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RADIATION DOSE, CANCER RISK AND DIAGNOSTIC PERFORMANCE OF 
COMPUTED TOMOGRAPHY PULMONARY ANGIOGRAPHY EXAMINATION 

 

By 

HANIF BIN HASPI HARUN 

September 2021 

Chair  : Muhammad Khalis bin Abdul Karim, PhD  
Faculty  : Science 
 
 
Concerns towards high radiation dose and cancer risk from Computed 
Tomography Pulmonary Angiography (CTPA) examinations have prompted 
efforts to develop a novel optimization while preserving CT image diagnostic 
performance. Hence, this study aims to evaluate the radiation dose, cancer risk 
and image diagnostic performance of CTPA examination regarding primary and 
secondary optimization such as iterative reconstruction (IR) algorithm, tube 
potential and pitch factor selection. The first phase of this thesis begins with the 
establishment of a local Diagnostic Reference Levels (DRL) with respect to 
image quality together with evaluation of organ dose and cancer risk. 127 
subjects (55 men and 72 women) with an age range from 18 to 88 years old who 
were suspected of having PE and underwent CTPA examination were recruited. 
Dose descriptors such as volume-weighted CT Dose Index (CTDIvol), Size-
Specific Dose Estimates (SSDE), Dose Length Product (DLP) and effective dose 
(E) were recorded and analyzed together with noise as the image quality. Body 
sizes of the subjects were categorized based on their effective diameter (ED) 
length and divided into three groups: P1 (19–24 cm), P2 (24–29 cm), and P3 
(29–34) cm. There is a significant difference in local DRL values and between 
body sizes (p < 0.05) while noise is not significantly different between body sizes 
(p > 0.05). Organ dose and cancer risk were estimated by the CT-EXPO (Ver 
2.5.1, Germany) and recommendation from the International Commission on 
Radiological Protection Publication (ICRP) 103 report respectively according to 
the primary beam. In one million CTPA examinations, the risk of cancer in breast, 
lung and liver organs was 0.009%, 0.007%, and 0.005%, respectively. 
 
 
The second phase focuses on the diagnostic performance assessment. Different 
levels of IR algorithms were applied in routine CTPA and several modified tube 
potentials. The value of signal and noise were defined by placing the circular 
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region of interest (ROI) on the main pulmonary artery (MPA), right pulmonary 
artery (RPA), left pulmonary artery (LPA), ascending aorta (AA), and descending 
aorta (DA). The performance of each protocol was presented as Signal to Noise 
Ratio (SNR), Contrast to Noise Ratio (CNR) and Figure of Merit (FOM). CNR 
and FOM performed significantly better when IR algorithm levels were increased, 
tube potential was reduced, and if patients had smaller body sizes (p < 0.05) 
while fluctuation trends were observed in SNR. The last phase of this thesis 
covers the assessment of diagnostic performance by a CATPHAN 600 phantom 
with primary and secondary optimization. The phantom was scanned with CTPA 
local protocol using different tube potentials and pitch factors. Images obtained 
were reconstructed with the IR algorithm (levels 3, 4 and 5). Diagnostic 
performance was quantified objectively by imQuest software (version 7.1, Duke 
University, USA). Noise power spectrum (NPS), target transfer function (TTF), 
CNR and SNR were evaluated concerning the optimization setting. It was found 
that the CNR value was increased while NPS was degraded by increasing IR 
levels. Noise value reduction has significantly achieved the increase of tube 
potential although there are no changes in TTF values. The alteration of pitch 
factor provides some fluctuation pattern of both NPS and TTF values. Future 
research could be carried out with different types of examinations, scanner 
models and substantive phantoms to expand these assessment methods 
proposed in this study. It is also recommended to extend a subjective diagnostic 
performance measurement to increase the reliability of the objective 
measurement attained. The study discovered a novel finding of the 
characterization of radiation dose, cancer risk and diagnostic performance with 
a different type of quantitative measurement for local CTPA examination. 
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DOS RADIASI, RISIKO KANSER DAN PRESTASI DIAGNOSTIK BAGI 
PEMERIKSAAN TOMOGRAFI BERKOMPUTER ANGIOGRAFI BAHAGIAN 

