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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in 
fulfillment of the requirement for the degree of Doctor of Philosophy 

SYNTHESIS AND CHARACTERIZATION OF TRANSPARENT 
SUPERHYDROPHOBIC FLUORINATED GRAPHENE OXIDE  

AND SILICA BASED SOL GEL COATING FILMS 

By 

MOHD HAMZAH BIN HARUN 

September 2020 

Chairperson : Professor Zainal Abidin Talib, PhD 
Faculty  : Science 

Transparent water repellent organosilica based coating containing 
tetraorthosilicate (precursor), fluoroalkylsilane (hydrophobic agent) and 
nanofillers (roughness agent) were prepared by sol-gel method. The coating was 
prepared by modification of silica (SiO2) or graphene oxide (GO) nanofillers with 
siloxane having long chain fluoroalkylsilane that allow for reducing surface 
energy. Four different samples were prepared namely, tetraorthosilicate sol 
(TEOS sol), tetraorthosilicate-fluoroalkylsilane (TEOS-FAS), tetraorthosilicate-
fluoroalkylsilane-silica (TEOS-FAS-SiO2) and tetraorthosilicate-fluoroalkylsilane-
graphene oxide (TEOS-FAS-GO). The hydrophobic coating solutions were 
prepared at different concentration percentages of silica and GO ranging from 
0.04 pph - 0.20 pph respectively. The water contact angle, transmittance degree, 
surface morphology and topography, chemical composition and surface analysis 
were characterized by Attension Tensiometer, UV-Visible Spectrophotometer, 
Field Emission Scanning Electron Microscope (FESEM), Atomic Force 
Microscope (AFM), Fourier Transform Infrared Spectroscope (FTIR), and X-Ray 
Photoelectron Spectroscopy (XPS).  

The contact angle for TEOS sol formulation at different concentrations of 
tetraorthosilicate showed a hydrophilic behavior in which the contact angle 
measured was lower than 90o whereas for TEOS-FAS formulation, hydrophobic 
behavior was obtained in which the measured contact angles were between 90o 
and 115o. For TEOS-FAS-SiO2 and TEOS-FAS-GO, the contact angles obtained 
were in the range of pre-superhydrophobic and superhydrophobic range (120o - 
168o). Such behavior can be explained by the presence of hydrophobic agents 
which were fluoroalkylsilane and nanosize fillers which were SiO2 and GO. To 
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investigate the durability of hydrophobicity value, the contact angle after peeling 
test using Scotch tape was measured. It showed that the TEOS-FAS-GO is more 
durable as the drop of contact angle value is more gradual as compared with 
other samples.  

 
The transmittance for all samples showed that they were transparent and the 
range obtained was between 70% - 95%. FESEM images confirmed the 
presence of silica and GO in the samples in which for TEOS-FAS-SiO2, uniform 
structure was obtained whereas for TEOS-FAS-GO, it showed that the silica from 
TEOS grew onto the graphene flakes. FTIR showed that the most important peak 
at 1036-1055 cm-1 has been obtained which confirmed the covalent attachment 
of FAS with silanol particles within tetraorthosilicate matrix in TEOS-FAS-GO 
and TEOS-FAS-SiO2 formulation. AFM demonstrated that the roughness 
increased with the addition of silica and GO fillers with TEOS-FAS-GO gave 
relatively greater roughness than TEOS-FAS-SiO2 samples. XPS analysis 
showed that FAS and TEOS molecules were successfully grafted on the SiO2 
and GO surfaces with hydroxyl and carboxyl groups were involved as well as 
silica nanoparticles from TEOS sol for TEOS-FAS-GO and silica nanoparticles 
itself for TEOS-FAS-SiO2. 

