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Bagworms (Thyridopteryx ephemeraeformis) are one of the main species of 
vicious leaf eating insect that is a threat to the oil palm plantations in Malaysia. 
The economic impact from a moderate bagworm attack of 10%-50% leaf 
damage may cause 43% yield loss. The population of bagworms if not controlled 
often increases to above its threshold limits, thereby causing serious losses. Due 
to this, monitoring and detection of bagworm population in oil palm plantations 
is required as preliminary steps to ensure proper planning of control actions. A 
precise bagworm monitoring system is required to overcome recurrence of an 
outbreak. This study, investigates and explores a thermal imaging technique to 
detect the bagworms and identifying the bagworms through spectral reflectance 
properties (bagworm characterization) at different stages of the bagworms life 
cycle. Furthermore, this study develops an automated bagworm detection and 
counting technique for bagworm census through image processing analysis and 
this automated solution is found to be more efficient method in determining the 
bagworm population when compared to manual census techniques. As for 
detection, the reflector method was applied to find the reflected apparent 
temperature and emissivity of the bagworms using thermographic measurement 
techniques. Then, the experiment on identification of bagworm under thermal 
imaging is conducted using a thermal infrared camera, T 440 at different sites. 
It was revealed that the bagworms’ surfaces exhibited emissivity values was 
recorded approximately at 0.88±0.01 and 0.89±0.02. The statistical results from 
three rounds of experiments showed that the object/bagworm temperature 
during the evening, night, and morning were significantly different, p<0.05, as 
compared to the surrounding/frond temperature, with consideration of emissivity, 
solar radiation, and snapshot distance. The living and dead bagworm spectral 
reflectance properties were determined using spectroradiometer, GER1500 
under the Visible/Near Infrared and Short-wave Infrared wavelength regions, 
350 – 1050 nm, and the results were statistically confirmed using Student’s t-
Test with two tailed distributions, principal component analysis and Boxplot 
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Quantiles. The development of an image processing algorithm for detection and 
counting of Metisa plana Walker, a species of Malaysia’s local bagworm using 
image segmentation was proposed as it was found to be better than the thermal 
approach after some preliminary field tests. Color and shape features from the 
segmented images, combined with deep learning and Faster Region-based 
Convolutional Neural Networks for real time object detection showed an average 
detection accuracy, of 40% and 34%, at 30 cm and 50 cm camera distance, 
respectively. By applying deep convolutional neural network, the percentage of 
detection increased up to 100% at a camera distance of 30 cm in close condition. 
The proposed solution was also designed to distinguish between living and dead 
bagworms using motion detection which results in approximately 73-100% 
accuracy at a camera distance of 30 cm in the close condition. The fabrication 
of the prototype was accomplished and field tested. The classification of the 
larval and pupal stages was carried out by grouping the larval and pupal stages 
based on their real size; Group 1: larvae stage 1-3, Group 2: larvae stage 4-7 
and Group 3: pupal stage. The results showed that the average percentage of 
the detection accuracy was 87.5% and 78.7%, respectively for the living and 
dead Group 1 larvae. Meanwhile, the average percentage of the detection 
accuracy for the living and dead Group 2 larvae was same 79.2%, respectively. 
As for pupa in Group 3, the result showed that the average percentage of 
detection accuracy of the prototype to detect the living and dead pupae against 
manual census was 77% and 75%, respectively. The limitations of this study 
were determined, such as the camera distance and snapshot condition during 
image capture were limited at 30 cm and 50 cm, and set in three conditions; 
open, half open and close condition, damage, brownish leaflet and hole were 
found as natural limitations, characteristic of the bagworm in term of colour and 
material of its bag attributed to difficulties to extract the bagworm from its 
surrounding and SOP for bagworm census. There are several recommendations 
from this study that have been suggested including the use of hyperspectral 
imaging to detect bagworms, application of radio frequency to detect live 
bagworms, open system detection of the bagworms, application of pseudo 
colour concept and method to detect early stage of bagworm attack.  
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PEMBANGUNAN ALAT PENGESAN DAN PENGIRA AUTOMATIK UNTUK 
BANCIAN ULAT BUNGKUS 