PULMONARI  

 

Oleh 

HANIF BIN HASPI HARUN 

September 2021 

Pengerusi : Muhammad Khalis bin Abdul Karim, PhD 
Fakulti  : Sains 
 
 
Kebimbangan terhadap dos sinaran yang tinggi dan risiko kanser dari 
pemeriksaan Tomografi Berkomputer Angiografi Pulmonari (CTPA) telah 
mendorong usaha untuk membangunkan pengoptimuman baru bagi 
mengekalkan prestasi diagnostik imej CT. Oleh itu, kajian ini bertujuan untuk 
menilai dos sinaran, risiko kanser dan prestasi imej diagnostik bagi pemeriksaan 
CTPA mengenai faktor primer dan sekunder seperti algoritma pembinaan 
semula lelaran (IR), potensi tiub dan pemilihan faktor nada. Fasa pertama tesis 
ini bermula dengan membangunkan tahap rujukan diagnostik (DRL) tempatan 
berkenaan dengan kualiti imej serta penilaian dos organ dan risiko kanser. 127 
subjek (55 lelaki dan 72 perempuan) dalam julat umur 18 hingga 88 tahun yang 
disyaki mempunyai PE dan menjalani pemeriksaan CTPA direkrut. Deskriptor 
dos seperti indeks dos CT berwajaran volum (CTDIvol), anggaran dos 
berdasarkan saiz khusus (SSDE), hasil darab panjang dos (DLP), dos efektif (E) 
direkod dan dianalisa serta hingar sebagai kualiti imej. Saiz badan subjek 
dikategori berdasarkan kepada panjang diameter efektif (ED) dan dibahagikan 
kepada tiga kumpulan: P1 (19–24 cm), P2 (24–29 cm), and P3 (29–34) cm. 
Terdapat perbezaan yang signifikan dalam DRL tempatan dan antara saiz badan 
(p < 0.05) manakala hingar tidak mempunyai perbezaan yang signifikan antara 
saiz badan (p > 0.05). Dos organ dan risiko kanser dianggarkan masing-masing 
melalui perisian CT-EXPO (Ver 2.5.1, Germany) dan perakuan daripada 
Laporan Suruhanjaya Antarabangsa bagi Penerbitan Perlindungan Radiologi 
(ICRP) ke-103 berdasarkan kepada alur primer. Dalam satu juta pemeriksaan 
CTPA, risiko kanser bagi organ payudara, paru-paru dan hati masing-masing 
sebanyak 0.009%, 0.007%, and 0.005%.  
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Fasa kedua memfokuskan pada penilaian prestasi diagnostik. Tahap algoritma 
IR yang berbeza digunakan dalam CTPA rutin dan beberapa modifikasi protokol. 
Nilai isyarat dan hingar ditentukan dengan meletakan rantau yang dikehendaki 
(ROI) berbentuk bulat pada pulmonari arteri utama (MPA), pulmonari arteri 
kanan (RPA), pulmonari arteri kiri (LPA), aorta menaik (AA) dan aorta menurun 
(DA). Prestasi setiap protokol ditunjukkan sebagai nisbah isyarat kepada hingar 
(SNR), nisbah kontras kepada hingar (CNR) dan angka berguna (FOM). CNR 
dan FOM menunjukkan prestasi yang lebih baik apabila tahap algoritma IR 
meningkat, potensi tiub menurun dan jika pesakit mempunyai saiz badan yang 
lebih kecil (p < 0.05) manakala trend berubah-ubah diperhatikan pada SNR. 
Fasa terakhir tesis ini merangkumi penilaian prestasi diagnostik oleh fantom 
(CATPHAN 600) dengan pengoptimuman primer dan sekunder. Fantom ini 
diimbas dengan protokol CTPA tempatan menggunakan potensi tiub dan faktor 
nada yang berbeza. Gambar terhasil dibina semula dengan tiga tahap algoritma 
IR yang berbeza (tahap 3,4 dan 5). Prestasi diagnostik ditentukan secara objektif 
menggunakan perisian imQuest, (versi 7.1, Universiti Duke, Amerika Syarikat). 
Spektrum kuasa hingar (NPS) dan fungsi pemindahan sasaran (TTF), CNR dan 
SNR dinilai telah dinilai berkenaan tetapan pengoptimuman. Didapati bahawa 
nilai CNR meningkat manakala NPS terjejas dengan meningkatnya tahap IR. 
Penurunan nilai hingar dicapai secara signifikan bagi peningkatan potensi tiub 
walaubagaimanapun tiada perubahan pada nilai TTF. Perubahan pada faktor 
nada menghasilkan trend berubah-ubah bagi nilai NPS dan TTF. Kajian masa 
depan boleh dijalankan pelbagai jenis pemeriksaan, model pengimbas dan 
fantom yang substantif untuk mengembangkan kaedah penilaian yang 
dicadangkan dalam kajian ini. Ia juga disyorkan untuk melanjutkan pengukuran 
prestasi diagnostik subjektif untuk meningkatkan kebolehpercayaan pengukuran 
objektif yang dicapai. Kajian ini menghasilkan penemuan baru mengenai ciri-ciri 
dos sinaran, risiko kanser dan prestasi diagnostik dengan jenis pengukuran 
kuantitatif yang berbeza untuk pemeriksaan CTPA tempatan. 
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CHAPTER 1 