 
The introduction of SiO2 and GO in the formulation of transparent TEOS sol 
formulation containing long chain fluoroalkylsilane enhance the surface 
roughness and thus induces the hydrophobicity in which the water contact angle 
obtained in the range of hydrophobicity and superhydrophobicity (120o - 169o). 
This indicates that the surface roughness plays an important role in enhancing 
hydrophobicity and lowering the surface free energy. Although the transmittance 
degrees obtained were slightly lower than TEOS sol and TEOS-FAS formulation 
which were around 70-95%, the transmittance is still within the accepted level 
since the hydrophobic coatings obtained were visible. 
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Salutan kalis air lutsinar berasaskan organosilika yang mengandungi 
tetraortosilikat (prekursor), fluoroalkilsilana (agen hidrofobik) dan pengisi nano 
(agen kekasaran) telah disediakan menggunakan kaedah sol-gel. Salutan 
tersebut telah disediakan dengan modifikasi pengisi nano silika atau grafin 
dengan siloksana yang mempunyai rantaian panjang fluoroalkilsilana yang 
membolehkan ia menurunkan tenaga permukaan. Empat sampel berbeza telah 
disediakan iaitu sol tetraorthosilikat (sol TEOS), sol tetraorthosilikat 
fluoroalkilsilana (TEOS-FAS), tetraorthosilikat-fluoroalkilsilana-silika (TEOS-
FAS-SiO2) dan tetraorthosilikat fluoroalkilsilana-grafin oksida (TEOS-FAS-GO). 
Larutan salutan hidrofobik telah disediakan pada purata kepekatan berbeza iaitu 
dari 0.04 pph hingga 0.20. Sudut sentuh air, darjah kepancaran, morfologi dan 
topografi permukaan, komposisi kimia dan analisa permukaan dicirikan dengan 
alat Attension Tensiometer, Meter Spektro UV-Tampak, Mikroskop Elektron 
Imbasan Medan Pancaran (FESEM), Mikroskop Daya Atom (AFM) Infra-Merah 
Transformasi Fourier (FTIR) dan Spektroskopi X-Ray.  
 
 
Sudut sentuh untuk formulasi sol TEOS pada kepekatan berbeza 
tetraorthosilikat menunjukkan yang ia mempunyai sifat hidrofilik yang mana 
sudut sentuh yang diukur adalah lebih rendah daripada 90o berbanding dengan 
formulasi TEOS-FAS, sifat hidrofobik diperoleh dengan sudut sentuh diukur 
adalah di antara 90o dan 115o. Sudut sentuh yang berbeza diperoleh bagi TEOS-
FAS-SiO2 dan TEOS-FAS-GO yang mana sudut sentuh diperolehnya dalam julat 
prasuperhidrofobik dan superhidrofobik (120o - 168o). Sifat sebegini boleh 
dijelaskan dengan kehadiran agen hidrofobik iaitu fluoroalkilsilana dan pengisi 
bersaiz nano iaitu SiO2 and GO. Untuk menyiasat ketahanan nilai hidrofobik, 
sudut sentuh selepas ujian kupasan menggunakan pita Scotch telah diukur. Ia 
menunjukkan yang TEOS-FAS-GO lebih tahan memandangkan penurunan nilai 
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sudut sentuh lebih seragam berbanding sampel-sampel lain. Darjah transmisi 
untuk kesemua sampel menunjukkan yang setiap darinya lut sinar dan julat 
diperoleh ialah 70% - 95%. Imej FESEM mengesahkan kehadiran silika dan GO 
pada sampel yang mana struktur uniform bagi TEOS-FAS-SiO2 didapati 
manakala bagi TEOS-FAS-GO, ia menunjukkan silika yang terhasil daripada 
TEOS tumbuh pada empingan grafin. FTIR menunjukkan yang puncak penting 
adalah pada 1036-1055 cm-1 s yang mengesahkan berlakunya sangkutan 
kovalen oleh FAS terhadap partikel silanol dalam matriks tetraorthosilikat bagi 
formulasi TEOS-FAS-GO dan TEOS-FAS-SiO2. AFM menunjukkan yang 
kekasaran meningkat dengan penambahan pengisi silika dan GO dan TEOS-
FAS-GO memberikan nilai kekasaran yang sangat tinggi. Analisis XPS 
menunjukkan molekul TEOS dan FAS tercangkuk pada permukaan SiO2 dan 
GO dengan kumpulan berfungsi hidroksil dan karboksil terlibat dan juga partikel 
nano silika daripada sol TEOS untuk TEOS-FAS-GO dan partikel nano silika 
unuk TEOS-FAS-SiO2. 
 
