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Indoor localisation based on the magnetic field has drawn much research 
attention since they have a range of applications in science and industry.  
Magnetic-based positioning systems are infrastructure-free and can be sensed 
by magnetometers embedded on smartphones. Unfortunately, magnetic field 
intensity data only consists of three components magnetic field signals 
compared to Wi-Fi, using multiple access points. There is a high chance that a 
similar reading of those three components obtained at multiple locations. A 
magnetic-based positioning algorithm should fully utilise the three components 
of the magnetic field intensity data. This thesis analyses the positioning accuracy 
changes by using different similarity measures on a specific magnetic field vector 
and proposed an algorithm using different weighted magnetic field signal 
distance similarity measures. For the first method, various metric distances used 
for the MF signal components are studied and the results showed that Euclidean 
distance and square distance give low distance mean error compared to square 
root and Manhattan distance. Then, three proposed different signal weighting 
functions, namely actual weight, square weight, and square root weight are 
applied in each MF signal similarity measure and compared with the state-of-
the-art of Euclidean distance to estimate location. Additionally, the effect of signal 
weighting function is investigated further using multiple K values of K nearest 
neighbour (KNN) algorithm. According to the results, the square root weighting 
function has a lower position error of 8.156 m than Euclidean distance with an 
improvement of 5.5%. Also, the use of (K=5) of KNN for the square weight of 
𝑑𝑚y1

 distance measure gives the lowest mean estimation error of 7.188 m. 
 
 
Another problem in MF IPS is there are few studies focused on using the Euclidean 
distance and the area between the reference points to improve the accuracy in the 
position estimation. Therefore, for the second objective, another algorithm named 
the fuzzy algorithm is designed which combines the clustering algorithm, matching 
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algorithm, triangle area algorithm and average Euclidean algorithm used to 
estimate location. Firstly, the MF RPs database is reconstructed into a cluster 
database using the clustering algorithm. Each trained RP and other nearby RPs 
are clustered together at a certain distance. A matching algorithm is used to match 
between the top 10 ranked RPs with the nearest Euclidean distance to the TP with 
the RPs clustered. For the triangle area algorithm, the smallest triangle area is 
selected from the triangle formed from the matching RPs cluster to estimate 
location. In contrast, the average Euclidean algorithm is based on the average 
Euclidean of the RPs from the RP cluster set. The lowest average Euclidean 
distance is chosen, and the average estimated location of the RPs is calculated.  
Lastly, for the fuzzy algorithm, a rule-based decision is applied to select whether 
the triangle area or average Euclidean algorithm is used to find the final estimated 
position. The fuzzy algorithm shows a localisation accuracy of 5.889 m, which is 
better than the KNN and Weight MF signal algorithm with an improvement of 31% 
and 27% respectively. 
 
 
Both algorithms have achieved the target accuracy below 8 m and better than 
KNN. Although the fuzzy algorithm achieved better accuracy than the weighted 
MF signal distance similarity measure, the weighted MF signal distance similarity 
measure was less time-consuming than the fuzzy algorithm. Therefore, both 
algorithms need more improvement in future works to achieve a better estimation 
location. 
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SUKATAN KESERUPAAN JARAK PEMBERAT KEKUATAN MEDAN 

