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Highly ordered titania nanotubes (TNTs) as a 1D nanostructured material have 
received a lot of interest for supercapacitor applications due to their large surface 
area and relatively low cost. In this study, TNTs was synthesized by anodization 
in glycerol-based electrolytes. Electrochemical reduction process was used to 
modify the TNTs to overcome its high resistivity. The reduced titania nanotubes 
(R-TNTs) show improved capacitance of 2.28 mF cm-2 which is 7 times higher 
than TNTs. The R-TNTs exhibit a rectangular cyclic voltammograms and 
symmetrical triangular charge-discharge curves which are ideal characteristics 
of electric double layer capacitors (EDLCs). Furthermore, MnO2, NiO and binary 
NiMn2O4 were incorporated into the nanotubular structures of R-TNTs by pulse 
electrodeposition (PED) to enhance the capacitive performance of R-TNTs. The 
capacitance increased to 50.81 mF cm-2, 16.57 mF cm-2 and 97.52 mF cm-2 for 
MnO2/R-TNTs, NiO/R-TNTs and NiMn2O4/R-TNTs, respectively. All cyclic 
voltammograms and galvanostatic charge-discharge curves from these samples 
measured in 1M KCl using three electrode-configuration indicate a 
pseudocapacitive contribution from the deposited metal oxides. The highest 
capacitance obtained for the NiMn2O4/R-TNTs composite is attributed to the 
synergistic effects of the MnO2 and NiO deposited onto high conductivity R-
TNTs. Physical characterization of all the synthesized samples was conducted 
by field emission scanning electron microscopy (FESEM), X-ray diffraction 
(XRD) and X-ray photoelectron spectroscopy (XPS). Higher energy and power 
density of 5.31 mWh cm-2 and 190.91 mW cm-2 respectively were obtained for 
NiMn2O4/R-TNTs asymmetric cell in two-electrode configuration. 
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia 
sebagai memenuhi keperluan untuk ijazah Doktor Falsafah 

ELEKTROSINTESIS DAN PENGUBAHSUAIAN TITANIA NANOTIUB DAN 
PEMUATAN OKSIDA MANGAN-NIKEL UNTUK APLIKASI 

SUPERKAPASITOR 

Oleh 

MUZAKIR MUHAMMAD MUHAMMAD 

Jun 2021 

Pengerusi : Profesor Zulkarnain bin Zainal, PhD 
Fakulti : Sains 

Titania nanotiub yang tersusun rapi (TNTs) sebagai bahan nano berstruktur 1D 
telah mendapat perhatian untuk aplikasi superkapasitor kerana luas 
permukaannya yang besar dan memerlukan kos yang agak rendah. Dalam 
kajian ini, TNTs disintesis oleh anodisasi elektrolit berasaskan gliserol. Proses 
penurunan elektrokimia digunakan untuk mengubahsuai TNTs untuk mengatasi 
rintangan lebih tinggi. Titania nanotiub terturun (R-TNTs) menunjukkan 
peningkatan kapasitan 2.28 mF cm-2 iaitu 7 kali lebih tinggi daripada TNTs. R-
TNTs menunjukkan voltammetri berkitar (CV) dan galvanostat cas nyahcas 
(GCD) yang merupakan ciri ideal kapasitor bersifat elektrik dua lapisan (EDLCs). 
Selain itu, MnO2, NiO dan NiMn2O4 binari digabungkan ke dalam struktur 
nanotubular R-TNTs dengan pengenapanelektro denyut berbalik (PED) untuk 
meningkatkan prestasi kapasitif R-TNTs. Kapasitans masing-masing meningkat 
kepada 50.81 mF cm-2, 16.57 mF cm-2 dan 97.52 mF cm-2 untuk MnO2/R-TNT, 
NiO/RTNTs dan NiMn2O4/R-TNT. Semua CV dan keluk GCD  dari sampel ini 
diukur dalam 1M KCl menggunakan konfigurasi tiga elektrod menunjukkan 
sumbangan pseudokapasitans dari oksida logam yang tersimpan. Kapasitans 
tertinggi yang diperoleh untuk komposit NiMn2O4/R-TNTs dikaitkan dengan 
kesan sinergi MnO2 dan NiO yang dienapkan ke R-TNTs berkonduksian tinggi. 
Pencirian fizikal semua sampel yang disintesis dilakukan dengan mikroskopi 
pengimbasan elektron pancaran medan (FESEM), analisis pembelauan sinar-X 
(XRD) dan spektroskopi fotoelektron sinar-X (XPS). Ketumpatan tenaga dan 
daya yang lebih tinggi masing-masing 5.31 mWh cm-2 dan 190.91 mW cm-2 
diperoleh untuk sel asimetri NiMn2O4/R-TNTs dalam konfigurasi dua elektrod. © C

