a period of time to detect an ACK when Tmote sky mote 

is implemented. After a potential ACK is detected, another delay is imposed to be 

able to read the packet out from the radio (Farooq & Kunz, 2015). Moreover, when 

no ACK message is acknowledged and the timer expires, the MAC layer then 

retransmits the corrupted or lost packet after a random exponential back-off delay if 

the number of retransmissions does not exceed three attempts of retransmission for 

the same packet. When the unreliable mode is used, retransmission of data packets 

is not performed. Thus, enhancements in the node’s transmission rate and end-to-

end delay may appear as there is no need for the node to wait for ACK reception, yet 

the packet loss rate may increase. 

Generally, the communication process of Contiki CSMA and RDC increases delay, 

thus it seems that the performance of node’s throughput may degrade, which affects 

the average channel throughput, primarily due to CCA delay and ACK overhead. On 

the other hand, CSMA/CA suffers from high-power consumption, as the major 

sources of power wastage, that is caused during communication process, are 

collision, retransmission, idle-listening, overhearing, and control packet overhead 

(Khan & Ali, 2016; Kochhar et al., 2018).  

In case of SHM applications, the end-to-end throughput along with power 

consumption are two of the metrics of interest. Therefore, in this work, 

comprehensive experiments for Contiki 3.0 CSMA/CA protocols take place to 

examine their suitability for IEEE 802.15.4 WSN-based SHM applications in. In 

addition, we introduce several factors that affect the node’s transmission capability 

and channel throughput along with power consumption that demonstrate the 

limitation of Contiki CSMA/CA MAC protocol in WSN for SHM applications. 

1.2 Problem Statement 

The importance of WSNs in SHM is unceasingly growing because of the increasing 

demand for both safety and security in the cities. WSN–based SHM system 

introduces a novel technology with compelling advantages in comparison to the 

traditional wired system. However, the characteristics and requirements of WSN-

based SHM system added extra complications and issues to network design and the 

existing limitations of WSN technology. Some of these issues are due to the location, 

generation and transmission of a huge amount of data in each data sensing period, 

and the complexity of SHM algorithms. The issue here is the limited resource and 

bandwidth of the node and the power consumption associated with the requirements 

of SHM algorithms due to their need for computational resources and process 

procedures (Noel et al., 2017). 
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Furthermore, in WSN environment, an application usually executes over the 

operating system (OS), and data transferred by application program crosses the 

network protocol stack. Hence, the generated overheads due to OS architecture and 

network protocol stack possess effects on the node's power consumption and 

throughput, and thus analytical studies often fail to foretell the QoS parameters of a 

sensor node from an application's perspective (Despaux et al., 2014; Djenouri & 

Bagaa, 2014; Farooq & Kunz, 2015; J. Wang et al., 2016), unless considering the 

constraints associated with the OS that have effects on the performance of a sensor 

node. 

While Contiki OS is one of the most well-known OS of WSN, it is still in the early 

stage of developing and implementing schedule-based MAC protocols. 

Consequently, it needs to be evaluated and deeply examined in terms of the 

constraints associated with it. Furthermore, the existing MAC designs in Contiki are 

limited, and they may have some restriction in various Contiki versions that hinder 

its broader development. These constraints exist both in general and at the specific 

level of Netstack. Lack of documentation, the complexity of Netstack, separation of 

MAC and RDC layers, centralization of Netstack on a unique packet buffer are all 

considered constraints in Contiki OS (Roussel & Song, 2015). In addition, the 

constraints associated with the implementation of the provided Contiki MAC layer 

protocol, CSMA/CA, limits the available bandwidth in IEEE 802.15.4-based 

networks by delaying data delivery and limiting the node's throughput (Farooq & 

Kunz, 2015; Tall et al., 2016). For instance, during the transmission stage, when a 

packet is available to be sent in the MAC layer, the carrier sensing is delayed by 125 

ms, then the packet is transmitted, which limits data transmission. What complicates 

the above is a high-power consumption associated with CSMA/CA due to collision, 

retransmission, idle-listening, overhearing and control packet overhead during the 

communication process. 