Oleh 

MOHD NAJIB B AHMAD 

Oktober 2020 

Pengerusi :    Profesor Sr. Gs. Abdul Rashid Mohamed Shariff, PhD, C.Eng. 
Fakulti  :   Kejuruteraan 

Ulat bungkus (Thyridopteryx ephemeraeformis) merupakan serangga perosak 
pemakan daun tanaman sawit yang utama di Malaysia. Kesan ekonomi dari 
serangan ulat bungkus peringkat sederhana, iaitu 10-50% kerosakan daun sawit 
boleh menyebabkan kehilangan hasil sebanyak 43%. Populasi ulat bungkus 
tanpa sebarang kawalan akan meningkat, melebihi paras ambang dan 
seterusnya menjurus kepada kerosakan yang lebih serius. Berdasarkan senario 
ini, pemerhatian dan pengesanan populasi ulat bungkus adalah diperlukan bagi 
memastikan perancangan sistematik untuk aktviti kawalan di kawasan serangan 
berjalan lancar dan berkesan. Sistem pemerhatian ulat bungkus yang jitu adalah 
diperlukan untuk mengatasi masalah serangan berulang. Kajian ini meneroka 
dan menyelidik potensi kaedah pengimejan termal untuk mengecam ulat 
bungkus menggunakan kamera termal inframerah dan penentuan data spectral 
refleksi ulat bungkus pada pelbagai peringkat untuk ulat bungkus hidup dan 
mati. Selain itu, kajian ini membangunkan teknik pengesanan dan pengiraan ulat 
bungkus secara automatic untuk bancian ulat bungkus menggunakan analisis 
pemprosesan imej dan kaedah penyelesaian automasi ini didapati lebih efisyen 
untuk menentukan populasi ulat bungkus berbandingkan kaedah manual 
bancian ulat bungkus. Untuk pengecaman ulat bungkus, kaedah reflektor telah 
digunakan untuk mencari suhu jelas refleksi dan emisiviti ulat bungkus melalui 
teknik ukuran termografik. Disusuli dengan ujikaji pengenalpastian ulat bungkus 
melalui pengimejan termal dengan menggunakan kamera termal inframerah, 
T440 di beberapa kawasan kajian berbeza. Nilai emisiviti permukaan ulat 
bungkus telah dicatatkan pada nilai 0.88±0.01 dan 0.89±0.02. Keputusan 
statistik daripada dua ujikaji menunjukkan suhu ulat bungkus semasa waktu 
petang, malam dan pagi adalah berbeza secara signifikan, p<0.05, 
berbandingkan suhu pelepah/sekitaran, yang mana ia bergantung juga kepada 
nilai emisiviti sekitaran, radiasi matahari dan jarak penggambaran. Data spektral 
ulat bungkus hidup dan mati telah diperolehi dengan menggunakan 
instrumentasi spektroradiometer, GER1500 di bawah julat panjang gelombang 
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spectrum Visible/Near Infrared dan Short-wave Infrared. Hasil ujikaji disahkan 
secara statistik dengan menggunakan analisis Student’s t-Test dengan dua 
edaran ekor, analisis komponen principal (PCA) dan Boxplot Quantiles. 
Pembangunan algoritma pemprosesan imej untuk pengesanan dan pengiraan 
ulat bungkus spesis tempatan, Metisa plana Walker, telah dicadang dan 
diusahakan setelah didapati teknik ini lebih berkesan berbanding dengan teknik 
pengimejan termal selepas beberapa siri ujian ladang yang telah dijalankan. 
Warna dan ciri bentuk daripada imej yang disegmentasi, digabungkan dengan 
kaedah pembelajaran mendalam dan model Faster Region-based Convolutional 
Neural Networks untuk pengesanan pada masa sebenar, telah menunjukkan 
purata ketepatan pengesanan sebanyak 40% dan 34%, masing-masing pada 
jarak kamera 30 cm dan 50 cm. Dengan mengaplikasikan pembelajaran 
mendalam rangkaian neural sahaja, peratus pengesanan meningkat sehingga 
100% pada jarak kamera 30 cm dan dalam keadaan tertutup. Kaedah 
penyelesaian ini juga mengambilkira pembezaan ulat bungkus hidup dan mati 
melalui pengesanan pergerakan, yang mana, ia menghasilkan 73-100% 
ketepatan pada jarak kamera 30 cm dan dalam keadaan tertutup. Fabrikasi 
prototaip alat pengesan dan pengira ulat bungkus telah berjaya dihasilkan dan 
dicubalari di ladang sawit. Klasifikasi kumpulan ulat bungkus mengikut peringkat 
dan saiz sebenar larva dan pupa telah dilakukan; Kumpulan 1: larva peringkat 
1-3, Kumpulan 2: larva peringkat 4-7 dan Kumpulan 3: pupa. Keputusan 
percubaan ladang menunjukkan purata peratus ketepatan mengesan larva 
Kumpulan 1 yang hidup dan mati, masing-masing ialah 87.5% dan 78.7%. 
Purata peratus ketepatan mengesan larva Kumpulan 2 adalah sama, masing-
masing ialah 79.2%. Manakala untuk pupa, iaitu Kumpulan 3, purata peratus 
ketepatan mengesan pupa hidup dan mati, masing-masing ialah 77% dan 75%. 
Kekangan kajian ini telah dikenalpasti, antaranya ialah jarak kamera dan 
keadaan penggambaran semasa pengambilan imej dihadkan kepada masing-
masing, 30 cm dan 50 cm dan terhad kepada tiga keadaan iaitu, terbuka, 
separuh terbuka dan tertutup. Daun pelepah yang rosak, berwarna coklat dan 
berlubang menjadi kekangan semulajadi kajian, diikuti oleh sifat ulat bungkus 
dengan ciri warna dan bahan bungkusannya menyebabkan kesukaran 
memisahkan ulat bungkus dari sekitarannya dan yang terakhir ialah piawaian 
bancian ulat bungkus. Hasil kajian ini telah dicadangkan beberapa syor iaitu 
penggunaan pengimejan hyperspektral bagi mengesan ulat bungkus, aplikasi 
frekuensi radio untuk mengecam ulat bungkus hidup, sistem terbuka untuk 
pengesanan ulat bungkus, konsep warna pseudo bagi mengecam ulat bungkus 
dan kaedah untuk pengesanan awal ulat bungkus. 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