OPYRIG
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CHAPTER 1 
 

 
1 INTRODUCTION 

 

1.1 General Introduction 
 

Development and design of clean, renewable, and sustainable energy storage 
devices has increased in recent years due to increasing energy consumption, 
rapid depletion of fossil fuels and worsening environmental pollution (Abdah et 
al., 2020; Gopi et al., 2020; Wu et al., 2017). Thus, finding new, highly efficient, 
low cost and environmentally friendly energy storage systems is undoubtedly 
important considering the needs of modern technology developments in the 
world today (Silva et al., 2020). In this context, supercapacitors (SCs) also known 
as electrochemical capacitors (ECs) or ultracapacitors have gained great 
attention from researchers worldwide owing to their ability to bridge the 
performance gap between batteries and conventional capacitors  in terms of high 
energy and power densities and long term cycling stability (Abdah et al., 2019). 
These advantages of SCs make them suitable for many potential applications in 
different industrial technology as energy storage devices. 
 

In general, SCs are classified into two major groups based on their energy 
storage mechanism namely, electric double layer capacitors (EDLCs) and 
pseudocapacitors. In EDLCs, energy storage and release is achieved by 
nanoscopic charge separation at the electrode electrolyte interface which is non-
faradaic and do not involve any chemical redox reaction and relatively long cycle 
life (Stoller & Ruoff, 2010; Vangari et al., 2013). The performance of EDLCs 
strongly depends on the available surface area of the electrode that is accessible 
to the electrolyte ions (Iro et al., 2016). On the contrary, pseudocapacitors are 
based on fast and reversible faradaic redox reactions occurring on or near the 
surface of the electrode (Samsudin et al., 2016).  
 

In comparison, both types of SCs can store large amount of energy and release 
more power than the conventional capacitors and batteries, respectively with 
addition of rapid charge-discharge cycles and long-term cycling stability than 
batteries. These desirable properties make them suitable for use in various 
applications such as electric vehicles (EVs) or hybrid electric vehicles (HEVs), 
memory backup, regenerative braking in elevators, cranes and trains etc. (Afif et 
al., 2019). 
 

From the material point of view, the typical materials for EDLCs are carbon-
based materials with large specific surface area and high electrical conductivity 
such as activated carbon (Gurten Inal & Aktas, 2020), graphene (Pham et al., 
2020), carbon nanotubes (CNTs) (Krajewski et al., 2019). Meanwhile, transition 
metal oxides (TMOs) and conducting polymers are common materials for 
pseudocapacitors due to their large theoretical capacitance and fast redox 
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kinetics (Thangappan et al., 2018).  The most promising material in TMOs for 
pseudocapacitance is ruthenium oxide (RuO2) but unfortunately, its high cost 
and toxicity make it unsuitable for large scale applications (Abdah et al., 2020). 
Researchers focus their attention on finding alternative materials to RuO2 with 
relatively low cost and environmental compatibility TMOs such as MnO2 (Dai et 
al., 2020), NiO (Endut et al., 2013b), SnO2 (Xu et al., 2019), Fe3O4 (Elrouby et 
al., 2017), binary transition metal oxides (Tahmasebi, et al., 2016) and ternary 
transition metal oxides/hydroxides ( Lee et al., 2020). Conducting polymers such 
as polyaniline, polypyrrole and polythiophene have also been used as 
pseudocapacitor materials (Ravit et al., 2019) or in combination with TMOs 
(Ishaq et al., 2019). 
 

The theoretical capacitance of some TMOs is shown in Figure 1.1. From Figure 
1.1, it can be observed that TMO have large theoretical capacitance, but in most 
cases, their practical capacitance value is far less than the theoretical value due 
to their poor electrical conductivity and densely packed structure (Zhou et al., 
2016). Furthermore, the addition of binders to the TMOs which is one of the 
important steps commonly used for the preparation of the electrode can also 
inhibit their capacitive performance (Salari et al., 2018).   
 