Generally, some of the aforementioned constraints restrict the implementation of a 

new MAC protocol, and others directly influence both power consumption and 

throughput of the sensor node. Therefore, providing flexibility in the selection of 

MAC protocols to be implemented in an OS becomes critical to best meet the 

requirements of each certain application as no single MAC protocol is suitable for 

all situations, and it is highly dependent on the scenario and application’s 

requirements (Mary et al., 2018; Onwuegbuzie et al., 2019). Moreover, embedded 

data processing becomes substantial for WSN based-SHM systems to enhance 

network throughput and reducing power consumption (Battista et al., 2016).  

These constraints provide a research gap in developing a Contiki MAC layer scheme 

that is able to provide high throughput and reliability and secure an efficient 

utilization of the radio, which inevitably is the most critical part regarding power 

consumption in WSN for SHM. This development must take place by overcoming 

the existing constraints associated with Contiki OS, MAC protocols, the 

implementation of the network protocol stack, and the fulfillment of the requirements 

of the SHM applications. Characteristics of schedule-based protocol motivated us to 

develop and implement a lightweight TDMA (L-TDMA) scheme to close this 

© C
OPYRIG

HT U
PM



 

10 

research gap, which is not available in Contiki 3.0 and would overcome OS’s 

implementation constraints and balance the tradeoff between optimization of node’s 

throughput and power consumption. Lastly, we implement a WSN strain-based SHM 

system and develop a data filtering and transmission algorithm for embedded data 

processing using L-TDMA to reduce the amount of data being transmitted, thereby 

enhancing throughput and minimizing the power consumed for wireless 

communication.  

1.3 Scope of Study 

This study proposes high throughput and power-efficient solutions for WSN-based 

SHM applications. Generally, this work mainly takes place in the embedded system 

field relating to Contiki OS and its network stack implementation in conjunction with 

MAC and RDC layer protocols to handle the radio communication. As the 

implementation of the proposed solutions is carried out to meet SHM applications' 

requirements, the study's performance metrics are throughput and power 

consumption. Specifically, at the node level, to optimize throughput and power 

conservation, protocols and mechanisms need to be developed, which can be 

extended to involve the operating system's issues to meet the requirement of a 

specific application. The inclusion of all possible solutions would be a very extensive 

topic for one study, so this work mainly provides solutions concerning the MAC 

layer in conjunction with the network stack of Contiki OS. Furthermore, as the role 

of communication and computation in practice depend basically on the platform and 

application, the focuses here are based on reducing radio communication, 

overcoming the imposed constraints on the OS’s Netstack and MAC levels, 

particularly in developing a MAC scheme, and embedded data processing at node 

level and applying the proposed solutions on a real testbed deployment. 

1.4 Aim and Objectives of Study 

The main aim of this research is to close the research gap that exists on the 

implementation of a MAC layer on Contiki OS by providing high-throughput and 

energy-efficient solutions that fulfill the requirement of WSNs for SHM. The 

objectives of the research are formulated for the following: 

 To investigate the constraints’ effect of Contiki OS, network protocol 

stack’s implementation, and MAC protocol on the node’s throughput and 

power consumption. 

 

 To develop and implement a lightweight TDMA-based MAC layer scheme 

on Contiki that is able to enhance node’s throughput along with conserving 

power. 

 

 To implement a WSN strain-based SHM system using the proposed L-

TDMA MAC scheme for optimizing throughput and reducing power 

consumption. 
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1.5 Contributions and Publications Arising from this Thesis 

This study contributes to the research domain of Contiki Netstack and its MAC layer 

protocol implementation and takes part towards the SHM. The contributions of this 

research are summarized as below: 

1. It introduces a comprehensive review for collective experience the 

researchers have gained from the application of WSNs for SHM, which 

includes technologies of wired and wireless sensor systems along with 

wireless sensor node architecture, functionality, communication 

technologies, and its popular OSs; besides, the state-of-the-art academic 

and commercial wireless platform technologies used for SHM, and also 

classification taxonomy of the key challenges associated with WSNs for 

SHM to assist in understanding the obstacles and the suitability of 

implementing WSNs for SHM applications. 