In Malaysia, the palm oil sector is described as one of the key contributors to the 
national economy and currently, the palm oil industry has contributed a Gross 
National Income (GNI) RM 79.9 billion in 2017 (National Transformation 
Programme Annual Report, 2017). The palm oil industry extents the significance 
series from upstream sectors to downstream areas. Whereas, oil palm planted 
area in Malaysia was around 5.9 million hectares in 2019 (Malaysian Oil Palm 
Statistic, 2019). 

The major insect pests capable for causing outbreak are bagworms and nettle 
caterpillars. A moderate bagworm attack causing 10-50% leaf damage may lead 
to 43% yield loss (Wood et al., 1972; Basri and Kevan, 1995). The population of 
bagworms without control often increased to above its threshold limits, thereby 
causing serious outbreak. The bagworm is a leaf-eating caterpillar concealed 
within its carrot-shaped bag, which is constructed from bits of material from the 
plant upon which it feeds (Barlow, 1982). Bagworms are a repeated problem in 
oil palm plantations that causes by several factors, including nonstop routine of 
chemical insecticides, deficiency of beneficial plants cultivated to attract natural 
enemies, and ballooning in neighboring plantations (Ramlah et al., 2007). The 
outbreaks are also related to the dry season because of feeding behavior of the 
bagworms. It becomes more vigorously and moving faster in hot and dry weather 
(Chung and Sim, 1991). Integrated pest management (IPM) is recommended for 
combating bagworm outbreaks in oil palm plantations. 

In order to control bagworm in oil palm plantation effectively, it is vital to conduct 
census. Census is a method to calculate number of insect pest unswervingly so 
that control actions can be planned. The method includes apparent monitoring 
for any indication of pest occurrence or ‘enumeration’ (Corley et al., 2003). 
Collected data of census will conclude the level of insect pest outbreaks. 
Furthermore, the data will project a suitable and right timing of pest control. 
Currently, census is done manually through naked eyes observation and 
counting method. To address this, an automated device was developed in this 
research. 

