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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
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IMPLICIT BLOCK METHODS WITH EXTRA DERIVATIVES
FOR SOLVING GENERAL HIGHER-ORDER ORDINARY
DIFFERENTIAL EQUATIONS WITH APPLICATIONS

By

ALLOGMANY REEM AYED M

February 2021

Chairman: Professor Fudziah Ismail, PhD
Faculty: Science

Traditionally, higher order ordinary differential equations (ODEs) are solved
by reducing them to an equivalent system of first order ODEs. However, it is
more cost effective if they can be solved directly by numerical methods. Block
methods approximate the solutions of the ODEs at more than one point at
one time step, hence faster solutions can be obtained. It is well-known too
that a more accurate numerical results can be obtained by incorporating the
higher derivatives of the solutions in the method. Based on these arguments,
we are focused on developing block methods with extra derivatives for directly
solving second, third and fourth order ODEs.

In this study, two-point and three-point implicit block methods with extra
derivatives are derived using Hermite Interpolating polynomial as the basis
function. The technique of integration is used in the derivation as it is more
straight forward and can easily be carried out compared to the existing tech-
nique of collocation and interpolation in which the points need to be collocated
and interpolated resulting in a huge system of linear equations which need to
be solved simultaneously.

The thesis consists of three parts, the first part of the thesis described the
derivation of two-point and three-point implicit block methods which incor-
porated the second, third and fourth derivatives of the solution for directly
solving general second order ODEs. Absolute stability for both block methods
is presented. The second part of the thesis is focused on the derivation of two-
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point and three-point implicit block methods which include the third, fourth
and fifth derivatives of the solutions for directly solving general third order
ODEs. The last part of the thesis concerned with the construction of two-
point and three-point implicit block method which involved the fourth and the
fifth derivatives of the solution for directly solving general fourth order ODEs.

The basic properties of all the methods, such as algebraic order, zero-stability,
and convergence are established. Numerical results clearly show that the new
proposed methods are more efficient in terms of accuracy and computational
time when compared with well-known existing methods. Applications in sev-
eral real fields also illustrate the efficiency of the proposed methods.

In conclusion, the new block methods with extra derivatives and codes devel-
oped based on the methods are suitable for solving second, third and fourth
order ODEs respectively and can be applied to solve physical problems.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK TERSIRAT DENGAN TERBITAN
TAMBAHAN UNTUK MENYELESAIKAN PERSAMAAN

PEMBEZAAN BIASA UMUM PERINGKAT TINGGI
DENGAN APLIKASI

Oleh

ALLOGMANY REEM AYED M

Februari 2021

Pengerusi: Profesor Fudziah Ismail, PhD
Fakulti: Sains

Secara tradisinya, persamaan pembezaan biasa (PPB) peringkat tinggi dise-
lesaikan dengan menurunkannya kepada sistem PPB peringkat pertama yang
setara. Walau bagaimanapun, adalah lebih menjimatkan kos jika ia dapat
diselesaikan secara langsung dengan kaedah berangka. Kaedah blok memberi
penghampiran kepada penyelesaian PPB pada lebih dari satu titik pada setiap
langkah, oleh itu penyelesaian yang lebih cepat dapat diperolehi. Telah dike-
tahui juga bahawa keputusan berangka yang lebih tepat dapat diperolehi den-
gan melibatkan terbitan penyelesaian yang lebih tinggi dalam kaedah tersebut.
Berdasarkan hujah-hujah ini, kami fokus untuk membangunkan kaedah blok
dengan terbitan tambahan untuk menyelesaikan secara langsung PPB per-
ingkat kedua, ketiga dan keempat.

Dalam kajian ini, kaedah blok tersirat dua-titik dan tiga-titik dengan terbitan
tambahan dibangunkan menggunakan polinomial interpolasi Hermite sebagai
fungsi asas. Teknik kamiran digunakan dalam menerbitkan kaedah ini kerana
teknik ini lebih mudah dan senang dilaksanakan berbanding dengan teknik
kolokasi dan interpolasi sedia ada, di mana titik-titik tersebut perlu dikolokasi
dan diinterpolasi sehingga menghasilkan sistem persamaan linear yang besar
dan perlu diselesaikan secara serentak.

