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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of 

the requirement for the degree of Doctor of Philosophy 

PREDICTIVE MODELLING OF NANOFLUIDS THERMOPHYSICAL 

PROPERTIES USING MACHINE LEARNING 

By 

ALADE IBRAHIM OLANREWAJU 

March 2021 

Chairman :   Mohd Amiruddin Abd Rahman, PhD 

Faculty :   Science 

Nanofluid plays significant roles in different application areas as a result of its enhanced 
thermal properties. Thus, studying the thermophysical properties of nanofluids has 

enormous technological benefits. Traditionally, the evaluations of these properties have 

been undertaken by experimental approaches which can be time-consuming, laborious 

and costly. Consequently, many researchers have developed empirical models to predict 

nanofluids properties. Unfortunately, many of these models grossly underestimate or 

overestimate the experimental values of the thermophysical properties. Hence, there is a 

need to develop a better approach to overcome the stated problems with the empirical 

models. In this regards, there have recently been series of efforts aimed at developing 

machine learning (ML)-based models to address the above challenges. This thesis aimed 

to develop machine learning algorithms to estimate the thermophysical properties of 

commonly used nanofluids. The machine learning algorithms used in this thesis 
comprise support vector regression (SVR) and artificial neural network (ANN) 

developed in a MATLAB computing environment. The optimization of the machine 

learning parameters was conducted using the Genetic Algorithm or the Bayesian 

Optimization Algorithm techniques. The first part of the thesis deals with modelling and 

prediction of the viscosity of nanofluids while the second part deals with modelling the 

specific heat capacity of nanofluids. For the viscosity, a systematic study of various 

factors that affect the viscosity of nanofluids was conducted, the results showed that an 

accurate prediction of viscosity of nanofluids can be accomplished using the following 

input parameters; volume fraction of the nanoparticles, the fluid temperature, the size of 

the nanoparticles, and the density of the nanoparticles. Furthermore, the four-input 

BSVR model proposed in this thesis showed over 50 per cent improvement in results 

over the five-input ANN-based model already presented in the literature and at the same 
time exhibits significantly improved accuracy over the existing empirical models. © C
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For the specific heat capacity study, the following nanofluids were modelled; Al2O3-

water, Al2O3-ethylene glycol (EG), CuO-water, nitrides-ethylene glycol (EG). The 

results of the machine learning models for each of the nanofluids were compared with 

simple mixing theory (model I) and thermal equilibrium based model (model II) to 

highlight the accuracy of the proposed techniques. For the Al2O3-water nanofluid, the 
model accuracy as measured by root mean square error (RMSE) obtained for the model 

I, model II, and the developed GA/SVR are  4.39 x 10-1 J/gK, 6.67 x 10-2 J/gK, and 1.4 

x 10-3 J/gK, respectively. The GA/SVR results for Al2O3-water exhibits better accuracy 

than model I and Model II.  In the case of Al2O3-EG nanofluids, the developed technique 

comprises of hybridization of Bayesian optimization algorithm with support vector 

regression (BSVR). The RMSE values obtained are 1.75 x 10-1 J/gK, 2.77 x 10-2 J/gK 

and 4.7 x 10-3 J/gK for the Model I, Model II and BSVR model, respectively. The BSVR 

exhibited at least an order(s) magnitude improvement for the prediction of Al2O3-EG 

nanofluids compared to both existing models. A similar improvement in accuracy was 

obtained using machine learning for the CuO-water and nitrides-ethylene glycol (EG) 

nanofluids. The machine models developed in this thesis are significantly better than the 

other existing theoretical models for all the classes of nanofluid modelled. In summary, 
this thesis demonstrates that machine learning-based approaches can provide more 

precise prediction results for specific heat capacity and viscosity of nanofluids than 

existing empirical/classical models. These results will be useful for experimentalists 

working on nanofluids design and applications. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Doktor Falsafah 