 
Penampilan SiO2 dan GO dalam formulasi sol TEOS lutsinar yang mengandungi 
fluoroalkilsilana rantai panjang meningkatkan kekasaran permukaan dan tahap 
hidrofobik di mana sudut sentuh air diperoleh dalam julat hidrofobik dan 
superhidrofobik. Ini menunjukkan yang kekasaran permukaan memainkan 
peranan penting dalam meningkatkan tahap hidrofobik dan menurunkan tenaga 
permukaan bebas. Walaupun darjah transmisi yang didapati sedikit rendah bagi 
TEOS-FAS-SiO2 dan TEOS-FAS-GO daripada formulasi sol TEOS dan TEOS-
FAS iaitu sekitar 70-95%, transmisi diperoleh masih pada tahap boleh diterima 
memandangkan salutan hidrofobik yang didapati adalah boleh tampak. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Transparent Water Repellent Coating 

Water repellent coating refers to a coating that contains surface water contact 

angle (), (Figure 1.1) (WCA) greater than 90o. If the WCA obtained is less than 
90o, the coating is addressed as hydrophilic. And if it is higher than that, it is 
called hydrophobic and if it is greater than 150o, the coating is called as water 
superrepellent or superhydrophobic (Das et al., 2018).  

Figure 1.1: The water contact angle (θ) – the angle that is taken from the 
angle occurred between the plane of a surface and the tangent from which 
the water droplet in contact with the surface. 

Water repellent surface can be observed in nature. It varies between 
hydrophobic and superhydrophobic. The Lotus effect (a name given after the 
Lotus plant, Nelumbo nucifera) is the name that describes self-cleaning 
phenomenon of some leaf surfaces (Figure 1.2). When the leaf distinguishes 
high water repellency, water shall form close-spherical droplets that reel across 
the surface instead of sliding. The reeling phenomenon collects foreign body dirt 
and debris and thereby clean the surface naturally. The greater self-cleaning 
phenomena can be observed for rougher surface. The plant leaves which 
possess waxy coatings but poor rough microstructure is not so efficient at self-
cleaning. Contrary with the leaves that possess both characteristics namely 
waxy coatings and rough surface, the self-cleaning is more efficient (Neinhuis & 
Barthlott, 1997). © C
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Figure 1.2: SEM image of Nelumbo nucifera leaf distinguishing high 

roughness surface. A scale bar shown is 50 m. An inset shows the 
original image of the leaf (Neinhuis & Barthlott, 1997). 

 
 

 
 
Figure 1.3: SEM image of water striders leg. Spindle-like structures 
emanating off the leg contain nanosize grooved structure, contributed to 
dual-scale roughness to the leg. A secreted wax acts to repel water. (Scale 

bar – left = 20 m and right = 200 nm)(Yan et al., 2011) 
 
 

High water repellency in nature can also be observed in animal for example 
water strider legs. Its legs contain greatly defined microstructure as well as 
layered with secreted wax (Figure 1.3). Some insect wings also possess water 
repellent properties attributed to surface microstructure and its composition. 
These include dragon fly, butterfly wings, as well as penguin skin. 
 
 
These surface properties and their usefulness in nature as described above 
have provided inspiration to the scientific communities to design artificial water 
repellent surface that has great potentials in self-cleaning coatings, anti-
microbial, automotive windows, and anti-corrosion.  
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As of 2015, the hydrophobic coating in the world market size was USD 1.34 
billion and it is expected that there will be witnessed a significant growth in the 
future owing to its high demand in automotive, aerospace and construction 
industry (https://www.grandviewresearch.com/industry-analysis/hydrophobic-
coating-market). In addition, the innovations to employ the nanoparticles in 
hydrophobic coatings that provide the high surface area and improved 
performance has opened new avenues for the industry growth over the expected 
period. 