Tesis ini merangkumi tiga bahagian, bahagian pertama tesis menerangkan
pembinaan kaedah blok tersirat dua-titik dan tiga-titik yang menggabungkan
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terbitan kedua, ketiga dan keempat penyelesaian PPB tersebut untuk menye-
lesaikan secara langsung PPB umum peringkat kedua. Kestabilan mutlak
untuk kedua-dua kaedah blok dipersembahkan. Bahagian kedua tesis di-
fokuskan kepada menerbitkan kaedah blok tersirat dua-titik dan tiga-titik
yang merangkumi terbitan ketiga, keempat dan kelima dari penyelesaian un-
tuk menyelesaikan secara langsung PPB umum peringkat ketiga. Bahagian
terakhir tesis adalah tentang menerbitkan kaedah blok tersirat dua-titik dan
tiga-titik yang melibatkan terbitan keempat dan kelima penyelesaian untuk
menyelesaikan secara langsung PPB umum peringkat keempat.

Sifat asas semua kaedah, seperti peringkat aljabar, kestabilan sifar dan penum-
puan diperkukuhkan. Keputusan berangka menunjukkan dengan jelas ba-
hawa kaedah baharu yang dicadangkan adalah lebih cekap dari segi ketepatan
dan masa pengiraan jika dibandingkan dengan kaedah sedia ada yang terke-
nal. Aplikasi dalam beberapa bidang nyata juga menggambarkan kecekapan
kaedah yang dicadangkan.

Kesimpulannya, kaedah blok dengan terbitan tambahan yang baharu dan kod
yang dibangunkan berdasarkan kaedah tersebut adalah sesuai untuk menye-
lesaikan PPB peringkat kedua, ketiga dan keempat masing-masingnya dan
boleh digunakan untuk menyelesaikan masalah fizikal.
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CHAPTER 1

INTRODUCTION

Higher-order ordinary differential equations (ODEs) are found in a wide va-
riety of real-life situations. They are used to model problems arising from
the field of applied sciences and engineering in terms of unknown function
and their derivatives. Many researchers in the literature have presented the-
oretical and numerical studies for such ODEs. The analytical solutions of
ODEs are complicated or impossible for most of realistic systems of ODEs.
Therefore, the need to develop numerical methods to achieve more accurate
approximations and to be easy to implement is eminent.

1.1 Ordinary Differential Equations

The nth order ordinary differential equation can be written as

y(n) = f(x, y, y′..., y(n−1)), n = 2, 3, 4 (1.1)

subject to the initial conditions

y(a) = y0, y(i)(a) = y
(i)
0 , 0 ≤ i ≤ n− 1, a ≤ x ≤ b.

In (1.1), the quantity being differentiated, y is called as the dependent vari-
able, while the quantity with respect to which y is differentiated, x is called
as an independent variable.

1.1.1 Initial Value Problems

Definition 1.1 The initial value problem(IVPs) of a system of s first-order
ODEs can be defined as:

y′ = f(x, y) (1.2)

subject to the initial conditions

y(x0) = y0, x ∈ [a, b]

where

f : �× �s → �s,

y(x) = [y1(x), y2(x), . . . , ys(x)]
T ,

f(x, y) = [f1(x, y), f2(x, y), ..., fs(x, y)]
T .

1
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and y0 is a given vector of initial conditions

Definition 1.2 The initial value problem(IVPs) of a system of s general
second-order ODEs can be defined as:

y′′ = f(x, y, y′) (1.3)

subject to the initial conditions

y(x0) = y0, y′(x0) = y′0, x ∈ [a, b],

where

f : �× �s ×�s → �s,

y(x) = [y1(x), y2(x), . . . , ys(x)]
T ,

y′(x) = [y′1(x), y′2(x), . . . , y′s(x)]T ,
f(x, y, y′) = [f1(x, y, y

′), f2(x, y, y′), ..., fs(x, y, y′)]T .

and y0, y
′
0 are given vectors of initial conditions.

