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DIAGONALLY IMPLICIT BLOCK BACKWARD DIFFERENTIATION
FORMULA WITH OFF STEP POINTS FOR SOLVING STIFF ORDINARY
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By
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May 2021

Chairman: Zarina Bibi binti Ibrahim, PhD
Faculty: Science

This research demonstrates an alternative method for solving stiff ordinary differ-
ential equations (ODEs) using a diagonally implicit block backward differentiation
formula with off-step points (DOBBDF). The off-step points are the optimal points
between two equidistant grid points that help provided stable and high-accuracy so-
lutions. The diagonally implicit form optimized the computational cost since fewer
differential coefficients caused reducing the execution times.

The thesis is divided into two significant parts. The first part showed the derivation
and implementation of the two-point DOBBDF using constant and variable step-size
strategies for solving the first-order stiff ODEs. The methods satisfied the conver-
gence properties and A-stable conditions and yielded the region which contains the
whole negative real axis in the complex plane. Numerical results revealed that the
derived method excels than the other same kind methods.

The second part described the formulation of DOBBDF for solving second-order
ODEs directly. The direct method is the best feature to replace the previously ex-
pensive approach. The costly technique involved reducing the higher-order ODEs
to first-order ODEs and solve using the first-order method. The new direct methods
emphasized approximation at two solution points and two off-step points simultane-
ously in a block using constant and variable step-size strategies. The methods satis-
fied the properties of consistency and zero-stable, guaranteed convergent method for
directly solving second-order Initial value problems of ODEs.
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Last, the DOBBDF is validated with several application models, including cancer,
gene regulations, Prothero-Robinson system, and oscillation problems. In conclu-
sion, DOBBDF is a significant alternative solver for the stiff ODEs model in science
and engineering.
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FORMULA BLOK PEMBEZAAN KE BELAKANG PEPENJURU
TERSIRAT DENGAN TITIK LUAR LANGKAH UNTUK

MENYELESAIKAN PERSAMAAN PERBEZAAN BIASA KAKU

Oleh

NORSHAKILA BT ABD RASID

Mei 2021

Pengerusi: Zarina Bibi binti Ibrahim, PhD
Fakulti: Sains

Penyelidikan ini memaparkan kaedah alternatif untuk menyelesaikan persamaan per-
bezaan biasa kaku (PPBK) dengan menggunakan formula blok pembezaan ke be-
lakang pepenjuru tersirat dengan titik luar langkah (FBPBPTO). Titik luar langkah
adalah titik optimum di antara dua titik yang sama jaraknya yang membantu meng-
hasilkan penyelesaian yang lebih stabil dan berkejituan tinggi. Struktur pepenjuru
pada formula dapat mengurangkan kos pengiraan kerana pekali pembezaan yang
lebih sedikit menyebabkan pengurangan masa pelaksanaan.

Tesis ini terbahagi kepada dua bahagian penting. Bahagian pertama memaparkan
penerbitan dan pelaksanaan formula 2 titik FBPBPTO menggunakan strategi saiz
langkah tetap dan saiz langkah berubah-ubah untuk menyelesaikan PPBK peringkat
pertama. Formula tersebut memenuhi ciri-ciri penumpuan dan kestabilan A justeru
menghasilkan graf yang mengandungi keseluruhan bahagian pada paksi negatif di-
dalam ruangan kompleks. Keputusan berangka mendedahkan bahawa formula yang
dihasilkan adalah lebih baik daripada formula dari kategori yang sama yang sedia
ada.

Bahagian kedua membincangkan penerbitan FBPBPTO untuk menyelesaikan secara
terus PPBK peringkat kedua. Kaedah penyelesaian secara terus adalah paling baik
untuk menggantikan teknik yang sedia ada yang mahal. Teknik yang mahal terse-
but melibatkan proses menurunkan PPBK peringkat tinggi kepada PPBK peringkat
pertama dan menyelesaikannya menggunakan formula peringkat pertama. Kaedah
penyelesaian secara terus ini menekankan penghampiran penyelesaian pada dua titik
dan dua titik luar langkah secara serentak di dalam blok menggunakan strategi
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saiz langkah tetap dan berubah-ubah. Formula tersebut memenuhi ciri-ciri konsis-
tensi dan kestabilan sifar justeru formula menumpuan dijamin dalam menyelesaikan
masalah nilai awal PPBK peringkat kedua secara terus.