 

INTRODUCTION 

 
1.1 Research Background 

 
 
The discovery of X-rays in 1895 ushered in a new era in medicine that aids the 
visualization of the human body without the need for painful or life-threatening 
operations. Because of its capability, the discovery was acknowledged almost 
immediately and accepted as a modern treatment diagnostic technique. 
Computed tomography (CT) examination is a promising imaging tool that uses a 
device to generate three-dimensional (3D) images that are important for 
screening, diagnosis, therapy, and patient care management. Figure 1.1 
illustrated the first CT Scanner introduced by Godfrey Hounsfield in 1973, which 
consisted of a rudimentary scanner gantry and control console. It has now 
become one of the most popular tools in diagnostic imaging, with 221 million CT 
exams conducted worldwide each year, with the number continuously growing 
(UNSCEAR, 2010).  
 
 
 

 
Figure 1.1: Illustration of old CT-scanner gantry (left) and control console 
(right) (Hounsfield, 1973) 
 
 
CT Pulmonary Angiography (CTPA) is one of the CT imaging techniques that 
enable the visualization of pulmonary arteries to enable diagnosis and treatment 
of Pulmonary Embolism (PE) as illustrated in Figure 1.2. PE is a condition when 
a clot blockage inside the pulmonary arteries interrupts the circulation of the 
blood in a respiratory system (Heit et al., 2000). PE is considered a significant 
health condition associated with high mortality and requires rapid and accurate 
diagnosis, particularly in patients at high risk. Through the advancement of CT 
technology, more than 90% of acceptable PE detection can be achieved and 
demands of the CTPA examination are steadily growing. 
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Figure 1.2: A CT-images of 64-year-old man with pulmonary embolism                
(Hu et al., 2017) 

 
 

In 2001, the International Commission on Radiological Protection (ICRP) raised 
an alarm, stating that the use of CT was growing and that the dose exposure 
from CT examinations was higher than from other imaging modalities (Foley et 
al., 2012). In concerned with ionizing radiation, the ICRP was the first to discuss 
radiation safety principles. In 1990, and later mentioned in 1996, the International 
Commission on Radiological Protection (ICRP) issued a document that defined 
two crucial components for the principal in medicine, which is justification and 
radiology examination optimizations. Justification implies that the necessity of 
ionizing radiation is a benefit of the patient exceeds any potential harm. 
Optimization means that radiation exposure is optimized for clinical purposes of 
the exam which is the ionizing radiation needed is essential for clinical purposes 
(Kanal et al. 2017).  
 