 

2. It analyzes the effect of Contiki OS and implementation of the network 

protocol stack on the node’s throughput and power consumption and IEEE 

802.15.4 channel utilization by identifying the constraints associated with 

them. Besides, it studies the suitability of the provided Contiki’s IEEE 

802.15.4 CSMA/CA MAC layer protocol for real-time SHM applications. 

 

3. It develops and implements the L-TDMA MAC scheme on Contiki OS, 

which is able to overcome the identified constraints and enhance the node’s 

throughput and power consumption, using simulation and experiments. In 

addition, it provides a comparative analysis of the proposed scheme with 

the provided Contiki CSMA/CA MAC protocol and other MAC protocols 

implemented on TinyOS. 

 

4. It develops and implements embedded data filtering and transmission 

algorithm that is able to optimize node’s throughput, and power 

consumption and evaluating sensor node performance in comparison with 

the wired system in a laboratory testbed for concrete monitoring.  

 

5. It presents a comparative analysis of data processing for both centralized 

and embedded data processing strategies to demonstrate the limits of a 

standard node Microcontroller Unit (MCU) and MAC protocol when 

dealing with high-bandwidth sensing. 

 

 

 

 

 

© C
OPYRIG

HT U
PM



 

12 

1.6 Thesis Organization 

The remaining chapters of this work are organized as the following: 

Chapter 2 gives an overview of wireless sensor networks for SHM, which consists 

of different subsections; wired-based and wireless systems comparison with the main 

components of the WSNs and its well-known operating systems, SHM sensors, 

hardware design, available mechanisms to address the challenges of WSNs for SHM 

and SHM algorithms and embedded processing. Furthermore, CSMA and TDMA 

Protocols comparison and MAC layer power consumption factors are explored and 

summarized. In addition, the other three sections thoroughly focus on analyzing 

MAC layer protocols and hence motivates the direction of this research by 

comprehensively investigating their performance and suitability. The literature 

review is then concluded with limits of a standard node MCU and MAC protocol 

when dealing with high-bandwidth acceleration sensing and using different MAC 

protocols. 

Chapter 3 presents a comprehensive overview of the methodology, design, and tools 

utilized throughout this research study. This chapter is divided into four primary 

sections; first, flowchart and procedure of the research methodology; second, Contiki 

L-TDMA MAC scheme design and implementation; third, WSN strain based-SHM 

system and embedded data filtering and transmission algorithm design and 

implementation; and fourth, performance metrics and experimental setup. In the first 

section, the flow chart of research methodology, the tools, and materials are 

described. In the second section, the design concept and objectives, and L-TDMA’s 

frame structure, synchronization, and scheduling approaches are discussed. A 

detailed description of the proposed scheme and its architecture and implementation 

follow. In the third section, the wireless strain sensor, and the proposed embedded 

data filtering and transmission algorithm with integrating them into L-TDMA and 

Contiki are described in detail. Finally, performance metrics and experimental setup 

of both L-TDMA and WSN strain-based SHM system with its proposed embedded 

data filtering and transmission for strain-based applications and Fast Fourier 

Transform (FFT) algorithm implementations’ scenarios are presented.  

Chapter 4 presents the results and discussions. A detailed analysis and performance 

evaluation and power consumption for the MAC scheme on Contiki are depicted and 

discussed using simulation and experiment. Comparative evaluation of performance 

and power consumption for MAC protocols on Contiki and TinyOS are exhibited. 

Finally, comparative analysis of centralized and embedded algorithms using WSNs 

in terms of throughput and power consumption are thoroughly discussed. 

Chapter 5 summarizes the thesis to exhibit how the objectives of the proposed 

design and aims of the research are achieved, and suggestions and directions to future 

work are given. 
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