The automated device is a simple, accurate and has scanning system which is 
easy to use for detecting and counting bagworms on the palm leaflet. The 
technology is based on developed deep learning with Faster R-CNN technique 
towards real time object detection. The device was developed to assist bagworm 
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counting for field work and is the first developed instrument and though not yet 
being tested for enumeration purposes. It can be calibrated at different intervals 
to ensure high accuracy and precise detection of the insect pests. The object 
recognition, stage identification, counting population and determination of live 
and dead bagworms based on video processing were conducted in advanced 
controller programming software, for example MATLABTM, Python, C++, Java, 
Ruby and others. Upon scanning the leaf area using the device, the image 
produced was analyzed by the program, based on set point and characteristic 
that have been set to determine the density of the insect per area. 

The development of an automated detector and counter for bagworm census is 
essential as it would greatly benefit planters and smallholders in term of plant 
protection scope. By applying this device, control actions can be planned and 
carried out at the right time and exact bagworm larval stages. This will help oil 
palm industry in term of saving expenses for pesticide supply for a whole year. 
Besides, labour shortage problem could be overcome and time spent for census 
will be shorten tremendously. In addition, precise data collection can be 
compiled for further analysis and assessment of control measures taken in 
combating bagworm and it can be analysed and evaluated for better FFB yield 
incomes in the future. Furthermore, the development of the ground-based device 
is the first innovation ever and pioneer in oil palm industry, in which, it reduces 
human error in census and promoting precision agriculture practice. By applying 
infrared sensor and image processing algorithms, this device can be effectively 
used by the farmers and planters to monitor bagworm population in their farm 
and subsequently can increase yield productivity. 

1.2 Problem statement 

This project is carried out based on problem occurred during bagworm census, 
which is a crucial monitoring work at infested area in oil palm plantations.  Any 
report on the bagworm outbreak from oil palm plantations has to be solved and 
manage according to standard operating procedures (SoP). As an initial action, 
assessment of infested area and a check of the level of seriousness of bagworm 
attack is conducted via census. At the same time, species and bagworm density 
are determined. In common practice, census is carried out manually by counting 
the number of bagworm population per frond through naked eyes. Accurateness 
and exact census data collection are suspicious, sometimes involves human 
errors such as underestimating, dishonest and generating data. Precise data is 
important for planning and conducting any bagworm control at the infested area. 
According to SoP of controlling bagworm produced by MPOB (2016), the action 
threshold level (ATL) for bagworm species of P. pendula and M. plana is around 
5-10 larvae per frond (LPF). It means that the action control effectiveness is 
validated through ATL and all oil palm planters need to apply the rules for 
sustainability of oil palm industry. Furthermore, to date, no bagworm 
characterization study in term of spectral reflectance properties has been 
established. The spectral properties of bagworms are important for detection 
using spectroscopy method such as short-wavelength infrared (SWIR) camera. 
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The specific wavelength of bagworm needs to be determined prior to 
establishing SWIR camera detection method. 

1.3 Objectives 

The main aim of this study is to develop an automated detector and counter for 
bagworm census by using several methods such as thermal imaging, 
spectroscopic technique and image processing analysis. The final target is to 
develop a prototype of an automated detector and counter and validate it’s 
accuracy in the fields. 

Hence, the objectives of this study are as follow; 

1) To investigate and explore thermal imaging technique using thermal IR
camera to detect bagworms.

2) To determine and characterize the spectral reflectance properties of
live and dead oil palm bagworms at different stages of their life cycle.

3) To develop an automated oil palm bagworm detector and counter
using deep learning and machine vision techniques.

4) To validate the effectiveness of the automated field oil palm bagworm
detector and counter versus manual census technique.

1.4 Scope and limitation of study 

The scope of research involved in this study is as follows: 

1) Thermal imaging experiment to detect objects/bagworms using thermal
IR camera

2) Spectroscopic studies to determine the spectral properties of live and
dead bagworms at different stages.

3) Image processing using deep learning convolutional neural networking
with Faster R-CNN to detect and classify the living and dead bagworms
and categorize them into 3 different groups.