 
According to National Council on Radiation Protection and Measurements 
(NCRP), radiological examination by using CT-Scan caused to significantly 
higher collective effective dose (E) is estimated to account for up to 63% of the 
total as shown in Figure 1.3 (NCRP, 2019). Hence, it is useful to examine the 
cause of the higher dose contribution of CT scan examination and currently 
several studies investigating the different types of X-ray modalities that 
contribute to the different radiation dose levels (Rehani et al. 2012). The 
requirement of optimization in specific scan protocols is needed to implement an 
appropriate As Low As Reasonably Achievable (ALARA) principle. The dose 
exposure level was customize based on patient age or size, region of imaging 
and clinical indication to assure the dose exposure to the patient are put as 
reasonably low without compromising diagnostic quality for all clinical purpose 
of radiological examination especially CT examination. 
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There are obvious tradeoffs between dose exposure and image quality with 
parameter adjustability to reduce dose exposure. It is very subjective when 
explained about the diagnostically accepted in radiological examination that is 
dependent on the clinical task involved. For example, by reducing the tube 
current in CT-Scan examination, the radiation dose is also reduced but increases 
the noise of the image by 1.41 or 41% by reducing half of it. This will lead to 
inadequate low contrast resolution performance. By increasing the speed of the 
table or pitch factor, can also reduce the dose exposure but can degrade the z-
axis resolution and the scan length become over-ranging from the planned image 
boundaries. Meanwhile, reducing tube potential in the examination to reduce 
dose exposure may contribute to the beam hardening artifact in the CT images 
especially in the lowest tube potential available in CT scanner (exp: 80 
kilovoltage peak (kVp)) (McNitt-Gray, 2006). 
 
 
 

 
Figure 1.3: The collective effective dose found to increase significantly 
from 2006 to 2016 for CT examination (NCRP, 2019) 

 
 
 

CT image quality is essential for high-quality diagnostics to provide beneficial 
reporting of patient conditions. The CT scan emits a constant X-ray continuum 
along the x-y axis in rotating mode along the z-axis during scan acquisition and 
provides a homogeneous distribution of X-ray radiation in human tissues. 
Technical developments offering novel imaging facilities, a reduction of exposure 
and improved image qualities have resulted in greatly increased use of CT 
systems as seen in Figure 1.4. The optimization of a CT examination is achieved 
when image quality enables the clinical question to be answered while keeping 
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low dose exposure towards the patient (Hart et al. 2008). This goal is, however, 
difficult to apply in practice due to a wide range of parameters dependent such 
as acquisition time, temporal resolution, and energy resolution when dealing with 
kV optimization or spectral CT imaging, and other factors. While image quality 
has always been a concern for the physical community, the quality of the 
clinically acceptable image has become more of an issue as a strategy to reduce 
radiation dose to a greater focus. 
 
 
Diagnostic image quality cannot be fully assessed without the knowledge of the 
anatomical area of interest and pathology to be searched for. Due to that, many 
different anatomical phantoms have been developed, such as cardiac, liver, 
lung, thorax phantoms, among others (Karim et al. 2016a). These are having 
different in texture, density, size, and complexity. The reconstruction kernel is a 
feature that is capable to cater the variation of human body tissue. It is defined 
as the image processing filter applied to the raw data to yield a final scan image 
(Sauter et al. 2018). The sharpness of the final image is more strongly influenced 
by the type of filter used, often known as the soft and sharp kernel. A soft 
convolution kernel can smooth edges and minimize image noise, which is useful 
in obese patients where the signal-to-noise ratio (SNR) can be reduced due to 
adipose tissue attenuation. Sharp convolution kernels improve edges at the 
expense of increased overall image noise, which can obscure certain visual 
information (Ministry of Health, 2013). The kernel setting selection may be 
different based on specific clinical indications and diagnostic requirements. For 
instance, a soft kernel is typically used in brain checks or liver tumors 
assessment to reduce noise and increase low contrast detectability (LCD), while 
sharp kernels are commonly used in exams to obtain higher spatial resolution 
such as lung examination and assess the structure of concrete bones.  
 