MAGNET DAN ALGORITMA BERASASKAN FUZI 

Oleh 

CACEJA ELYCA ANAK BUNDAK 

Julai 2021 

Pengerusi :   Mohd Amiruddin Abd Rahman, PhD 
Fakulti         :   Sains 

Lokalisasi dalam bangunan menggunakan medan magnet telah menarik 
perhatian ramai penyelidik kerana medan magnet mempunyai pelbagai aplikasi 
dalam sains dan industri.  Sistem kedudukan berasaskan magnetic adalah 
bebas infrastruktur dan dapat dikesan menggunakan mangenetometer yang 
terbenam di dalam telefon pintar.  Walau bagaimanapun, data keamatan medan 
magnet hanya terdiri daripada tiga komponen dan tidak seperti Wi-Fi yang 
menggunakan banyak pusat akses Wi-Fi.  Kemungkinan besar bacaan magnet 
untuk ketiga-tiga komponen itu akan serupa di beberapa lokasi. Algoritma 
kedudukan berdasarkan magnet harus mempergunakna ketiga-tiga komponen 
data medan magnet dengan sepenuhnya. Tesis ini menganalisis perubahan 
ketepatan kedudukan dengan menggunakan ukuran kesamaan yang berbeza 
pada vector medan magnet yang tertentu dan cadangan menggunakan 
algorithma sukatan keserupaan jarak permberat kekuatan medan magnet. Untuk 
kaedah pertama, pelbagai jarak metrik yang digunakan untuk komponen isyarat 
MF dikaji dan hasilnya menunjukkan bahawa jarak Euclidean dan jarak persegi 
memberikan ralat min jarak rendah berbanding dengan punca kuasa dua dan 
jarak Manhattan.  Kemudian, tiga cadangan fungsi pemberat isyarat yang 
berbeza, iaitu berat sebenar, berat persegi, dan berat kuasa dua diterapkan 
dalam setiap ukuran kesamaan isyarat MF dan dibandingkan dengan jarak 
Euclidean yang canggih untuk menganggar lokasi. Selain itu, kesan fungsi 
pemberat isyarat dikaji lebih jauh dengan menggunakan pelbagai nilai K 
algoritma K terdekat (KNN). Menurut hasilnya, fungsi pemberat akar kuasa dua 
mempunyai ralat kedudukan yang lebih rendah 8.156 m daripada jarak 
Euclidean dengan peningkatan 5.5%. Juga, penggunaan (K = 5) KNN untuk 
berat persegi 𝑑𝑚y1

 memberikan ralat anggaran min terendah iaitu 7.188 m.© C
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Masalah lain dalam MF IPS adalah terdapat beberapa kajian yang difokuskan 
pada penggunaan jarak Euclidean dan kawasan di antara titik rujukan untuk 
meningkatkan ketepatan dalam perkiraan kedudukan. Oleh itu, untuk objektif 
kedua, algoritma lain yang dinamakan algoritma fuzzy dirancang yang 
menggabungkan algoritma pengelompokan, algoritma padanan, algoritma 
kawasan segitiga dan algoritma Euclidean rata-rata yang digunakan untuk 
menganggar lokasi. Pertama, pangkalan data MF RP disusun semula menjadi 
pangkalan data kluster menggunakan algoritma kluster. Setiap RP terlatih dan 
RP lain yang berdekatan dikumpulkan bersama pada jarak tertentu. Algoritma 
pemadanan digunakan untuk memadankan antara 10 peringkat teratas RP 
dengan jarak Euclidean terdekat ke TP dengan RP berkelompok. Untuk 
algoritma kawasan segitiga, luas segitiga terkecil dipilih dari segitiga yang 
terbentuk dari kluster RP yang sepadan untuk menganggarkan lokasi. 
Sebaliknya, algoritma Euclidean rata-rata berdasarkan pada Euclidean rata-rata 
RP dari kumpulan kluster RP. Rata-rata jarak Euclidean terendah dipilih, dan 
anggaran anggaran lokasi RP dikira. Terakhir, untuk algoritma kabur, keputusan 
berdasarkan peraturan diterapkan untuk memilih sama ada kawasan segitiga 
atau algoritma Euclidean rata-rata digunakan untuk mencari kedudukan 
anggaran akhir. Algoritma kabur menunjukkan ketepatan penyetempatan 5.889 
m, yang lebih baik daripada algoritma isyarat KNN dan Berat MF dengan 
peningkatan masing-masing 31% dan 27%. 
 
 
Kedua-dua algoritma telah mencapai ketepatan sasaran di bawah 8 m dan lebih 
baik daripada KNN. Walaupun algoritma kabur mencapai ketepatan yang lebih 
baik daripada ukuran kesamaan jarak isyarat berwajaran MF, ukuran kesamaan 
jarak isyarat berwajaran MF kurang memakan masa daripada algoritma kabur. 
Oleh itu, kedua-dua algoritma memerlukan lebih banyak penambahbaikan pada 
masa depan untuk mencapai lokasi anggaran yang lebih baik. 
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CHAPTER 1 

 
 

 INTRODUCTION 
 
 

1.1 Introduction 
 

 

Global Positioning System (GPS) is widely used for positioning in outdoor 
environments, which is one of the most famous localisation techniques. 
However, GPS cannot function indoors due to multipath reflection and signal 
blockage from buildings resulting in signal attenuation (Walton & Black, 1999). 
Therefore, the indoor positioning system is designed and developed to be used 
in a hypermarket, a multi-story indoor airport car park (Molina et al., 2018), and 
for blind people (Árvai, 2018). 
 