4) Integration of software and hardware platform to run the developed
algorithm as a computing unit for prototype.© C
OPYRIG

HT U
PM



 
4 

5) Fabrication and development of the prototype according to its functions 
and mode of selection. 

 
6) Field test of the prototype to validate effectiveness to identify the 

bagworms.  
 

The limitations of this study are determined and listed as follows: 

1)   Device has limited operation and cannot be operated in ambient light. 
The camera distance and snapshot condition during image capture are 
limited at 30 cm and 50 cm, and set in three conditions; open, half open 
and close condition to optimize ambient light effect, shadow movement 
and any movement or environment variable which are varied depending 
on sunlight intensity and movement speed. 

 
2)   During detection of bagworms on the fronds, damaged leaflet, brownish 

leaflet and holes were found as natural limitations or disturbances to 
detect the bagworms. This can lead to wrong object detection and 
resulting low percentage of detection accuracy. 

 
3)   Census carried out following a standard operating procedure (SOP) in 

terms of frond selection and amount of frond to be cut down for field trial 
of the prototype. 

 
4)   Characteristics of the bagworm in term of colour and material of its bag 

attributed to difficulties to extract the bagworm from its surrounding. The 
bag is formed by damage leaflet and has a same texture with the leaflet. 
Colour processing method failed to detect it accurately on the damaged 
frond, and subsequently, a deep learning with neural network was 
chosen to be used as an algorithm platform for the bagworm detection. 

 
5)   The complete process algorithm or software of the automated detector 

and counter was outsourced to a programming company that has a 
capability to develop a software for the prototype. The coding for the 
software was submitted for copyright filing and received registration 
number in 2019, under Voluntary Notification of Copyright No. CRLY 
00022664 entitled ‘an image processing algorithm for auto detector and 
counter of bagworm’. 

 
 
1.5 Thesis contribution 

The thesis contribution or novelty of this study are compiled and listed as follows; 

1) The design and development of automatic detection system of the 
oil palm bagworms using deep convolutional neural networks (Conv 
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Net), normal camera and consisted of motion-tracking and false 
color analysis to detect and count the number of living and dead 
larvae and pupae of M. plana population per frond, corresponding 
to three major groups or sizes classification, which is applied using 
ground basis application and close system.  
 

2) The false color method is a new image processing approach to 
differentiate between the living and dead pupae of the bagworms. 
This method is following the slope of spectral reflectance for the 
living and dead pupae under Vis/NIR wavelength using 
spectroradiometer. The slope values for both pupae was calculated 
based on average pixel counting of the images. This involved the 
use of two light sources, red and infrared vision at specific 
wavelength, 630nm and 940nm, respectively. The calculated slope 
values were used to distinguish between the living and dead pupae.  

 
 
1.6 Thesis organisation 

The thesis write-up is structured into five chapters. Chapter 1 is an introductory 
chapter consisting the background of the study, problem statement, objectives 
and scope of the study. Then, Chapter 2 explains a literature review on the 
bagworm characteristic and sizes, spectroscopy and its application in 
agricultural practice, thermal imaging, machine vision, image processing and its 
application and development of prototype. In Chapter 3, description on the 
overall methodology including experimental overview, source of insects, 
analysis on thermal imaging and spectral properties of the bagworms, image 
processing includes segmentation, morphology, classification, countering 
number of bagworms, methods on detection of the living and dead larvae and 
pupae, hardware and software integration, fabrication of prototype and field trial. 
Chapter 4 explains the experiment results and discussions. In Section 4.1, the 
reflected apparent temperature and emissivity of the bagworms were 
determined. Different times of thermal imaging experiments were conducted and 
described based on the results. Section 4.2 concentrates on finding of spectral 
properties of live and dead bagworms to detect larval and pupal stages 
according to its life cycle. In Section 4.3, describes result on development of 
image processing algorithm including colour processing method, deep learning 
and determination of living and dead larvae and pupae, as well as software part 
of prototype. Then, Section 4.4 focuses on integration of software and hardware 
platform or fabrication of the prototype. In Section 4.5, validation on 
effectiveness of the prototype was carried out at different fields with further 
improvement. Finally, Chapter 5 concludes the findings from this study and 
suggests several recommendations for future research. 
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