 
 

 
Figure 1.4: Three phases of CT image formation with compensation 
between dose exposure and image quality (“Safety of CT Scan,” 2016) 
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The noise in CT images may increase in some conditions or examinations using 
thinner slice thickness or high spatial frequency filters with all variables kept 
constant. To achieve better images, it should eliminate noise by increasing tube 
current, resulting in higher radiation exposure to the patient (Goo, 2012). 
Different clinical tasks have different requirements for image quality such as high, 
medium and low signal-to-noise task is required for solid nodule detection in the 
lung, ruling out bleeds in the brain and kidney lesion detection, respectively 
(McNitt-Gray, 2006). When moving from axial scanning to helical scanning to 
multi-detector helical scanning, the consideration of slice thickness selection of 
the reconstructed image becomes much more intricate and complicated. This 
thesis is focusing on the width of the reconstructed slice in the helical scanning 
and the factors that may affect it, which may include collimation beam X-ray 
(especially in a single CT slice scanner), the width of the detector (especially in 
multi CT-detector scanner), helical / table helical speed and helical interpolation 
algorithm. For some manufacturers’ multi-detector scanners, the reconstructed 
slice thickness is independent of table speed; this is because of the interpolation 
algorithm used (McNitt-Gray, 2006). 
 

 
1.2  Problem Statement 
 
 
CTPA promotes excellent diagnostic accuracy in the diagnosis of PE, but it 
includes a high dose exposure of up to 2 mSv of E, which raises the risk of 
radiation-induced cancer in populations (Halid et al., 2018; Leithner et al., 2018).  
Since the use of CT is increasing and there is a lack of justification among 
practitioners, it is essential to optimize CTPA examinations by establishing 
Diagnostic References Level (DRL) (Vañó et al., 2017). The DRL is widely 
established by various countries and institutions as a baseline of the radiation 
dose administered to the patient, but it does not take into account factors that 
affect the DRL value, such as scanner type, patient size, and clinical indication. 
It is essential to develop a meaningful DRL concerning the above factors to 
ensure a positive CT examination optimization strategy. As highlighted by the 
ICRP, the association of DRL of patients with image quality is significant (Vañó 
et al., 2017). For image quality descriptors, it will be necessary to identify 
benchmarks such as spatial resolution, noise spectra, and contrast with other 
dose metrics, such as Dose-Length Product (DLP), Size-Specific Dose 
Estimates (SSDE), organ dose and E (Ria et al., 2019; Vañó et al., 2017). 
Previous research provides an assessment of estimating cancer risk for various 
types of CT examination however it is only tailored to a general population 
exposure rather than to an individual patient (Lahham et al., 2018; Halid et al., 
2018; Karim et al., 2017; (Saltybaeva et al., 2016). Instead, the organ dose and 
cancer risk are appropriately assessed while subjects or body characteristics are 
taken into account. Both assessments varied in different conditions, dependency 
on age, sex and population studied (Muhammad et al., 2019; Karim et al., 2017; 
Sarma et al., 2012). 
 
 
Sauter et al., (2018) and Dane et al., (2018) suggest that optimization in CT 
examination such as alteration of tube potential, IR algorithm and patient habitus 
are needed by compensation between radiation dose and image quality. It has 
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been reported that diagnostically accepted image quality of CTPA can be 
achieved by decreasing the tube potential of 100 kVp or even as low as 80 kVp, 
and dose reduction strategy also accomplished (Dane et al., 2018; Sauter et al., 
2018). However, an inappropriate selection of tube potential can cause noisy 
images, especially for an obese patient. Thus, the degradation of image quality 
led to a false-negative diagnosis of PE in CTPA examination. Previous studies 
have found a strong relationship between dose exposure and image quality 
concerning the Body Mass Index (BMI) as a patient size metric (Kim et al., 2018; 
Megyeri et al., 2015; Szucs-Farkas et al., 2014). However, the impact of an 
effective diameter as a patient size metric and tube potential concerning both the 
above parameters has not been evaluated so far in CTPA. 
 