 
There are various indoor positioning systems (IPS) that have been researched 
such as Wi-Fi (Lohan et al., 2017), Bluetooth (Q. Wang et al., 2016), ultrasonic 
(H. S. Kim & Choi, 2008), magnetic field and infrared (J. H. Oh et al., 2014). Wi-
Fi positioning has drawn increasing attention since Wi-Fi signals are available in 
most areas. However, in these complex environments, Wi-Fi positioning 
systems' performance is affected by severe limitations of wireless signals such 
as shadowing, human mobility and multipath, which further worsens the Wi-Fi 
systems (Ashraf et al., 2020). In addition, the accuracy of the Wi-Fi positioning 
system depends on the number of Wi-Fi access points deployed. Hence, a more 
suitable technology is needed to achieve a more accurate IPS. One promising 
solution to this is to use the magnetic field (MF) based IPS. 
 
 
1.2  Overview of Magnetic-based IPS 

 
 

In recent years, an increasing number of mobile devices have been embedded 
with MF sensors, dramatically promoting magnetic-based IPS development. 
Indoor MF is a promising solution for indoor positioning technology because it is 
not affected by multipath signal disturbance as in Wi-Fi. Anomalies in the MF for 
indoor environments are caused by the concrete, metal, pillar structures and 
furniture (Haverinen & Kemppainen, 2009).  A study in Ma et al. ( 2018) shows 
that the indoor environment's magnetic fields were relatively stable and 
reproducible. Moreover, the values of magnetic field signals (MFS) at various 
positions are different, and hence it is possible to position a smartphone by 
fingerprint mapping of MFS measurements. 
 
 
Due to the magnetic field's stability and uniqueness, many researchers have 
developed a number of magnetic field-based positioning systems. For example, 
Limeng Cao (2017) analysed real-time geomagnetic sequence performance 
measured by the smartphone's sensors on multiple mobile devices. In Poulose 
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et al. (2019), experiments show that the inertial measurement unit (IMU) sensor 
data will improve the position estimation systems for indoor localisation. The 
magnetic field plays an essential role in solving IPS problems. 
 
 
The location estimation technique usually used in magnetic-based positioning is 
the fingerprinting method. The fingerprinting method first requires real surveying 
by collecting the signal signature at every unique physical location called 
fingerprint location. The measurement data is stored in a database. The 
database contains coordinates of reference points (RPs) and the magnetic field 
measure along a smartphone's three axes vector 𝒙, 𝒚 and 𝒛 . The observed 
magnetic field fingerprint is compared to the one stored in the database during 
the online phase. Then the coordinate with the closest match is determined as 
the user's estimated location. 
 
 
Magnetic field positioning system could be divided into two main problems: in 
ample indoor space, the magnetic fingerprints may not be unique, and the 
embedded magnetometer of the smartphone is sensitive. The collected 
magnetic field intensity may be very different for different smartphones. The 
algorithms should be accurate and quickly processed in the database to give an 
estimation of the location. Therefore, a magnetic-based algorithm is essential to 
improve positioning accuracy. 
 
 
1.3  Magnetic Field algorithm for Indoor Positioning System 

 
 
In today's application, indoor localisation systems should be embedded in mobile 
devices such as smartphones which have small computing capability. With the 
impressive performance of machine learning and deep learning, an increasing 
number of researchers have attempted to use these methods to solve magnetic-
based IPS and have achieved good performance (Pasku et al., 2017). These 
algorithms can be divided into deterministic and probabilistic methods.  
 