PEMODELAN RAMALAN SIFAT FIZIKAL HABA NANO BENDALIR 

MENGGUNAKAN PEMBELAJARAN MESIN 

Oleh 

ALADE IBRAHIM OLANREWAJU 

Mac 2021 

Pengerusi :   Mohd Amiruddin Abd Rahman, PhD 

Fakulti :   Sains  

Nano bendalir memainkan peranan penting dalam pelbagai bidang aplikasi untuk 

mempertingkatkan sifat haba. Oleh itu, kajian tentang sifat fizikal haba memberi banyak 

faedah dalam teknologi. Penilaian sifat-sifat yang dilakukan secara tradisional boleh 

memakan masa yang agak lama, sukar dan agak mahal. Kesannya, ramai penyelidik telah 

mengembangkan model empirik untuk meramal sifat nano bendalir. Namun demikian, 

kebanyakan model ini mendapat kurang anggaran atau terlebih anggaran nilai 

eksperimen sifat fizikal haba. Oleh itu, perkembangan yang lebih baik perlu dilakukan 
dalam menangani masalah dalam meramal sifat nano bendalir. Dengan itu, terdapat 

beberapa kajian telah dilakukan tertumpu kepada perkembangan model berasaskan 

pembelajaran mesin untuk mengatasi masalah yang telah dinyatakan di atas. Tesis ini 

bertujuan untuk mengembangkan penggunaan pembelajaran mesin dalam menganggar 

sifat fizikal haba bagi nano bendalir yang biasa digunakan. Algoritma pembelajaran 

mesin yang digunakan dalam tesis ini merangkumi mesin vektor sokongan (SVR) dan 

rangkain neural buatan (ANN) yang telah dibangunkan meggunakan persekitaran 

pengkomputeran MATLAB. Pengoptimuman parameter pembelajaran mesin telah 

dibuat menggunakan teknik algoritma Genetik atau algoritma pengoptimuman bayesan. 

Bahagian pertama tesis ini berkenaan dengan kelikatan nano bendalir dan bahagian 

kedua adalah berkenaan dengan kajian kapasiti haba nano bendalir. Untuk kelikatan, 

kajian sistematik terhadap beberapa faktor yang mempengaruhi kelikatan nano bendalir 
dilakukan dan hasilnya menunjukkan bahawa ramalan kelikatan nano bendalir yang 

tepat dapat dicapai dengan menggunakan parameter input berikut; pecahan isipadu zarah 

nano, suhu bendalir, ukuran zarah nano, dan ketumpatan zarah nano.  

Tambahan pula, empat input bagi model BSVR yang diusulkan dalam tesis ini 

menunjukkan peningkatan hasil lebih daripada 50 peratus berbanding model berasaskan 

lima input bagi ANN yang telah dibentangkan dalam literatur dan pada masa yang sama 

memperlihatkan peningkatan ketepatan yang ketara berbanding model empirikal yang 

sedia ada. Untuk kajian kapasiti haba tertentu, nan bendalir berikut dimodelkan; Al2O3-
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air, Al2O3-etilina glikol (EG), CuO-air, nitrida-etilena glikol (EG). Hasil model 

pembelajaran mesin untuk setiap nano bendalir dibandingkan dengan teori pencampuran 

sederhana (model I) dan model berdasarkan keseimbangan haba (model II) untuk 

menonjolkan ketepatan teknik yang dicadangkan.  Untuk Al2O3-air, ketepatan model 

yang diukur dengan punca min ralat kuasa dua (RMSE) yang diperoleh untuk model I, 
model II, dan perkembangan GA/SVR masing-masing ialah  4.39 x 10-1 J/gK, 6.67 x 10-