 

Figure 1.1: Comparison of theoretical specific capacitances of TMO  
(Abdah et al., 2020) 
 

One dimensional (1D) nanostructure materials such as tubes, wires, rods, belts 
have found widespread applications because of their exceptional properties in 
term of high surface area and electrical conductivity offering rapid electron 
transport and chemical reactivity. In addition, they can serve as interconnectors 
for fabrication of electrochemical devices such as SCs with nanoscale dimension 
(Hou et al., 2020). Therefore, fabrication of nanoscale TMOs on 1D 
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nanostructured substrate such as titania nanotubes (TNTs) will improve the 
electrical conductivity and pseudocapacitive performance of the TMOs. 
 

1.2 Background of Supercapacitors 
 

Among all the energy storage and conversion devices, supercapacitors (SCs) 
also known as ultracapacitors or electrochemical capacitors (ECs) have gained 
much attention recently due to their unique features, mainly high-power rate 
(typically 60-120 s discharge time), excellent  reversibility (usually 90-95% or 
higher) and long cycling stability (> 105 cycles) (Zhang et al., 2009). They exhibit 
higher energy density than conventional capacitors and higher power density 
than batteries and fuel cells. Capacitance C, is defined as the ratio of total 
amount of charge (q) stored or transferred  to the applied voltage (V) (Afif et al., 
2019). It is an important parameter in determining the ability of the active material 
to store electrical charge. Other important parameters for evaluation of SCs 
performance includes energy density, power density and cycle life.   
 

1.3 Brief History and Prospects of Supercapacitors 
 

The idea of storing an electrical charge on surfaces begin in ancient times from 
effect associated with rubbing of amber. In the early 18th century, Leyden Jar 
laid down what was considered the origin of the capacitors from a vessel made 
up of glass with thin metallic foils serving as the electrodes and the jar as 
dielectric. In the 1920s, the first electrolytic capacitor comes into existence. In 
1957, The first and foremost EDLCs was discovered by a group of General 
Electric Engineers experimenting with the activated charcoal as the capacitor 
plates when they observed an EDLCs effect (Iro et al., 2016; Raghavendra et 
al., 2020). 
 

Later, in 1966, a group of researchers at Standard Oil company of Ohio (SOHIO) 
designed the modern version of the EDLCs while working on fuel cell designs 
using activated charcoal and then licensed it to Nippon Electric Company (NEC) 
which was used as backup power for maintaining computer memory (Kotz and 
Carlen, 2000). Nippon Electric Company (NEC), Japan and Pinnacle Research 
Institute (PRI), USA, named their developed capacitors as supercapacitor and 
ultracapacitor, respectively as the commercial names while electrochemical 
double layer capacitor (EDLC) is the technical name used for these devices. 
 

Also, the global SCs market is expected to continue increasing due to wider 
application spectrum especially in energy harvesting, locomotives such as trains 
and aircraft and regenerative braking systems used in elevators and HEVs. As 
forecasted by IDTechEx, the global market supposed to attain US$ 8.3 billion by 
2025 at a predicted compound annual growth rate (CAGR) of 30% as illustrated 
in Figure 1.2  (Raghavendra et al., 2020). 
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Figure 1.2: Global supercapacitors market  
(Raghavendra et al., 2020) 
 

1.4 Problem Statement 
 

Titanium dioxide (TiO2) or titania has been used as active electrode material in 
supercapacitor applications (Endut et al., 2013b; Salari, 2013) due to its unique 
properties such as high chemical stability, non-toxicity, low cost, developed 
surface area and biocompatibility (Dvorak et al., 2019; Wawrzyniak et al., 2020). 
However, compact titania exhibits low specific surface area and only contribute 
very low areal capacitance of 10-40 µF/cm2 due to the high electrical resistance 
which prevents fast electron transfer (Salari, et al., 2011). Although 
nanocrystalline titania can increase the specific surface area of the 
supercapacitor electrode, the addition of binder which is an important step in 
electrode preparation can reduce the interconnectivity of the active titania 
nanoparticles with the current collector. This results in increase in resistance of 
the electrode apart from the additional cost.  
 

To overcome the problem associated with compact and nanocrystalline titania, 
titania nanotubes (TNTs) obtained by electrochemical anodization was used due 
to its high accessible surface area and unique pathways resulted from the hollow 
structures for electron transport and short diffusion pathways for electrolytes. 
This fabrication route provides highly ordered; well separated nanotubes directly 
grown on the current collector (Ti foil) which can be used as a binder-free 
electrode.  
 