 
 

1.2 Problem Statement 
 
Nowadays, to produce durable and transparent water repellent coating is a great 
challenge. There are several inorganic nanoparticles and transparent polymers 
that can be employed to synthesize transparent water repellent coating but the 
water repellency of this artificial coating always suffer degradation due to robust 
outdoor environment that lessens the water repellency characteristic. In natural 
lotus leaves, the continuous water repellency is attributed to the continuous 
metabolism of their surface wax layer and thus maintain the water repellency 
during their life time. 

 
 
The scientists and researchers very often do not report the degree of 
transparency of the water repellent coatings. The main reason which can be 
presumed is the water repellent coating is normally optically translucent. It is in 
our knowledge that water repellency is contributed by high surface roughness 
and hydrophobic chemical composition. The limited report obtained for the 
transparency of water repellent coating is because both characteristics are in 
competition with each other. By enhancing surface roughness, it shall increase 
the surface water repellency but simultaneously enhance the scattered light falls 
on a surface which is addressed as Mie scattering. This scattering occurs when 
the diameter of the scattering particles is near to the incident light wavelength 
and thus is identified as the main factor in reducing the optical transparency of 
water repellent surface (Mie, 1908; Yu et al., 2015). 
 
 
There are several methods to synthesize transparent water repellent coating 
include plasma processing, electrospinning, chemical and physical deposition 
but those methods require high voltage of electricity, high content of chemical 
residues and environmental unfriendly (Celia et al.,2013). Sol gel technique is 
found the best method to overcome these problems (Gu et al., 2017; Das et al., 
2018). In addition, there are several approaches to control optical transparency 
of water repellent coating include chemical vapor deposition and solution 
immersion method. However, spray coating which was used in this study 
appears as the most practical, low cost, scalable and well adapted technique to 
coat small to large substrate with various geometries. The transparent 
characteristic can be controlled by spray-coating process whereas water 
repellency can be regulated by adjusting the loading amount of long chain 
fluoroalkylsilane as well as the amount GO and Silica.(Yang et al., 2009; 
Mahadik et al., 2016) 
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1.3 Scope of Study 
 
The aim of this study is to synthesize transparent water repellent coating 
comprises of tetraorthosilicate, TEOS that will act as precursor, fluoroalkylsilane; 
FAS which works as hydrophobic agent and graphene oxide, GO and silica 
respectively that work as nanofiller that is possible in enhancing the roughness 
of the coating surface. Silica is one of the conventional nanofillers that are 
usually applied in hydrophobic study. However, the durability of silica 
incorporated water repellent coating becomes a concern among scientist. Thus, 
the employment of GO in this study is to investigate its potential in this field as 
well as to look at the durability of GO incorporated water repellent coating.  Sol 
gel method is used because of ease to synthesis, cheap and feasible(Mahadik 
et al., 2017;  Tadanaga et al., 1997) while the spraying technique is proposed to 
deposit the coating formulation onto the surface of glass microslide substrate 
because as compared to other techniques, such as dipping, brushing and spin 
coating, it promises adaptability and controlled thickness (Yang et al., 2009). 
 

1.4 Objectives of the Study 
 
The general aim of this study is to prepare water repellent coatings either in 
hydrophobic or superhydrophobic range by mean of sol gel technique and to 
study the effect of fluorination of fluoroalkylsilane with GO and silica nanofillers 
respectively on the morphology and topography of the sample, water contact 
angle, transmittance degree, vibrational assignment of chemical molecules and 
surface chemistry. Thus, the objectives of the study are concluded as follows: 
 

i. to develop a transparent water repellent formulation by sol gel 
method and subsequently produce the water repellent coating 
deposited on glass microslides by spraying technique. 
 