2 J/gK, and 1.4 x 10-3 J/gK. Hasil ketepatan GA/SVR bagi Al2O3-air lebih baik dari model 

I dan Model II.  Bagi kes Al2O3-EG, teknik yang dikembangkan terdiri daripada 

penghibridan algoritma pengoptimuman Bayesan dengan regresi vektor sokongan 

(BSVR). RMSE yang diperoleh masing-masing adalah 1.75 x 10-1 J/gK, 2.77 x 10-2 J/gK 

and 4.7 x 10-3 J/gK untuk Model I, Model II dan model BSVR. BSVR menunjukkan 

sekurang-kurangnya sedikit peningkatan magnitud untuk ramalan Al2O3-EG berbanding 

dengan kedua-dua model yang sedia ada. Peningkatan ketepatan yang serupa diperoleh 

menggunakan pembelajaran mesin untuk CuO-air dan nitrida-etilena glikol (EG). 

Perkembangan model mesin dalam tesis ini jauh lebih baik daripada model teori lain 

yang sedia ada untuk semua jenis model nano bendalir. Kesimpulannya, tesis ini 

menunjukkan bahawa pendekatan berasaskan pembelajarn mesin dapat memberikan 
hasil ramalan yang lebih tepat untuk kapasiti haba dan kelikatan nano bendalir tertentu 

jika dibandingkan dengan model empirikal yang sedia ada. Hasil ini akan berguna bagi 

para eksperimental yang mengusahakan reka bentuk dan penemuan nano bendalir. 
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PG   propylene glycol 

S  size of nanoparticles 

SVR   support vector regression 

T  temperature 

 µ𝑏𝑓  viscosity of basefluids 

µ𝑛𝑓   viscosity of nanofluids 

𝜑𝑝, Vf  volume fraction of nanoparticles 

𝑏    bias term 

C   box constraint 

d   degree of polynomial. 

𝜖   epsilon 

‖ ‖     Euclidean norm 

𝑓(𝑥)   objective function to minimize 
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CHAPTER 1 

1 INTRODUCTION 

1.1 Overview  

Energy is one of the core issues at the centre of the world’s attention that physicists, 

chemists, material scientists, engineers and others are constantly seeking innovative 

means to ensure its optimum management [1]. Fundamentally, the development of 

methodologies for heat transfer enhancement and reduction of energy losses in the 

traditional and new energy sources are key components in dealing with the problems of 

energy wastage and harvesting [2]. Over the past few decades, researchers have pursued 
the use of extended-surface thermal control techniques, which include fins and 

microchannel in various electromechanical systems such as refrigerating, air-

conditioning and cooling systems [2]. However, further improvement in terms of heat 

transfer enhancement using these techniques is limited due to geometric constraints in 

designs. 

This limitation has paved way for the invention of a novel heat transfer approach that 

could enhance the capability of the existing heat transfer methodologies. The new 

mechanism involves controlling the thermal property of the cooling fluids through the 

suspension nanoparticles in conventional cooling fluids such as water, ethylene glycol, 

propene glycol, engine oil, transformer oil. Because the thermal conductivities of 

nanoparticles are substantially higher than conventional fluids. The introduction of a 
controlled amount of nanoparticles can dramatically increase the heat transfer ability of 

the base fluids [3]. These innovative fluids referred to as “nanofluids” was proposed by 

Choi in 1995 [4]. In their seminar work, they highlighted that when nanoparticles are 

suspended in base fluids, there is a three-fold thermal conductivity improvement in the 

base fluids. When such fluids are used in heat transfer equipment, the rate of heat transfer 

of the equipment doubles without increasing its pumping power. Using a conventional 

base fluid, a comparable increase in the rate of heat transfer is obtained by increasing the 

pumping power 10 times. This demonstrates that with nanofluids, energy optimization 

can be accomplished.  

Since the invention, studies on nanofluids continue to grow in leaps and bounds. 

Currently, over 2500 journal articles have been published in the year 2020 which covers 

a broad spectrum of interests such as experimental, theoretical, pure and applied 
research. The impacts of nanofluids have been investigated in several different areas 

such as solar technology [5], automobile [6], refrigeration [7], heat exchangers [8]. 