It is widely reported that pristine TNTs exhibit very low capacitance less than 1 
mF/cm2 (Salari et al., 2012) which resemble conventional capacitor due to poor 
electrical conductivity owing to its semiconducting nature (Zhou & Zhang, 2013). 
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Different approaches have been adopted to improve the electrical conductivity 
of pristine TNTs and thus enhanced its capacitive performance through thermal 
treatment under reductive atmosphere ( e.g. H2, Ar, NH3) (Lu et al., 2012; Salari, 
et al., 2011). However, this approach involves high temperature (above 600 °C), 
harsh conditions, dangerous gases which are not environmentally friendly and 
long-time treatment (over 10 h)  (Li et al., 2015) which is not cost effective. 
Moreover, the highest areal capacitance  (3.24 mF/cm2) (Wu et al., 2014) 
achieved through this approach is still small and need to be improved.  In view 
of these disadvantages, electrochemical reduction approach carried out at 
ambient temperature for short duration (less than 1 minute) in simple preparation 
steps is considered safer, faster, and cost-effective approach for modification of 
TNTs. 
 

Moreover, the electrochemically reduced TNTs (R-TNTs) showed capacitance 
enhancement to the value of 24.07 mF cm-2 (Li et al., 2015) which is more than 
7 times higher than the value obtained through thermal treatment. However, this 
capacitance value can be further increased through incorporation of TMOs into 
R-TNTs which can provide additional accessible surface area for the 
electroactive metals. To achieve this, several methods have been used such as 
hydrothermal, chemical bath deposition, and sono-chemical (Barai et al., 2018; 
Ramadoss & Kim, 2014; Zhou & Zhang, 2014a). However, these approaches 
involve long preparation time, elaborate procedures, high temperature, and 
environmentally unfriendly chemicals. 
 

Attempts have been also made to use various electrodeposition modes such as 
potentiostatic or galvanostatic (Huang et al., 2015) as they are more facile, 
simple, and cost effective methods compared to solvothermal approach. 
However, the use of these electrodeposition modes leads to the formation of 
larger particles of the active TMOs due to the overlapping of diffusion zones 
which agglomerate and cover the nanotubes openings. This leads to a decrease 
in surface area of R-TNTs and hinders the smooth diffusion of electrolyte ions 
through the nanotubes. 
 

To overcome this problem, pulse electrodeposition (PED) was adopted in this 
study which involves two-series of potential pulses in which one pulse consists 
of applying a deposition potential known as on-time followed by another potential 
at zero current referred to as off-time. This leads to the deposition of the metal 
particles uniformly distributed on R-TNTs to form a compact crystalline structure. 
This approach allows possibility of achieving controllable size of deposits, 
homogeneous distribution and suitable thickness of the active metals which is 
critical for the maximum performance of the electrode in SCs application. 
 

As substitute to highly cost and toxic RuO2, in this study, manganese oxide 
(MnO2) and nickel oxide (NiO) was each incorporated into the nanotubular 
structure of R-TNTs by PED due to their low cost, low toxicity, redox 
characteristics and high theoretical capacitance (Chime et al., 2020; Kate et al., 
2018) even though less than that of Co3O4 as shown in Figure 1.1. Nevertheless, 
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Co3O4 behaves as battery-type electrode material as its cycling stability and rate 
capability are affected by low electrical conductivity (An et al., 2019). Next, the 
binary MnO2/NiO was also deposited into the R-TNTs to observe their synergistic 
effect on the improvement of capacitive performance of the SCs electrode.  
 

1.5 Objectives of the Study 
 

The overall objective of this study is to synthesize highly ordered TNTs as binder-
free SCs electrode and enhance the capacitance through electrochemical 
reduction and incorporation of binary transition metal oxides. To achieve this, 
several objectives are outline as follows: 
 

1. To synthesize and optimized  

i. highly ordered titania nanotubes (TNTs) by electrochemical 
anodization in glycerol-based electrolyte. 

ii. reduced titania nanotubes (R-TNTs) by electrochemical treatment of 
TNTs. 

iii. MnO2/R-TNTs, NiO/R-TNTs and binary NiMn2O4/R-TNTs via pulse 
electrodeposition (PED) method. 

2. To characterize the physical and chemical properties of the TNTs, R-
TNTs, MnO2/R-TNTs, NiO/R-TNTs and NiMn2O4/R-TNTs using XRD, 
FESEM, EDX and XPS technigues. 

3. To evaluate the electrochemical performance of TNTs, R-TNTs, 
MnO2/R-TNTs, NiO/R-TNTs and NiMn2O4/R-TNTs as supercapacitor 
electrode. 
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