1.1.2 Existence and Uniqueness of Solution for the general nth

order IVPs

We shall suppose that always exists a unique solution of the problems in this
thesis. Thus, the hypotheses of the following theorem is fulfilled by each
component of the system.

Theorem 1.1 (Wend (1967))
Let D be domain defined by the inequalities 0 ≤ x − x0 < a, | si − yi |<
bi, 0 ≤ i ≤ n−1, where yi ≥ 0 for i > 0. Suppose the function f(x, s0, s1, ..., sn−1)
in (1.1) is nonnegative, continuous and nondecreasing in x, and continuous
and nondecreasing in si for each 0 ≤ i ≤ n−1 in the domain D. If in addition
f(x, y0, ..., yn−1) �= 0 in D for x > x0, then the IVP (1.1) has at most one
solution in D.

1.1.3 Linear Multistep Method

The linear k−step methods use k of the previous points to determine the
sequence yn that takes form of a linear relationship between yn+i, fn+i, where
i = 0, 1, 2, ..., k which can be written for the nth-order ODEs as

k∑
i=0

αiyn+i = h

k∑
i=0

βiy
′
n+i + ...+ hn

k∑
i=0

γifn+i. (1.4)

2
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Where αi, βi, and γi are constants with αk �= 0 and n is the order of the
differential equation. The method (1.4) is implicit if βk �= 0, γk �= 0 and
explicit if βk = 0, γk = 0.

Definition 1.3 ( Gear (1971); Lambert (1991); Fatunla (1988))
The linear operator � associated with Equation (1.4) can be defined as

�[y(x) : h] =

k∑
i=0

[αiy(x+ ih)− hβiy
′(x+ ih)− h2γiy

′′(x+ ih)− ...− hnδiy
(n)(x+ ih)].

(1.5

Where y(x) is an arbitrary function that is differentiable on [a, b] and n is
the order of the differential equation. By expanding the test function and its
derivatives as the Taylor series at x and collecting the terms yields

�[y(x) : h] = C0y(x) + C1hy
′(x) + C2h

2y′′(x) + ...+ Cph
(p)y(p)(x) + ...

where the coefficients cp are constants defined as

C0 =
k∑

i=0

αi = 0̄,

C1 =

k∑
i=0

(iαi − βi) = 0̄,

C2 =

k∑
i=0

(
i2

2!
αi − iβi − γi) = 0̄,

...

Cp =

k∑
i=0

(
ip

p!
αi − ip−1

(p− 1)!
βi − ...− ip−n

(p− n)!
δi).

Definition 1.4 ( Fatunla (1988))
The multistep method (1.4) and the associated linear (1.5) have order p if
C0 = C1 = .... = Cp+(n−1) = 0 and Cp+n �= 0, where n is the order of the
differential equation. Then, the coefficient Cp+n is the error constant.

Definition 1.5 ( Lambert (1991); Fatunla (1988))
The multistep method (1.4) can be said consistent if it has order p ≥ 1.
The first and second characteristic polynomials of the linear multistep method
are defined as

ρ(ζ) =

k∑
i=0

αiζ
i

3
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σ(ζ) =

k∑
i=0

βiζ
i

Definition 1.6 ( Lambert (1991) and Henrici (1962))
The linear multistep method is said to be zero-stable if the following conditions
are fulfilled,

� All roots of the first characteristic polynomial , | ζi |≤ 1.

� The multiplicity for those roots with| ζi |= 1, must not exceed n.