Because of the central role played by thermophysical properties of nanofluids in the 

mentioned applications, many studies have been devoted to measuring the 

thermophysical property of nanofluids such as thermal conductivity, viscosity, density, 

specific heat capacity and thermal diffusivity. Amongst these properties, thermal 

conductivity and viscosity are the most investigated properties while the density and 
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specific heat capacity of nanofluids have received lesser attention to date [9]. It is 

important to mention that these thermophysical properties are interrelated, they are 

connected through one relation or the other. In other words, to fully characterize a 

thermal fluid for potential applications, the values of the thermophysical properties must 

be known [10]. 

The most reliable ways to determine the values of the thermophysical properties of 

nanofluids is via experimental measurements. However, there are specific challenges in 

relying exclusively on these methods. Examples of these challenges include, preparation 

of very stable nanofluids is not trivial, the cost of nanomaterials and measuring 

equipment can be significant for lab with limited funding and the process of preparing 

and measuring the nanofluids can be intensive especially when large samples are 

involved [11]. Modelling the thermophysical properties has been adopted as a way to 

mitigate some of the challenges mentioned above. Numerous classical models and 

empirical models have been developed in the literature in an attempt to forecast the 

thermal properties of the nanofluids [12]. In many instances, they are inadequate to 

accurately model the experimental results due to underlying assumptions used in their 

formulation [11]. To reduce the forecasting errors obtained from classical or empirical 
models, researchers have turned to machine learning techniques to predict nanofluids 

properties [11]. 

1.2 Machine Learning:  A New Frontier in Science 

Learning from data is one of the most attractive sciences in the 21st century with 

applications covering a gamut of disciplines such as astronomy, finance, engineering. 

Machine learning (ML) can uncover hidden insight from data using algorithms to learn 

the relationship between inputs and output [13]. Machine learning teaches the computer 

to derive insight from existing data thereby presenting interesting opportunities which 

allow for future prediction of structure-property in material science and engineering. 

Interestingly, ML has shown superhuman capabilities in many real-life practical tasks 

[14] such as a self-driving car [15], image classification [16], [17] and Playing Go [18]. 

Many aspects of our daily life such as email/spam classification [19]–[22], fraud 

detection [23], image and speech recognition have been simplified by the use of ML 

algorithm. 

Laboratories across the globe generate phenomena amount of data on daily basis.  This 
reality has made the use of ML for various applications quite popular recently.  In a 

nutshell, ML presents us with a unique opportunity to learn something new from existing 

data. This thesis is formulated against the backdrop of the excellent opportunities which 

ML techniques offer in applied science. Specifically, the application of ML to the 

modelling of the thermophysical properties of nanofluids is the main focus of this thesis.  

Figure 1-1 shows the number of studies on nanofluids where ML techniques have been 

employed. As observed, there is a growing trend in the application of ML in the study of 

nanofluids. 
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Figure 1.1 : Frequency of application of machine learning to nanofluid studies 

(Science direct, Sept 2020) 

1.3 Problem Statement 

To gain insight into the suitability of different nanofluids for heat transfer applications, 

the knowledge of thermophysical properties is very paramount. Over the years, the 

values of these properties have been obtained using the experimental approach. 
However, since the process of synthesis and measurements of nanofluid properties is 

intensive, time-consuming and costly. Therefore, a rapid estimation of the 

thermophysical property using ML techniques has become a highly attractive tool [24]. 

This thesis focuses on employing ML techniques for improving the prediction accuracy 

of the thermophysical property of nanofluids. This approach is justified because the 

existing classical models exhibit large prediction errors from the experimental [24]. 

Therefore, it is essential to formulate predictive models capable of accurate estimation 

of these properties without the need to conduct experiments frequently.  