ii. to identify the vibrational assignment of chemical molecules and 
surface chemistry of the water repellent coating at different 
concentrations of TEOS, FAS, GO and silica nanofillers respectively 
for determining the functional groups and elemental composition 
involved in the sol gel reaction of the coating formulations. 
 

iii. to characterize the optical transparency, surface morphology and 
topography of the water repellent coating at different concentrations 
of TEOS, FAS, GO and silica nanofillers respectively for determining 
the surface roughness. 
 

iv. to investigate the thermal and hydrophobic properties of the water 
repellent coating at different concentration of TEOS, FAS, GO and 
silica nanofillers respectively. 
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1.5 Significances of the Study 
 
The research shall determine the potential of graphene derivative namely 
graphene oxide in the synthesis of water repellent coating. The characterizations 
that were carried out are compared with silica incorporated water repellent 
coating especially on the parameter of the water contact angle and the durability 
of the measured water repellency. Silica, being a nanofiller that enhance the 
surface roughness has been studied extensively in superhydrophobic coating 
area. The price of this material is also affordable which is good for 
commercialization.  
 
 
However, it also contains hindrance which include issues on its durability and 
dispersibility (Shen et al., 2010) . This can be overcome by using graphene oxide 
in which graphene, a derivative from carbon materials is excellent in thermal, 
mechanical and environmental stability. Graphene alone is not suitable because 
it is very inert and difficult to be dissolved in common solvents (Yang et al., 2017). 
The incorporation of graphene oxide can also give additional characteristic such 
as the coating is more conductive which is good in optoelectronic device. 
 
 
In addition, the utilization of graphene oxide as a nanofillers in the fabrication of 
superhydrophobic thin sol gel film in comparison with other materials such as 
silica (Kavale et al., 2011; Mahadik et al., 2016; Sun et al., 2017) and fluorinated 
polymers (Ma and Hill, 2006; Lin et al., 2010; Mundo, et al., 2008) is quite limited 
because the research on superhydrophobic graphene and its derivative are in 
its early stage. Besides that, how to manipulate the full use of superhydrophobic 
graphene and its derivatives. Despite water repellent ability, graphene 
possesses several other merits include mechanical strength, high surface area, 
flexibility and optical transparency (Potts et al., 2011; Artiles et al., 2011), It can 
be anticipated that the synergy between outstanding characteristics of graphene 
and its derivatives with water repellency can provide to novel applications in the 
field of optoelectronics, electronic devices and anti-microbial (Wang et al., 2015).  
An exciting future for superhydrophobic graphene shall be witnessed and it is all 
due to the contribution of multidisciplinary scientists and engineers in the 
designing of such surfaces. 

 
 

1.6 Thesis Outlines 

 
In Chapter 1, the overview of water repellent coating and problem statement in 
relation to the study is discussed. In addition, the scope of the research and the 
objectives are also reported. The significance of study is mentioned at the end 
of the chapter. 

 
In Chapter 2, the first phase of this chapter reviews the basic theory in water 
repellency and the models reported by earlier scientists. Then the past and 
present methods in producing synthetic water repellent coating from different 
materials are reviewed thoroughly in the next phase of the chapter.  
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In Chapter 3, the methodology in synthesizing water repellent coating by sol gel 
technique is discussed. The first part consists of the preparation of (TEOS) sol, 
followed by tetraorthosilicate-fluoroalkylsilane (TEOS-FAS) and finally 
tetraorthosilicate-fluoroalkylsilane-silica formulation and tetraorthosilicate-
fluoroalkylsilane-graphene oxide formulation.   

 
In Chapter 4, the results and discussion pertaining to the samples prepared are 
reported. The water contact angle or WCA, UV-Visible, FESEM, AFM, FTIR and 
XPS were reported in order to characterize the hydrophobicity, transmittance 
degree, surface morphology and topography, vibrational assignment of 
molecules and surface elemental analysis of water repellent coatings.   

 
In Chapter 5, a conclusion from the finding is presented. The way forward as a 
continuity of the present work is also being proposed. 
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