Akhir sekali, FBPBPTO diuji dengan beberapa aplikasi model antaranya model
kanser, pengaturan gen, sistem Prothero-Robinson dan masalah ayunan. Kesim-
pulannya, FBPBPTO merupakan kaedah alternatif yang signifikan untuk menyele-
saikan model PPBK di dalam bidang sains dan kejuruteraan.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

”Differential equation” is a mathematical statement that describes the derivatives of
one or more functions. The equation appeared, containing information on the rate
of change of the system over time. Differential equations begin by scratching the
surface of how to describe real-world change mathematically. Ordinary differential
equations (ODEs) and partial differential equations (PDEs) are the two most fre-
quent types of environmental differential equations models. ODEs include ordinary
derivatives with one independent variable, whereby PDEs involve partial derivatives
with several independent variables.

The oscillation of mass-spring, drug dissipation, Malthusian population, decaying
radioactive, predator-prey phenomena are real-world applications modeled mathe-
matically using ODEs. Consider the general form of a simple, single ODEs as fol-
lows:

y′(t) = αy, y(a) = y0, t ∈ [a,b]. (1.1.1)

α is a constant. If α > 0, the exponential function in t that growing as t increases
is termed exponential growth. If α < 0, on the other hand, it becomes exponential
decay, with the values of y gradually approaching zero over time, (1.1.1) has a so-
lution of y(t) = y0eαt , which gives information about how quantities change and,
in turn, provides indirect insight into how and why the change occurs see Figures
1.1 and 1.2. As time passed, different complex models arose and were designated
without theoretical solutions. The solution techniques grow more challenging as
the model becomes sophisticated. Thus, over the five decades or more, there has
been an increase in numerical methods to surmount the shortcomings. However, the
solvers are still grounded to the classical explicit, and implicit methods since these
two techniques are widely adopted to solve various scientific and applied engineer-
ing domains. Besides that, the criteria based on the complexity, behavior of outcome,
the execution time of code, and the accuracy of the results decided the most suitable
approaches when solving problems.
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Figure 1.1: Graph of exponential growth α > 0

Figure 1.2: Graph of exponential decay α < 0

1.2 Problem statement

ODEs have a wide range of applications and can forecast the environment and the
outcome of the process. As we mentioned in the previous section, it assists in
forecasting exponential growth and decay as well the expansion of population and
species. Throughout this thesis, we will solve ODEs with a starting condition that
defines the unknown function’s value at a certain point in the domain or called the
initial value problem (IVPs) of ODEs. The IVPs involves first and second order
ODEs that revolve around four kinds of ODEs viz. homogenous, non-homogenous,

2
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linear, and non-linear problems.

The general form of first order ODEs can mathematically define as

y′ = f (x,y), y(a) = y0, a≤ x≤ b. (1.2.1)

The Second order ODEs is in the form of:

y′′ = f (x,y,y′), y(a) = y0, y′(a) = y′0 a≤ x≤ b. (1.2.2)

(1.2.2) can be transformed into a system of ODEs of the first order explicit form by
introducing new dependent variables. The system of first order ODEs is in the form
of:

ŷ′ = f (x, ŷ) = Aŷ+ψ(x), ŷ(a) = ω, a≤ x≤ b. (1.2.3)

where ŷ = (yi)
T , ω = (ωi)

T , where i = 1,2,3, ...,n and A is a n×n matrix with the
eigenvalues λi, i = 1,2,3, ...,n.

The function f (x,y) guaranteeing the existence of a unique solution of the IVPs in
(1.2.1) by the following theorem Lambert (1973)

Theorem 1.1 Let f (x,y) be defined and continuous fo all points (x,y) in the region
D defined by a≤ x≤ b, −∞ < y < ∞, a and b finite, and let there exist a constant L
such that, for every x, y, y∗ such that (x,y) and (x,y∗) are both in D:

| f (x,y)− f (x,y∗)| ≤ L|y− y∗|. (1.2.4)

Then, if y0 is any given number, there exists a unique solution y(x) of the IVPs of
(1.2.1), where y(x) is continuous and differentiable for all (x,y) in D.

The proof of theorem can be found in Henrici (1962).

Frequent dynamic ODEs models are governed by the unique behavior identified as
stiffness. Due to the stiffness, only a few applicable methods are suitable in all spatial
regions since the solution would not have reached zero in a limited period, and the
approximate will be unstable. Roughly, a stiff system can be seen as one in which
components have very widely varying time-scale evaluations. Figure 1.2 depicts the
geometrical significance of stiffness.