1.4 Research Objectives 

The goal of this thesis is to be able to make highly accurate predictions of nanofluids 

properties to a degree superior to the available classical models by using ML algorithms 

with optimization techniques. The main objective of this thesis is to formulate predictive 

models for viscosity and specific heat capacity of nanofluids using ML algorithms. 
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The following are the specific objectives that this thesis addresses; 

 

I. Modelling and prediction of viscosity of nanofluids using artificial neural 

network and Bayesian support vector regression algorithm. Under this 

objective, a systematic investigation of the influence of various parameters on 
viscosity prediction was conducted.  

 

II. Modelling and prediction of specific heat capacity of nitrides nanoparticles 

suspended in ethylene glycol using Bayesian support vector regression. The 

nitrides nanoparticles considered are aluminum nitride, titanium nitrides and 

silicon nitrides.  

 

III. Modelling and prediction of specific heat capacity of Al2O3 nanoparticles 

suspended in water using hybrid genetic algorithm and support vector 

regression. 

 

IV. Modelling and prediction of specific heat capacity of aqueous nanofluids of 
copper oxide using support vector regression and artificial neural network 

optimized with bayesian optimization. 

 

V. Modelling and prediction of the specific heat capacity of alumina/ ethylene 

glycol nanofluids using support vector regression model optimized with 

bayesian optimization. 

 

 

1.5 Structure of the thesis 

This thesis is structured as a publication-based dissertation where each of the above 

research objectives represents research chapters that are already published in 

international journals. The general structure of the thesis is described as follows. 

Chapter one introduces the innovative fluids referred to as nanofluids. This chapter also 

covers research objectives and the significance of the proposed study. 

Chapter two examines the literature reviews covering existing ML-based studies on the 

thermophysical properties of nanofluids. 

Chapter three covers the modelling and prediction of relative viscosity of diverse 

nanofluids using artificial neural network and support vector regression optimized by 

Bayesian algorithm. The effect of various commonly used descriptors was also 

investigated to know the best set of descriptors that yield the most accurate results. A 

comparison of the developed models with the existing ANN model and the theoretical 

models was conducted in this chapter. © C
OPYRIG
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Chapter four discusses the modelling of the specific heat capacity of aluminum nitrides, 

titanium nitrides, and silicon nitrides all dispersed in ethylene glycol using the support 

vector regression and Bayesian optimization. 

Chapter five deals with modelling the specific heat capacity of Al2O3 in water. This 

chapter discusses the application of support vector regression coupled with a genetic 

algorithm.  

Chapter six examines the use of artificial neural network and support vector regression 

model for predicting the specific heat capacity of aqueous CuO nanofluids. A 

Comparison was made between the predictive performance of the artificial neural 

network and the support vector regression model. Both SVR and ANN were optimized 

using Bayesian optimization. 

Chapter seven deals with the accurate modelling and prediction specific heat capacity of 

alumina suspended in ethylene glycol using support vector regression hybridized with 

Bayesian optimization. 

Chapter eight provides the general conclusion and future recommendations relating to 

the use of ML for predicting the thermophysical properties of nanofluids. 

It is essential to point out that for each of the above research objectives, the developed 
models for the nanofluids materials were benchmarked with the appropriate existing 

models to highlights the improvement in accuracy obtained using ML techniques over 

the existing theoretical models.  

1.6 Significance of the study 

The focus of this thesis has to do with deriving insights and patterns from experimental 

data to make accurate predictions of nanofluids properties using ML algorithms. 

Specifically, this thesis provided ML-based models that can rapidly and accurately 

estimate the viscosity of a wide range of nanofluids. Furthermore, for specific nanofluids 

with technological importance, ML models were selectively developed for predicting the 

specific heat capacity of the nanofluids from basic input parameters. In general, ML-

based results obtained show a greater accuracy compared to the traditional modelling 

approaches like correlations-based or empirical-based models that predict the 

thermophysical properties of nanofluids with lesser accuracy. The ability to predict 

nanofluids properties with high accuracy facilitates the fast and reliable design of heat 

transfer applications.  
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