Theorem 1.2 ( Henrici (1962))
The necessary and sufficient conditions for a method to be convergent are
that it be consistent and zero stable.
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Definition 1.7 ( Stoer and Bulirsch (1991))
If f a function of distinct numbers xi; i = 0, 1, n, then there is exists a unique
polynomial P of degree n at most with property f(xi) = P (xi) for every i.
The Polynomial of Hermite interpolation P has the following form

Pn(x) =

n∑
i=0

mi−1∑
k=0

f (k)(xi)L̄i,k(x). (1.6)

Where, L̄(i,k)(x) is the generalized Lagrange polynomial which defined as,

L̄i,mi−1
(x) = li,mi−1

(x)

li,k(x) =
(x− xi)

k

k!

n∏
j=0,j �=i

(
x− xj
xi− xj

)m; j, i = 0, 1, ..., n, k = 0, 1, ...,mi−1

L̄i,k(x) = li,k(x)−
mi−1∑
v=k+1

l
(v)
i,k (xi)L̄i,v(x)

1.2 Problem Statement

Throughout recent literature, the direct numerical methods to approximate
higher-order ordinary differential equations ODEs (2.1) are being consider-
ably explored. The reason why these numerical methods were implemented
is that some of these higher-order ODEs lack an approximated solution or
the current numerical methods are less accurate. However, collocation and
interpolation techniques are utilized as direct methods in general. The points
need to be collocated and interpolated after which a system of linear equa-
tions must be resolved in order to obtain the method’s coefficients. More
recently, researchers have developed methods with additional derivatives in
solving ODEs. Hence, adding extra derivatives to the method leads to ob-
tain a more accurate numerical results. Therefore, we develop direct r−point
block implicit methods by using interpolation and integration strategy which
can be implemented in a straightforward manner for solving both the linear
and nonlinear general higher-order ODEs with impressive results.

1.3 Objectives of Study

This study aims to construct block methods for solving higher-order IVPs.
The implementation of the block methods is expected to simultaneously ob-
tain the approximation at two and three points. These methods should give
better results in terms of accuracy. The objectives of this study can be ac-
complished by:

� To derive the implicit two-point and three-point block methods with the
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second, third, and fourth derivatives of the solution based on Hermite
interpolation polynomial for solving general second-order initial value
problems.

� To derive the implicit two-point and three-point block methods with the
third, fourth, and fifth derivatives of the solution based on Hermite in-
terpolation polynomial for solving general third-order initial value prob-
lems.

� To drive the implicit two-point and three-point block methods with the
fourth and fifth derivatives of the solution based on Hermite interpola-
tion polynomial for solving general fourth-order initial value problems.

� To investigate the stability and convergence of the methods.

� To compare the effectiveness of the proposed methods with its counter-
parts.

� To apply the proposed methods to solve real-life applications.

6
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1.4 Outline of the Study

A brief description of the thesis’s organization will be given as follows:

Chapter 1, discusses the overview of ordinary differential equations. The
definitions and the theories which are related to the proposed methods are
presented. Chapter 2, reviews some of previous studies on numerical methods
for solving higher-order ODEs.

Chapter 3, 4 and 5 deals with the implicit block methods for solving higher-
order ODEs. Chapter3, provides the formulation of two-point and three-point
implicit block methods based on Hermite interpolation polynomial for solving
general second-order ODEs. The methods proposed include the second, third,
and fourth derivatives of the solutions. The stability of these methods is also
discussed in this chapter. Chapter 4 provides the formulation of two-point
and three-point implicit block methods based on Hermite interpolation poly-
nomial for solving general third-order ODEs. The proposed methods include
the third, fourth, and fifth derivatives of the solutions. Characteristics of the
proposed methods, including algebraic order, zero stability, and convergence,
are analysed. Chapter 5 provides the formulation of two-point and three-
point implicit block methods based on Hermite interpolation polynomial for
solving general fourth-order ODEs. The proposed methods include the fourth
and fifth derivatives of the solution. Characteristics of the proposed methods,
including algebraic order, zero stability, and convergence, are also analysed.
Some applications of the proposed methods for solving conventional problems
are provided.

Finally, Chapter 6 summarizes the works of this study and provides sugges-
tions for future work.
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