3
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Stiffness is an efficiency issue that is concerned about how much time computation
takes. One of the most challenging aspects of studying stiff differential systems is the
lack of a solid mathematical description of the idea of stiffness. The earlier discovery
of the issue by Crank and Nicolson (1996) and Fox and Goodwin (1949) noticed the
stiffness difficulty while working on problems involving nonlinear heat equations in
the form of ODEs. Curtiss and Hirschfelder (1952) established the worldwide fact
that the implicit technique performs significantly better than the explicit method for
stiff problems. The measuring tools to determine the stiffness level ranging from
mildly to highly stiff through the eigenvalue of the ODEs. The system’s eigenval-
ues can theoretically provide measured stiffness by demonstrating that the larger λi
magnitude when λi < 0, the quicker the system responds. Furthermore, the degree
of stiffness can also be identified using the stiffness ratio, where the calculation in-
volves the absolute value of the greatest eigenvalue divided by the lowest eigenvalue.
Lambert (1973) provides a more specific mathematic definition of stiffness, which is
as follows:

Definition 1.2.1 The linear system (1.2.3) is said to be stiff if

i. Reλi < 0, i = 1,2, . . . ,n,, and

ii. maxi=1,2,. . . ,n|Reλi| ≤ mini=1,2,. . . ,n|Reλi|, where λi, i = 1,2, . . . ,n are the eigen-
values of A. The ratio

maxi=1,2,. . . ,n|Reλi|
mini=1,2,. . . ,n|Reλi|

is called stiffness ratio.

To effectively handle the stiff issue, it is necessary to understand what stiff ODEs
are and where they occur. Besides that, the purpose of designing a more accurate
solver is to provide efficient and stable alternatives methods in solving stiff. A short
description of the linear multistep method (LMM) will be presented in the next sec-
tion, along with some fundamental terminology relevant to the study.

1.3 Linear Multistep Method

Lambert (1973) presented the first and second order linear multistep method (LMM)
as follows:

Definition 1.3.1
k

∑
j=0

α jyn+ j−h
k

∑
j=0

β j fn+ j = 0, (1.3.1)
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k

∑
j=0

α jyn+ j−h
k

∑
j=0

β j fn+ j−h2
k

∑
j=0

γ j fn+ j = 0, (1.3.2)

α j, β j and γ j are constant coefficients and not all coefficients α0, β0 and γ0 equal to
zero. h is known as distance size between points in the formula and k symbolized as
order of the method.

The linear k-step method is based on evaluations of both yn+ j and fn+ j where j =
0,1, . . . ,k, to approximate the solutions of yn.

The first order LMM in (1.3.1) is identified as implicit method if βk 6= 0 whilts it
called explicit method if βk = 0. The implementation of LMM need advanced cal-
culation of starting points of y0,y1, . . . ,yk−1 and it can be realized through predictor
corrector methods.

1.4 Theoretical analysis of the method

Each new approach develope must be validated theoretically for ensuring efficient
approximations. The following definitions stated in Lambert (1973) defined the
principles criteria for LMM comprising order of the method, convergence and zero
stability.

1.4.1 Order of method

The order of LMM can be determined by referring to the definition stated by Lambert
(1973) as follow

Definition 1.4.1 The linear difference operator, L associated with (1.3.1) is:

L[y(x) : h] =
k

∑
j=0

[
α jy(x+ jh)−hβ jy′(x+ jh)

]
. (1.4.1)

expanding y(x+ jh) and y′(x+ jh) as Taylor series about xn:

y(xn +h) = y(xn)+hy′(xn)+
h2

2!
y′′(xn)+

h3

3!
y(3)(xn)+

h4

4!
y(4)(xn)+ . . . , (1.4.2)
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y′(xn+h) = y′(xn)+hy′′(xn)+
h2

2!
y(3)(xn)+

h3

3!
y(4)(xn)+

h4

4!
y(5)(xn)+ . . . , (1.4.3)

substituting the equations (1.4.2) and (1.4.3) to the (1.3.1) and collecting the deriva-
tive gives:

L[y(x) : h] =C0y(x)+C1hy′(x)+C2hy′′(x)+C3hy′′′(x)+ · · ·+Cqhqyq(x). (1.4.4)

The expansion will be truncated depending on the order of the method.

Definition 1.4.2 Linear multistep method (1.3.1) is said to be of order q if, C0 =
C1 = C2 = C3 = · · · = Cq = 0 and Cq+1 6= 0 is called as an error constant where
q = 2,3, . . . .

C0 =
k

∑
j=0

α j

C1 =
k

∑
j=0

(
jα j−β j

)
C2 =

k

∑
j=0

(
( j)2

2!
α j− jβ j)

...

(1.4.5)

Cq =
k

∑
j=0

[ jqα j

q!
−

jq−1β j

(q−1)!
]
.