 
A heterogeneous tissue element on real patients limits the task-based 
assessment of image quality that only selected metrics can be defined (Lahham 
et al., 2018). For instance, spatial domain measurement in real patients depends 
solely on the manipulation of a pixel, such as signal to noise ratio (SNR), a 
contrast to noise ratio (CNR), which has become inadequate indicators of 
diagnostic performance. Instead, a phantom serving as a substitute for real 
patients is constructed using various modules that enable to cater an accurate 
quality metrics such as frequency domain analysis which is greatly dependent 
on noise fluctuation and edge enhancement in distinct spatial frequencies 
(Greffier et al., 2020). Several studies focus on the task-based assessment of 
CT by different scanner types and dose exposure without considering specific 
CT examination protocols. Their findings may not portray the absolute 
characterization of the image quality which is not suited to apply with a specific 
protocol, scanning type and clinical indications. Figure 1.5 shows schematically 
the research framework and issues to resolve from the study. It is intended to 
provide information on the issues of current dosimetry and diagnostic quality in 
CT examination. In the future, this thesis could also be used as the first step of 
baseline information on the recent situation of CT optimization in Malaysia. 
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1.3  Research Question 
 
 
The aim of the study was to answer certain research questions which are: 
 

1. What is the value of local DRL and image quality references level 
compare to other countries in CTPA?  

 
2. What is the radiation-induced risk from CTPA examination in 

subjects characteristic? 
 

3. What is the effects of the the IR algorithm, tube potential and patient 
habitus on diagnostic performance in retrospective patients? 

 
4. What is the relationship of selected primary and secondary 

optimization with the diagnostic performance by a simulated 
phantom? 

  
 
1.4  Research Objective 
 
 
1.4.1  General Objective 
 
 
The present study aims to evaluate the radiation dose, cancer risk and image 
quality performance of CT Pulmonary Angiography Examination in regards to 
primary and secondary factors such as IR reconstruction, tube potential and pitch 
factor selection.  
 
 
1.4.2  Specific Objective  
 
  

1. To determine and establish local DRL with regard to image quality 
references level and compared with CTPA practices in other 
countries. 

 
2. To evaluate the radiation-induced risk from CTPA examination 

based on the subjects characteristic. 
 

 
3. To assess the effects of the IR algorithm, tube potential and patient 

habitus on diagnostic performance in retrospective patients by 
establishing the FOM index. 

 
 

4. To determine the relationship of selected primary and secondary 
optimization with the diagnostic performance by a simulated 
phantom. 
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1.5  Significant Contribution of Study 
 
 
DRLs are frequently used in various countries and clinical institutions for 
diagnostic purposes. With image quality reference levels becoming essential as 
a guideline for clinicians to perform CT examinations with a balance of diagnostic 
performance and dose exposure. Previous research has successfully evaluated 
the cancer risk in a variety of CT examinations and scanner types, despite solely 
relying on the dose exposure and not the patient's characteristics. In terms of 
cancer risk assessment, this study wants to emphasize the importance of 
calculating the risk based on the patient's age and gender to accurately estimate 
the cancer risk. Image quality assessment was not widely implemented in clinical 
institutions, particularly in Malaysia. This study attempts to establish a baseline 
or technique of image quality assessment that can be used in clinical practice to 
attain CT optimization.  
 
 
1.6 Thesis Outline 
 
 
This thesis is divided into five chapters. The first chapter discusses the research 
background, problem statement, research objective, and thesis outline. It 
provides a summary of the research topic and the importance of the study. 
Chapter 2 includes information from prior work on literature relevant to X-ray 
fundamentals, CTPA procedure, radiation dose and image quality descriptor, 
and optimization strategy for both radiation dose and image quality. The 
remaining subtopics include detailed explanations of the theory, concept, and 
formula used in the present study. 
 
 
Chapter 3 presents the instruments and tools employed in this research and 
experimental flows includes of the radiation dose, cancer risk and image quality 
evaluation following the research objective. Chapter 4, focused on a result 
obtained for local DRL evaluation, radiation dose and cancer risk of the CTPA 
examination. The image quality evaluation by the retrospective image of patients 
and phantom was explored based on the effect of IR levels, tube potential, pitch 
factor and patient sizes. In addition, the detailed discussion regarding the new 
finding of this study was compared with the previous works. The last chapter 
(Chapter 5) concludes the main results produced in this research and some 
suggestions for future research. 
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