 
Probabilistic approaches are among the most popular methods in magnetic-
based positioning due to the effectiveness and robustness, such as Kalman-filter 
based techniques (G. Wang et al., 2019), particle-filter based techniques (Ma et 
al., 2018; Xinheng Wang et al., 2017; Zhang et al., 2017), and maximum 
likelihood (ML) probability (Bozkurt Keser et al., 2018). In these algorithms, 
probabilistic methods provide a probability distribution function (PDF) estimate 
of the given location's magnetic field signal. In Xie et al. (2016), the authors 
proposed an indoor navigation method based on reliability-augmented particle 
filter and use a hybrid measurement model, combining a new magnetic 
fingerprinting model and the existing magnitude fingerprinting model, to improve 
system performance, and importantly avoid calibrating magnetometers for 
different smartphones. Huang et al. (2018) proposed an improved particle filter 
algorithm based on initial positioning error constraint, while at the same time 
pointing out that the particle filter performs poorly which often suffers filtering 
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divergence when there is continuous variation of the indoor magnetic 
distribution.  However, an interference source will disturb other multiple 
reference points when they use the irregular magnetic field for positioning. The 
change in the magnetic field measurement at a reference point can cause 
another reference point in the magnetic field to change field (X. Huang et al., 
2017). Therefore, probabilistic methods assumption on each reference point is 
independent cannot be applied in the magnetic field positioning. 
 
 
Another approach is using the deterministic methods, which are easier to be 
implemented (Bahl & Padmanabhan, 2000) because they only harness the 
similarity between each point, then calculate positioning results as the closest 
fingerprint locations in signal space. The deterministic methods usually used 
similarity metrics include Euclidean distance (Moghtadaiee & Dempster, 2015), 
Manhattan distance, and cosine similarity (Caso et al., 2015). There are various 
Nearest Neighbour (NN) method such as single NN (Bozkurt et al., 2015), KNN 
(Dai et al., 2019; J. Oh & Kim, 2018), and K- Weighted NN methods (Abd 
Rahman et al., 2019; van et al., 2017) which are the most popular deterministic 
methods. Therefore, a localisation algorithm must be designed and developed 
to utilise as small processing power as possible and at the same time retain good 
positioning accuracy. 
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1.4  Problem Statement 

 
 
Indoor positioning does not have standardised technology. Unlike the GPS, the 
indoor positioning system depends on nearby anchors (nodes with a known 
position), which either actively locate tags or provide environmental context for 
devices to sense. In strange complexity and different pattern interference in the 
buildings, researchers used many different indoor positioning technologies such 
as Wi-Fi, Bluetooth and MF. Magnetic-based positioning systems are used in 
research due to the stability (X. Huang et al., 2017; Wu et al., 2017) and 
uniqueness (Jiaxing et al., 2017)  of the magnetic field. However, the main 
problem in magnetic-based positioning systems is to figure out a suitable 
machine learning algorithm that can differentiate between different positions with 
the same MF value. Specifically, to develop an efficient and robust magnetic-
based indoor positioning system, this thesis investigates the following problems: 
 

1. Magnetic-based positioning only has three components signal measure 
that can be used compared to Wi-Fi which can use multiple access 
points.  Therefore, the possibility of obtaining a similar reading of those 
three components at multiple locations within a limited space is high. 

2. Although different indoor localisation systems utilise various magnetic 
field algorithms, there are limited studies between the Euclidean 
distance and the area between the RPs. 

3. KNN is the state-of-the-art algorithm used for IPS.  However, using KNN 
might have an error due to the chosen estimation point might be far from 
the TP although the MF signal between the TP and RP is almost the 
same. 
 
 

1.5  Weighted Magnetic Field Signal Distance Similarity Measure and 
Magnetic Field Fuzzy algorithm 

 
 
To solve the problems mentioned in section 1.4, two types of algorithms are 
proposed. The first algorithm proposed is weighted magnetic field signal distance 
similarity measure which uses three different weight functions applied on each 
of the magnetic vectors signal difference. The second algorithm is the Fuzzy 
algorithm. Fuzzy algorithms consist of three proposed algorithms which are the 
triangle area algorithm, the average Euclidean algorithm and lastly the Fuzzy 
algorithm which based on a rule decision to choose either triangle or average 
Euclidean algorithms. The foundation and the implementation of the proposed 
algorithms is described in detail in Chapter 3. 
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1.6  Research Objectives 

 
 
According to the algorithm proposed in Section 1.5, this thesis main aim is to 
develop a robust and efficient magnetic-based positioning emphasising to 
achieve an accuracy to be better than the state-of-the-art algorithm, KNN. So, 
the mean distance error is expected to be below 8 m as obtained in Chapter 4. 
Detail objectives are given as follows: 
 
 

1. To design and develop weighted Magnetic Field signal distance 
Similarity Measure which weighting based on MF signals. Three different 
similarity measures are used with different weight factors which are 
applied on specific MF vectors. 
 