1.4.2 Convergence and zero stability

Definition 1.4.3 Linear multistep method (1.3.1) is said to be convergent if for all
initial value problems subject to the hypotheses of Theorem 1.1:

lim
h→0

yn = y(xn), (1.4.6)

holds for all x ∈ [a,b], and for all solutions {yn}.
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Definition 1.4.4 The necessary and sufficient conditions for the linear multistep
method (LMM) of (1.3.1) to be convergent are that it must be consistent and zero
stable.

Definition 1.4.5 Linear multistep method (1.3.1) is said to be consistent if it has
order q≥ 1 and the method is also consistent if and only if:

(i)
k

∑
j=0

α j = 0,

(ii)
k

∑
j=0

jα j =
k

∑
j=0

β j. (1.4.7)

Definition 1.4.6 Linear multistep method (1.3.1) is said to be zero-stable if no root
of the first characteristic polynomial has modulus greater than one:

ρ(ξ ) =
k

∑
j=0

α jξ
j = 0. (1.4.8)

Definition 1.4.7 A method is said to be A-stable if RA ⊆ h|Re(h)< 0

Definition 1.4.8 Linear multistep method (1.3.1) is said to be absolutely stable if all
the roots of the stability polynomial satisfy |rs|< 1,s = 1,2, . . . ,k

1.5 Objective of Study

The main objectives of this research are:

1. To develop fixed coefficients of diagonally implicit BBDF with off-step points
of order two (2) and order three (3) for solving first and second order linear
and nonlinear stiff ODEs.

2. To construct variable time-step diagonally implicit BBDF with off-step points
method for solving first and second order stiff ODEs.

3. To investigate the convergence properties and stability of the derived methods.

4. To develop the algorithm in C++ environment for the implementations of the
method in fixed step followed by variable step strategy.
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5. To measure the accuracy of proposed methods with proven solvers regarding
the accuracy and computational time.

6. To test the efficiency of the proposed methods in solving first and second-order
ODEs with applications.

1.6 Scope of Study

Our scope is pertaining to the derivation and theoretical analysis for solving ODEs
up to the first and second order only. We approximate directly without reducing to
first order when solving second order stiff ODEs. Two solutions and two-off step
points will be calculated simultaneously within the same compartment at a single
iteration with the imposed of fixed coefficients or step-changing strategy. The meth-
ods are tested with well-known, scientific real-life cases of linear and nonlinear stiff
IVPs and show the processor time and accuracy performance metrics. The output es-
tablishes and the conclusion is confined to the test problems presented in this thesis,
which comprises cancer problems, gene regulations, prothero robinson, mass spring
system, and the duffing oscillatory equation.

1.7 Outline of Study

There are eight chapters in this thesis. A short overview of stiff ODE systems and
specific terminology relevant to the research are presented in Chapter 1. The study
objectives, problem statements, and scope of the study are outlined in this chapter.
Chapter 2 shows the background studies of numerical methods used for solving stiff

ODEs Chapter 3 discusses the fixed step diagonally implicit BBDF with off-step

points methods. The theoretical analysis comprises convergence and A-stability,
which are conduct to the proposed methods. The methods are applied to the linear
and nonlinear stiff problems, and the results show the relationship between stiffness
and computational method accuracy. Chapter 4 presents the extended form of the

method in Chapter 3 by imposing the variable step strategy. The step-size ratios are
restricted to be equal r = 1,r = 2, and r = 5/8. The method is satisfied to be con-
vergent and A-stable method. The test problems comprise highly stiff problems and
are taken from the literature to measure the stiffness effect on computational accu-
racy and CPU times. Chapter 5 laid out the framework for the derivation of the direct

solver fixed step diagonally implicit BBDF with off-step points to solve second order
ODEs directly. Theoretical analysis has been conducted to prove it as a convergent
method. The numerical results are compared with the other proven direct solver and
first order methods, consists of solver derived in Chapter 4 and ode15s to corroborate
the results. Chapter 6 shows the formulation of the variable step implementation of
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the method in Chapter 5 for solving second order directly. The same step ratios in
Chapter 4 are applied. The implementation and the summary of the algorithm are
shown. The method is verified with singles and systems of mildly and highly stiff
second order ODEs. The numerical accuracy is compared with proven solvers and
the fixed step direct method in Chapter 5 to support the method’s efficiency. All

the methods in Chapters 3-6 are tested with real-life scientific cases of linear and
nonlinear stiff IVP. Chapter 7 discusses pertinent observations from the results ob-
tained and decided which methods are the best fit as an alternative solver for stiff
first and second order ODEs. Lastly, the summary of this research which includes
the conclusion and planning of improvement are shown in Chapter 8.
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