2. To design and develop Fuzzy algorithms which combine multiple 
techniques which are clustering algorithm, matching algorithm, triangle 
area and Average Euclidean algorithm and using a rule-based decision 
technique. 
 

3. To develop KNN used it with previous algorithms to evaluate and 
compare the proposed algorithms mentioned above in terms of accuracy 
and computation time. 
 

 

 

 

 

 

 

 

 

 

 

 

 
© C

OPYRIG
HT U

PM



6 

1.7  Research Frameworks 

 
 
Figure 1.1 shows the research framework for the thesis.  From the figure, for the 
first problem the possibility of obtaining a similar reading of three components 
MF signals at multiple locations within a limited space is high. To investigate this 
problem, a proposed weighted MF signal distance similarity measure is designed 
and developed. This design is shown in Section 3.3 for Chapter 3 and the result 
of the proposed algorithm is discussed in Section 4.2 for Chapter 4. For the 
second problem which is that there is limited study between the Euclidean 
distance and the area between the RPs, a Fuzzy algorithm is designed and 
developed. In the proposed algorithm, the relationship between the Euclidean 
distance and the area between the RPs were studied by designing the triangle 
area and Average Euclidean algorithm. Both of the algorithms are presented in 
Chapter 3 Section 3.4.3 and 3.4.4. Before using three of the proposed algorithms 
which are the triangle area, average Euclidean and the Fuzzy algorithms, pre-
processing and matching signals between TP and RPs were done by using 
Clustering Algorithm and Matching Algorithm. The method for clustering 
algorithm is mentioned in Chapter 3 Section 3.4.1 and the matching algorithm is 
introduced in Chapter 3 Section 3.4.2. The results of the proposed algorithms for 
the second objectives are presented in Chapter 4 Section 4.3. For the last 
objective which is to evaluate and compare all the proposed algorithms with KNN 
and previous studies in terms of accuracy and time consuming, the baseline of 
the KNN is presented in Chapter 3 Section 3.2. Two performance metrics used 
to evaluate the performance of the proposed algorithms are mean error and CDF 
in which the formula mentioned in equation (3.18) and equation (3.19) 
respectively in Chapter 3 Section 3.8. For the time consuming, the results are 
shown in Chapter 4 Section 4.4. 
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Figure 1.1 :  Research framework flow chart 
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1.8  Thesis Overview 

 
 
This dissertation discusses developing robust techniques and improvising the 
algorithm for indoor tracking and localization applications.  
 
 
 Chapter 1 (Introduction): In this chapter, an overview of indoor localization and 
some of the existing systems and algorithms are given. The aim and problem 
facing this research are mentioned in this chapter. 
 
 
Chapter 2 (Literature review): In this chapter, the technologies used for IPS and 
the introduction of IPS based on magnetic fields are described. Other than that, 
this chapter reviews some of the related work approached for magnetic-based 
positioning algorithm of estimation indoor location. 
 
 
Chapter 3 (Research methodology): In this work two methods are used to 
improve magnetic-based positioning. Firstly, using the different MF signal 
similarity measure applied on different weight functions. Secondly, Fuzzy 
algorithm is used to provide magnetic field indoor positioning estimations. 
 
 
Chapter 4 (Results and Discussion): In this chapter, the performance of 
proposed algorithms is shown and compared with KNN and weighted MF 
algorithms. The discussion about the algorithms and the accuracy of the 
estimation are mentioned in this chapter. 
 
 
Chapter 5 (Conclusion): In this chapter, conclusion on the proposed algorithms 
of magnetic field used in IPS is discussed. Future work is mentioned in this 
chapter to improve the algorithm used in the future. 
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